The Antiproton Project at GSI

- Introduction
- Status of Physics with Antiprotons
- The Antiproton Facility at GSI (HESR)
- Physics
 - Charmonium Spectroscopy
 - Search for charmed Hybrids and Glueballs
 - Experiments with open charm particles
 - Antiproton-Nucleus interactions
 - Further possibilities
- Conclusions

Measuring Program

Non perturbative QCD-effects (Emphasis on Charm sector)

- Effective hadron masses in matter
- Quark Confinement ($Q\overline{Q}$ -potential, ...)
- Gluonic Hadrons (Hybrids, Glueballs)
- -CP-violation

Physics with Antiprotons (2)

Recent Discoveries using \overline{p} -beams

- Top Quark (Fermi Lab)
- $-W^{\pm}$, Z^{0} (CERN)
- High precision charmonium spectroscopy (Fermi Lab)
 - Masses and (partial) widths of χ,η_c states
 - $\alpha_{s} (m_{c})$
 - Multipole Structure of χ_1, χ_2 states
- LEAR-Results (CERN)
 - Trapped Antiprotons $(m_{\overline{p}} / m_{p}, \text{Antihydrogen (AD)})$
 - T/CP/CPT-Tests
 - Meson/Exotics-Spectroscopy (Light Quark Sector)
 - Candidate for Glueball ground state ($f_0(1500)$)
 - Two resonances with exotic quantum numbers J^{PC} = 1⁻⁺

Physics with Antiprotons (3)

e⁺e⁻- collisions:

Only 1⁻⁻-states are directly formed (Well measured, e^-e^+ energy scans) The other states only visible through secondary reactions, e.g.: $e^+e^- \rightarrow \psi' \rightarrow \chi + \gamma$ (moderate mass resolution)

pp - collisions:

All states can be directly formed (Very good mass resolution, scans with \overline{p})

 $p = G_{\overline{c}} (0^{-+}, 0^{++}, 2^{++})$ $\overline{p} = G_{\overline{c}} (0^{-+}, 0^{++}, 2^{++})$

or

Physics with Antiprotons (5)

LEAR: Spin Exotics

 $\overline{p}_{\text{Stop}} d \rightarrow X(1^{-+}) + \pi + p, X(1400) \rightarrow \eta \pi^{0}, \eta \pi^{-}; X(1600) \rightarrow \pi \eta'$ (Firstly seen by VES, GAMS, BNL) General observations

- High Statistics data needed
- Exotics couple to $\overline{p}p$ with a strength similar to $q\overline{q}$ -states

Physics with Antiprotons (6)

Merits of Antiprotons

- High cross sections
 - \rightarrow Facilitates search for rare particles
- Most particles can be directly created in formation processes regardless of their $\mathcal{J}^{\rm PC}$ quantum numbers
- $-\ \overline{p}$ -induced reactions (s 15 GeV) have low particle multiplities
 - →Reconstruction of full events, Reliable PWA
- Exotic states are produced with rates similar to $\overline{q}q$, qqq-systems
- (Cooled) beams have small $\Delta p/p$ and small emittances
 - →Clean experimental conditions

GSI (Present Status)

GSI = Gesellschaft für Schwerionenforschung/Darmstadt/Germany

Today

Since 1969:

- Superheavy Elements
- Exotic nuclei, far from stability line
- Hot and dense nuclear matter
- QED tests
- Hadronic masses in nuclear matter
 - Deeply bound pionic atoms
 - Effective K⁺, K⁻- masses in nuclear
 matter

The Antiproton Facility at GSI

Detector requests

- Nearly full solid angle for charged particles and Gammas
- High rate capability
- Good particle identification (e, μ , π , K, p)
- Efficient trigger on e, μ , K, D

General purpose detector

- Target: Jet/Pellet/Wire
- Tracking: Pixels (MVD) / Straws / Mini-Drift-Chambers (MDC)
- E.M. Calorimeter: PbWO₄, APD-Readout
- Muons: Plastic Scint. Strips
- PID: Aerogel Cerenkov (ACC) / DIRC
- Trigger: High p_{\perp} electrons/muons / Multiplicity jump ($K_{S}^{0}, \Lambda, ...$) / Secondary vertex (D's,...) Invariant masses / Global kinematical conditions

Charmonium Spectroscopy (1)

Energies/Energy splittings/Widths of states →Details of QQ -interactions Exclusive Decays →Mixing of perturbative/non-pert. effects

Charmonium Spectroscopy (2)

Experimental situation

R704 (CERN/ISR) / E 760/835 (Fermilab)

 \mapsto Discovery of h_c (1P_1) - state

Very precise values for masses and widths of $\chi_c, \eta_c\text{-states}$

Measurement of previously unknown decay channels

But: Severe limitations (Non magnetic detector, beamtime, beam momentum reproducibility,...)

Many questions left open:

- $\eta_c^{'}$ not yet established (Spin-Spin-Interaction)
- Properties of ${}^{1}P_{1}$ still poorly known
- D-wave states (some of them very narrow) and radially excited P-states above $D\overline{D}$ -threshold not found yet
- Angular distributions of radiative decays of χ -states not fully understood (Structure of states)
- Rates of exclusive ($c\overline{c}$)- decays not understood, e.g. $J/\psi \rightarrow \rho\pi, \pi^+\pi^-, \omega\pi^0, \rho\eta / \psi' \rightarrow \gamma + \pi, \eta / \chi_J \rightarrow \rho\rho, \phi\phi, \rho\eta$ (Mixing of pert./non-pert. effects)

Charmonium Spectroscopy (3)

Measuring program at HESR

Expected rates:

$$\overline{p} (\geq 5.5 \text{GeV}/c) p \rightarrow J/\psi (\rightarrow e^+e^-, \ \mu^+\mu^-) (0.6\mu b) \approx 10^7/\text{day} \approx 10^6/\text{day} \quad \text{reconstr.}$$

$$\overline{p} (\geq 5.5 \text{GeV}/c) p \rightarrow \chi_2 (\rightarrow J/\psi + \gamma) (3.7 \text{nb}) \approx 10^5/\text{day} \approx 10^4/\text{day} \quad \text{reconstr.}$$

Scans in the energy regions of interest in steps of 10-1 MeV Parallel search for decays in $e^+e^-, \mu^+\mu^-, \gamma\gamma, \phi\phi, ...$

Search for Charmed Hybrids (2)

Measuring program at HESR

States with non exotic q.-n.: $\overline{p} \operatorname{-scan}: \overline{p}p \to (c\overline{c}g) (3.9 - 4.3 \ GeV/c^2; \ J/\psi\operatorname{-trigger}),$ $\overline{p}p \to (c\overline{c}g) (4.3 - 5.0 \ GeV/c^2; \ D\operatorname{-trigger}),$ $\approx 10^4 (c\overline{c}g) \to J/\psi + \eta \quad \text{per day (Decay channel selects q.-n.)}$ States with exotic q.-n.: Production experiment: $\overline{p}p \to (c\overline{c}g) + \pi^0(\eta)$ $\hookrightarrow J/\psi + \omega, \phi, \gamma$ $\approx 10^2 (c\overline{c}g) \text{ per day, PWA of Dalitz-Plots (see LEAR)}$

In addition: Measuring program on light hybrids $\approx 2 \ GeV/c^2$, Scan- and production mode Favorite channels: $\overline{p}p \rightarrow (c\overline{c}g) \rightarrow f_1(1285)\pi, K_1\overline{K}, ...$ Large cross sections (µb)

Search for Glueballs (1)

Glueballs (gg)

Predictions:

Masses:

1.5-5.0 GeV/ c^2 (Ground state found? ;

Candidates for further states?)

Quantum numbers:

Several spin exotics (oddballs), e.g.

 $J^{PC} = 2^{+} (4.3 \text{ GeV/c}^2)$

Widths: \geq 100 MeV/c²

- Decay into two lighter glueballs often forbidden because of q.-n.
- No mixing effects for oddballs

Search for Glueballs (2)

Production cross section:

Maybe high in $\overline{p}p$ -annihilation (see $f_0(1500)$) Comparable to $q\overline{q}$ -systems (! μ b)

Experimental program at HESR \overline{p} -scan for non-exotics: $\overline{p}p \rightarrow (gg) \rightarrow \phi\phi, \phi\eta$ (Most reasonable channels, easily distinguishable, low ℓ - waves (simple PWA))

Production exp. for exotics: $\overline{p}p \rightarrow (gg) + \pi$ Reasonable measuring times

Experiments with open Charm/Strangeness (1)

HESR

$$\begin{split} \overline{p} (\geq 6.5 \, \text{GeV}/c) p & \rightarrow D \overline{D}(250 nb) \approx 10^9 \, \text{/year} \approx 10^7 \, \text{/year reconstr.} \approx \tau / c - \text{Factory} \\ \overline{p} (\geq 10.1 \, \text{GeV}/c) p & \rightarrow \Lambda_c \overline{\Lambda}_c(20 nb) \approx 10^8 \, \text{/year} \approx 10^7 \, \text{/year reconstr.} \\ \overline{p} (\geq 14.1 \, \text{GeV}/c) p & \rightarrow \Omega_c \overline{\Omega}_c(0.1 nb) \approx 10^6 \, \text{/year} \approx 10^5 \, \text{/year reconstr.} \end{split}$$

 $\overline{p} (1.65 \, \text{GeV}/c) p \longrightarrow \Lambda \overline{\Lambda} (65 \mu b) \approx 3 \times 10^{11} / \text{year} \approx 10^{10} / \text{year} \text{ reconstr. (CP-Violat.)}$ $\overline{p} (\geq 2.6 \, \text{GeV}/c) p \longrightarrow \Xi^- \Xi^+ (2\mu b) \approx 10^{10} / \text{year} \approx 10^7 - 10^9 \text{ reconstr. } \Xi^- / \text{year} (_{\Lambda\Lambda} A)$

Common feature:

- Particles come in pairs, charge symmetric conditions
- Moderate particle energies
- Trigger on one, investigate the other
- Low multiplicity events

Experiments with open Charm/Strangeness (3)

CP-Violation in charmed region

 $D^0 / \overline{D}^0 - \text{Mixing}(r) < 10^{-8}(SM)$ HESR: $\Delta r / r \sim 10^{-4}$

Direct CP-Violation (SCS)

Compare $D^+ \to K^+ \overline{K}^{0*} / D^- \to K^- K^{0*}$ Asymmetries A (SM) $\leq 10^{-3}$

 $HESR = \Delta A / A \approx 10^{-4} - 10^{-3}$

Antiproton-Nucleus-Interactions (2)

Effective D-masses in nuclear medium

- Dramatically increased $D\overline{D}$ -decay rate of ψ' - and χ_2 -states in nuclear medium

 \hookrightarrow Substantial increase of widths (0.3 MeV \rightarrow ?; 2.7 MeV \rightarrow ?)

— Increased width of $\psi(3770)$ (31 MeV \rightarrow ?)

Antiproton-Nucleus-Interactions (3)

2) J/ψ - nucleon absorption cross section

Important for J/ψ - suppression in QGP

Proposed reaction: \overline{p} (3.4-4.6 *GeV/c*) + $A \rightarrow J/\psi$ + (A-1)

Furthermore:

- $c\overline{c}$ - dissociation to open charm in the presence of nucleons:

 $\overline{p}d \rightarrow D^- + \Lambda_c^+$

- Elastic J/ψ - nucleon cross sections (Low momenta) $\overline{p}d \rightarrow J/\psi + \gamma + n$

Antiproton-Nucleus-Interactions (4)

3) Strange Baryons in Nuclear Field

Hypernuclei = Third dimension of the nuclear chart || States with new symmetries, not

available in ordinary nuclei || Non-mesonic weak decays || Basic properties of hyperons and

strange exotic objects

- Double Λ -Hypernuclei (Three candidates exist yet)
 - Hyperon-Hyperon interaction (Meson-exchange vs. quark-exchange)
 - Breeder for H-dibaryon
- High resolution spectroscopy of deeply bound hyperatoms
- Ω^{-} -atoms (\rightarrow Static quadrupol moment)
- Experimental Concept:

$$\overline{p}(2.6 \, GeV/c) + A \rightarrow \Xi^{-}(\text{slow}) + \overline{\Xi}(KK \cdots); \Xi^{-}(\text{slow}) + A' \rightarrow_{\Lambda\Lambda} A'$$
Trigger
Active, secondary target

Antiproton-Nucleus-Interactions (5)

Experimental set up:

Secondary target: High resolution solid state microtracking detector (Diamond, *Si*)

High resolution spectroscopy: Efficient, position sensitive Ge-γ-array (see VEGA, AGATA at GSI, 100 kHz-rate)

```
HESR: 3x10<sup>3</sup> (Ξ- Trigger) - 3x10<sup>5</sup> (Kaon-Trigger)
stopped and reconstructed Ξ<sup>-</sup> / day
→Hundreds of γ-transitions per day
```

Present experiments: 10^4 stopped Ξ in total

Conclusions

- HESR will deliver cooled high quality antiproton beams with energies up to 15 GeV
- Antiproton induced reactions exhibit unique features
 - High statistics data
 - Low multiplicity events
 - Symmetric production of particles and antiparticles
 - High production rates for gluonic hadrons
 - Many states can be directly formed
- Rich and unique Physics Program with emphasis on charmed particles
 - J/ψ -Nucleon interactions
 - Effective masses of hadrons in nuclear matter
 - Precision charmonium spectroscopy
 - Search for charmed hybrids and heavier Glueballs
 - CP-violation in the charm sector
 - Low energy \overline{p} physics, including Antihydrogen experiments