News with Charm

- Introduction
- Open Charm States
- States with hidden Charm
- Future: PANDA-Detector at FAIR
- Conclusions

Introduction (1)

Present activities in Hadron Spectroscopy

BaBar; BES; BELLE; CLEO; CDF; DØ, FOCUS, E 835 (Fermilab)

BaBar/BELLE/CLEO: Fixed CM-energy (Y(4s))

Additionally: $\gamma\gamma$ – Fusion, ISR

 $\int Ldt \approx 400 (fb)^{-1} (BaBar/BELLE))$

Introduction (2)

BES, CLEO-c: Discrete Energies: J/
$$\psi$$
, ψ' , ψ'' , ...
 $e^+e^- \rightarrow \psi''' \rightarrow D\overline{D}$
 $e^+e^- \rightarrow \psi' \rightarrow \gamma \chi_c$
 $e^+e^- \rightarrow \psi' \rightarrow \gamma q \overline{q}$

CDF, DØ :
$$\overline{p}p (E_{CM} = 2TeV) \rightarrow B\overline{B}$$

 \hookrightarrow Charm

Focus :
$$\gamma(200 \text{GeV}) \text{Be} \rightarrow \text{B} + \text{X}$$

 $\hookrightarrow \text{Charm}$

E 791 :
$$\pi^{-}(500 \text{GeV})\text{Pt}(\text{C}) \rightarrow \text{B} + \text{X}$$

 $\hookrightarrow \text{Charm}$

E 835 :
$$\overline{p}p$$
 (Scan mode) $\rightarrow J/\psi, \psi', \chi_c, \eta_c, ...$

Open Charm States (1)

Two newly discovered broad states: $D\pi$, $D^*\pi$ -modes $M = (2352 \pm 50)MeV$; $\Gamma = (261 \pm 50)MeV$ $D_0^*(2400)$? $M = (2427 \pm 36)MeV$; $\Gamma = (384 \pm 117)MeV$ $D_1(2430)$?

Evidence (BELLE) : $B \rightarrow D\pi\pi$

J^P: Compatible with 0⁺, 1⁺ Interpretation: Missing cq̄-states

Open Charm States (2)

D_s(cs̄, c̄s)-states (BaBar, CLEO, BELLE, CDF)

Decays: $\rightarrow D_s^{\pm} \pi^0$ (I-violation) $\not\Rightarrow D_s^{+} \gamma$ (Forbidden, $J^P = 0^+$) $\not\Rightarrow D_s^{*} (2112)^{+} \pi^0$ (Forbidden, $J^P = 0^+$) $\not\Rightarrow D_s^{+} \pi^0 \pi^0$ (Forbidden, $J^P = 0^+$) $\not\Rightarrow D_s^{*} (2112)^{+} \gamma$ (Allowed) $\not\Rightarrow D_s^{+} \pi^{+} \pi^{-}$ (Forbidden, $J^P = 0^+$) Consistent with $J^P = 0^+$

Open Charm States (3)

Quantum numbers:

 $J^{P} = 0^{+}$ from $B \rightarrow DD_{sJ}^{*}(2317)$ (BELLE, Angular Distr.)

I = 0 ? No evidence for $D_s^+\pi^-$ -, $D_s^+\pi^+$ -states

Decays:

$$\rightarrow D_{s}^{+}\pi^{0}\gamma(D_{s}^{*}(2120)\pi^{0})$$

$$\rightarrow D_{s}^{+}\pi^{+}\pi^{-}$$

$$\rightarrow D_{s}^{+}\gamma(\rightarrow J \neq 0)$$

$$\Rightarrow D_{s}^{+}\pi^{0} \qquad (Forbidden, J^{P} = 1^{+})$$

$$\Rightarrow D_{sJ}^{*}(2317)^{+}\gamma \quad (Allowed)$$

$$\Rightarrow D_{s}^{+}\pi^{0}\pi^{0} \qquad (Allowed)$$

$$\Rightarrow D_{s}^{*}(2112)^{+}\gamma \quad (Allowed)$$

$$Consistent with J^{P} = 1^{+}$$

Quantum numbers:

 $J^{P} = 1^{+} \text{ from } B \rightarrow \overline{D}D_{sJ}(2460) \quad (\text{BELLE, Angular Distr.})$ $\hookrightarrow D_{s}\gamma$ $I = 0 ? \text{ No evidence for } D_{s}^{+}\pi^{-}$

Open Charm States (4)

Interpretation of $D_{sJ}^{*}(2317)$ and $D_{sJ}(2460)$

- \succ 0⁺, 1⁺-c \overline{q} -states: Problem: Masses
- DK-Molecules
- Charmed Four Quark States
- ➤ Chiral Multiplets of Heavy-Light Mesons (Eichten, ..., Novak, Lutz, ...) Prediction: $M(D_{s0^+}^*(2317)) - M(D_s) \approx M(D_{s1^+}(2460)) - M(D_s^*) \approx m_N/3$

States with Hidden Charm (1)

States below $D\overline{D}$ -threshold:

Much information about J/ ψ , ψ' , $\chi_{0,1,2}$

Very little known about η_c , η'_c , h_c (Spin-Singletts), Important for spin-spin-interaction States above DD-threshold:

Many are undetected, lots to do

(Heavy Quarkonium Physics, N. Brambilla et al., CERN Yellow Report; hep-ph/0412158)

States with Hidden Charm (2)

 $\eta'_{c}(2 \ {}^{1}S_{0})$: Rediscovery (BELLE, CLEO, BaBar)

BELLE: B \rightarrow K(K_sK⁺ π ⁻) and e⁺e⁻ \rightarrow J/ ψ (c \bar{c}) CLEO/BaBar: $\gamma\gamma$ -Fusion ($\gamma\gamma \rightarrow K_sK\pi$) $M = (3642.9 \pm 3.4)MeV; \Gamma < 30MeV$ (Crystal Ball: $(3594 \pm 5)MeV$)

Evidence:

Decay modes:

$$\rightarrow K_s K^+ \pi^-$$

 $\rightarrow ?$

States with Hidden Charm (3)

$h_{c} (1 \ ^{1}P_{1})$

$$\begin{split} & \text{CLEO: } \psi(2s) \rightarrow \pi^0 h_c \rightarrow \pi^0 (\gamma \eta_c) \\ & \text{M} = (3524.4 \pm 0.6 \pm 0.4) \text{MeV} \text{ ; } \Gamma < 10 \text{MeV} \end{split}$$

Evidence (CLEO):

Quantum numbers:

J^P: Probably 1⁺ I : Probably 0

 $\Delta M_{hf}(1P) = < M(\chi_{cJ}) > \text{-} M_{h_c} = (1.0 \pm 0.6 \pm 0.4) MeV$

In agreement with the confinement potential being a Lorentz scalar

BELLE: Angular distributions of $J/\psi \rho \rightarrow$ Preference for $J^{PC} = 1^{++}$

I = 0 ? BaBar: Search for $B^- \rightarrow K^0 X^- \rightarrow K^0 (J/\psi \rho^-)$; $B^0 \rightarrow K^{\pm} X^{\mp} (B < 5 \times 10^{-4})$

States with Hidden Charm (5)

X(3872) (contin.)

Nature of X(3872):

Ordinary charmonium

Many assignments eliminated by the small width of the X

 $1^{3}D_{2} \text{ or } 1^{1}D_{2}$?

- 🙂 narrow (~ 1 MeV)
- maybe slightly lighter than X
- expected to have radiative decay (X decay into $\chi_{c1} \gamma$ not observed

 $2^{3}P_{1} \text{ or } 2^{1}P_{1}$?

- not expected to have radiative decay
- narrow (1-2 MeV)
- ~100 MeV heavier than X
- so not expected to decay into $J/\psi \pi \pi$

States with Hidden Charm (6)

Diquark - Antidiquark (Maiani et al.)

2 neutral states $X_u = [cu][\overline{cu}] \quad X_d = [cd][\overline{cd}] \quad \Delta M = (7 \pm 2) MeV$ 2 charged states $X^+ = [cu][\overline{cd}] \quad X^- = [cd][\overline{cu}]$

Neutral states produced in B⁰, B⁺-decays have different masses and rates. Slight experimental evidence. No evidence for charged states

➢ s-Wave D⁰ D^{*0} molecule (Braaten, Kusunoki, Swanson, Tornquist)

 $m_{D0} + m_{D^{*0}} = (3870.3 \pm 2.0) MeV$

 $\Delta M = (+1.2 \pm 2.0) MeV$

Model predictions:

 $B^0 \to K^0 X$ suppressed by one order of magnitude wrt $B^+ \to K^+ X$

 $J^{PC} = 1^{++}$ is favored

 $\Gamma(X\to\gamma J/\psi)<\Gamma\left(X\to\pi\pi J/\psi\right)$

States with Hidden Charm (7)

X(3940) (BELLE, BaBar)

 $M = (3943 \pm 6 \pm 6) MeV$; $\Gamma < 52 MeV$

Evidence (BELLE): $e^+e^- \rightarrow J/\psi(c\bar{c})$

Y(3940) (BELLE, BaBar) $M = (3943 \pm 11 \pm 13)MeV$; $\Gamma = (87 \pm 22)MeV$ Evidence (BELLE): $B \rightarrow K(\omega J/\psi)$

Quantum numbers:

 $J^{PC} = ?$ I = 0

Nature:

(ccg)-Hybrid?

States with Hidden Charm (8)

Z(3940) (BELLE, BaBar)

M = $(3931 \pm 4 \pm 2)$ MeV ; $\Gamma = (20 \pm 8 \pm 3)$ MeV

Evidence (BELLE): $e^+e^- \rightarrow e^+e^-(\gamma\gamma)$; $\gamma\gamma \rightarrow D\overline{D}$

Quantum numbers:

 $\mathbf{J}^{\mathrm{PC}} = ?$

Nature:

 $\chi'_{c2}(2 {}^{3}P_{2})?$

Y (4260) (BaBar)

 $M = (4259 \pm 8^{+2}_{-6})MeV ; \Gamma = (88 \pm 23^{+6}_{-4})MeV$

Evidence (BaBar): $e^+e^- \rightarrow \gamma(e^+e^-)$; $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ (ISR)

Quantum numbers:

$$J^{PC} = 1^{--}$$

 $I = ?$
Nature:

$$1^{--}$$
 cc-resonance?

Future Perspectives (1)

BaBar: $(Y(4s); \rightarrow 2008)$ BELLE: $(Y(4s); \rightarrow ?)$ CLEO: $(\psi(2s), \psi(3s), J/\psi ?; \rightarrow \ge 2 \text{ years})$ BES: $(\psi(2s), J/\psi; \rightarrow ?)$ COMPASS: $(\text{Hadron-Program}; \rightarrow ?)$

PANDA: $(1.5 \le \overline{p} \le 15 \text{GeV}; \text{ From 2013})$ Super B-Factory: $(Y(4s); \rightarrow ?)$

Future Perspectives (2)

FAIR-Project at GSI

Primary Beams

10¹²/s; 1.5 GeV/u; ²³⁸U²⁸⁺
10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u
3x10¹³/s 30 GeV protons

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- Antiprotons 3 (0) 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •10¹¹ stored and cooled 1 15 GeV/c antiprotons

Future Perspectives (3)

General Purpose Detector: PANDA

Formation: $\overline{p}(\text{scan})p \rightarrow X \rightarrow ...$ Production: $\overline{p}(\text{fixed})p \rightarrow X + n\pi + ...$

PANDA-Collaboration: 370 scientists from 8 countries and 30 institutions

Future Perspectives (4)

QCD systems to be studied with PANDA

Rates

Production Rates (1-2 (fb)⁻¹/y)

<u>Final State</u>	cross section	<u># reconstr. events/y</u>
Meson resonance + anything	100µb	1010
$\Lambda\overline{\Lambda}$	50µb	1010
$\Xi\overline{\Xi}(\to_{\Lambda\Lambda}A)$	2µb	$10^8 (10^5)$
$D\overline{D}$	250nb	107
$J/\psi(\rightarrow e^+e^-,\mu^+\mu^-)$	630nb	109
$\chi_2 \; (\rightarrow J/\psi \! + \! \gamma)$	3.7nb	107
$\Lambda_c\overline{\Lambda}_c$	20nb	107
$\Omega_{ m c}\overline{\Omega}_{ m c}$	0.1nb	105
Common Feature : Low multiplicity events		
Moderate particle energies		
For Pairs : Charge symmetric conditions		
Trigger on one, investigate the other		

H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005

Future Perspectives (5)

Physics Program

Charmonium

3

S

Ρ

D

 $\Pi_{\mathbf{u}} \Sigma_{\mathbf{u}}^{-}$

Search for new states above DD-threshold

Precision determination of masses and widths

(Extremly high masses resolution $\rightarrow 20 \text{keV}$)

Production cross sections

Widths: Could by narrow in some cases (\approx MeV)

Future Perspectives (6)

Open Charm Physics

Widths of states e.g.: $\overline{p}p \rightarrow D_{sI}^{*}(2317) \quad \overline{D_{sI}^{*}(2317)}$

Future Perspectives (7)

Hypernuclear Physics

 $\overline{p}(3\text{GeV/c})p \to \Xi^{-} \text{ (slow) } \overline{\Xi^{-}} \text{ (fast)}$ $\stackrel{L}{\to} \Xi^{-} p \to \Lambda\Lambda \text{ (inside nucleus)}$

Further Options

Baryon Spectroscopy CP-Violation in D-decays Deeply Virtual Compton Scattering (DVCS) Proton FF in time-like region

> Not discussed: Low energy \overline{p} -physics: \overline{H} , Antiprotonic Atoms, \overline{p} ⁴He

Future Perspectives (8)

Merits of Antiprotons

- → In $\overline{p}p$ -annihilation all $q\overline{q}$ -states can be formed directly (not only J^{PC} = 1⁻⁻)
 - \rightarrow High mass resolution for all states ($\approx 20 \text{keV}$)

▶ pp cross sections high
 ▶ Data with very high statistics

H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005

Future Perspectives (9)

High probability for production of exotic states Example: Crystal Barrel @ LEAR; Spin exotic states (J^{PC} = 1⁻⁺) at 1400/1600MeV

Low final state multiplicities
 Clean spectra, good for PWA analyses

Conclusions

> Hadron Spectroscopy is in the focus of interest again

Experimental developments

Lots to be expected from further running of BaBar, BELLE, CLEO, BES, COMPASS, ...

New and very precise data to be expected from PANDA/GSI

Theoretical developments Lattice QCD Effective Field Theories Chiral calculations