Polarised Nucleon Targets for Europe, 1st meeting, Bochum 2004

Advanced Nuclear Magnetic Resonance

H. Štěpánková, J. Englich, J. Kohout, M. Pfeffer Faculty of Mathematics and Physics, Charles University Prague, Czech Rep.

- NMR at Charles University Prague
- Experimental techniques, spectra and relaxations
- Outlook

Introduction

Nuclear magnetic resonance (NMR) Nucleus with nonzero total angular momentum (spin) *I* nonzero magnetic dipolar momentum $\mu = \gamma \hbar I$ $(\gamma \dots$ gyromagnetic ratio) In a static magnetic field $B_0 \parallel z$ energy depends on μ_z Zeeman splitting ... 2*I*+1 equidistant levels I = 1/2 $I_z = -1/2$ (for $\gamma > 0$) E $\Delta E = \gamma \hbar B_0$ $B_0 = 0$ $B_0 \neq 0$ $I_z = 1/2$

Radiofrequency field induces transitions if $\omega_{rf} = \gamma B_0$ (Larmor frequency)

Resonating nucleus = probe sensitive to the local static field B_0

NMR at Charles University Prague

2 laboratories:

High resolution NMR (since 1999)

narrow spectral ranges, narrow spectral lines,T ~ T_{room} (liquids, solutions of organic molecules, biomolecules and polymers, solids - MAS) $B_{external} = 11.7 \text{ T}$ (500 MHz for ¹H, 125 MHz for ¹³C)

NMR of broad spectral lines (since ~ 1965)

NMR at Charles University Prague High resolution NMR (since 1999)

NMR at Charles University Prague High resolution NMR (since 1999)

NMR at Charles University Prague High resolution NMR (since 1999)

NMR at Charles University Prague

2 laboratories:

High resolution NMR (since 1999)

narrow spectral ranges, narrow spectral lines,T ~ T_{room} (liquids, solutions of organic molecules, biomolecules and polymers, solids - MAS) B_{external} = 11.7 T (500 MHz for ¹H, 125 MHz for ¹³C)

NMR of broad spectral lines (since ~ 1965)

broad band spectrometer, spectral range 6 -700 MHz,

T~ 4.2 – 500 K

(solids, mainly magnetic materials; also NQR; spectra mostly measured without external static magnetic field)

NMR at Charles University Prague NMR of broad spectral lines (since ~ 1965)

NMR experiment

B_{ext}

Spectrum

relative amount of nuclei resonating at different frequencies

Relaxation times

spin-lattice relaxation T_1 spin-spin relaxation T_2

Nuclear magnetization m differences in population of energy levels Rotating reference frame S' effective field B_{eff} $(B_{eff})_z = B_0 - \omega_{rf}/\gamma = \Delta \omega / \gamma$ $\Delta \omega \dots$ offset $(B_{eff})_\perp = B_1$ $\delta m / \delta t \dots$ torsion $m \times B_{eff}$

CW NMR experiments CW... continuous wave

 B_1

Pulsed rf field

- short pulse $\tau \sim \mu s$

- frequency $\omega_{rf} \sim \omega_0 \equiv \gamma B_0$

In S' (= noninertial system of coord. rotating around *z* with ω_{rf} , $\dot{x}'||\boldsymbol{B}_1$):

precession of *m* around

$$\boldsymbol{B}_{eff} = (B_1, 0, B_0 - \omega_{rf} / \gamma) \approx (B_1, 0, 0)$$

Pulsed NMR experiments

FID = free induction decay $\boldsymbol{B}_0 || \boldsymbol{z}$, homogeneous, $\boldsymbol{B}_1 \perp \boldsymbol{z}$, $\omega_{rf} \approx \omega_0 = \gamma B_0$

Pulsed NMR experiments

Application of pulsed NMR to the nuclear polarisation measurement

Pulsed rf field destroys polarisation in the $\boldsymbol{B}_{\text{ext}}$ direction

How to minimize this effect?

- turning angles smaller than $\pi/2$, π
- return of magnetization to z by additional pulses

Application of pulsed NMR to the nuclear polarisation measurement

Measured FID, magnetization returned to z by additional pulses

Decrease of magnetization during the sequence duration depends (in addition to T_1 relaxation) on T_2 relaxation

? relation between T_1 and T_2 ?

Decrease of magnetization during the sequence duration depends (in addition to T_1 relaxation) on T_2 relaxation

? relation between T_1 and T_2 ?

Building of NMR spectrometer and accessories for the project

 Cryostat with a superconducting solenoid, magnetic field 4.7T (200 MHz for ¹H), bore 52 mm

• Pulse NMR system with coherent data summation + subsequent FFT, broad band

- Dewar insert for liquid N₂
- Continuous flow cryostat
 - NMR probes

Building of NMR spectrometer and accessories for the project

Building of NMR spectrometer and accessories for the project

Coherent pulse NMR system

Cryostat with solenoid 4.7 T

Building of NMR spectrometer and accessories for the project

Coherent pulse NMR system

Block scheme

Applicability of NMR to characterization of condensed materials

Study of defects / impurities

- the local magnetic field at the resonating nucleus is modified when an impurity is present in its vicinity

- a characteristic shift of NMR frequency is induced

- satellite lines appear in the spectrum

- satellite intensities are proportional to the defect concentration

Applicability:

- single crystals, polycrystalline samples

Sensitivity:

- ~0.01% of defect concentration

Applicability of NMR in characterization of condensed materials

Study of defects / impurities

Example: Y₃Fe₅O₁₂ (yttrium iron garnet), ⁵⁷Fe NMR

3 magnetically inequivalent iron sites 3 lines in a spectrum of nominally pure sample

Applicability of NMR to characterization of condensed materials

Study of defects / impurities

Example: Y₃Fe₅O₁₂ (yttrium iron garnet), ⁵⁷Fe NMR

3 magnetically inequivalent iron sites 3 lines in a spectrum of nominally pure sample satellite pattern coresponding to intrinsic antisite defects (Y replaces Fe)

Applicability of NMR to characterization of condensed materials

Study of spin dynamics

Relaxation mechanisms due to electron spin:

dipolar interaction

Fermi contact interaction

Diffusion of atoms /molecules (chemical exchange)

Spin diffusion

Fluctuations of magnetic interactions at zero, ω_0 , $2\omega_0$... models of atomic (molecular) motion Concentration, temperature, field dependences

Outlook

Experimental requirements

NMR, irradiation, sample handling

Spectra and relaxation measurements

alcohols + chemical radicals, NMR in liquid an solid states – relaxations, ESR of free radicals

LiD, LiD irradiated - defects, relaxation

Frequency (MHz)

Building of NMR spectrometer and accessories for the project

NMR at Charles University Prague NMR in basic laboratory training courses

