

How do those radicals look like ?				
• Theory:	• Theory: Minimize the non-Zeeman heat capacity			
• Recipe:	• Recipe: - Minimize the inhomogeneous interactions until			
$D_{inhom}~\simeq~ u_D$				
- Optimize the hom. (dipolar) interaction				
$D_{hom} \simeq \frac{(g_e \mu_B)^2}{N_S}$				
$h = h = \frac{h}{h}$				
to allow for spectral diffusion				
• In practice: - Irradiation if HFS interaction weak: μ , $ \Psi_e $				
- Use 'narrow EPR radicals': Trityl radical				
Present status:				
-	Material	Doping method	Polarization	Field
	6LiD	Irradiation	> 50 %	2.5 <i>T</i>
	D-Butanol	Irradiation	55 %	2.5 T
			71 %	5.0 <i>T</i>
	D-Butanol	chem. dop.	79%	2.5 <i>T</i>
	D-Propanediol	with trityl	81 %	2.5 T
Gerhard Reicherz 2				