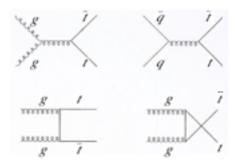
Discovery of the TOP-Quark

- Introduction
- Production Mechanisms
- Decay Modes
- Indirect Evidence
- Direct Observation at Fermilab
- Properties (Mass, Width, Production cross section, Decay Modes)
- Implications for the Higgs-Mass
- Further Studies (Fermilab, LHC)

Literature: W. Hollik, Th. Mueller, Phys. Bl. 53 (1997) 127 C. Campagnari, M. Franklin, Rev. Mod. Phys., Vol. 69 (1997) 137 P.C. Bhat, H.B. Proper, S.S. Snyder, Fermilab-Pub-98/236 D. Chakraborty, J. Konigsberg, D. Rainwater, hep-ph/0303092 (2003) Review of Particle Properties, P.R.D., V. 66 (2002) 010001-98 and -430

Introduction

Top-Quark (t)

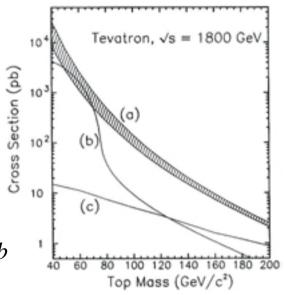

- Directly found 1995/96, but eagerly awaited since long to complete the SM
- *t*-Quark is astonishingly heavy $(m(t) \approx 40 \text{ x } m(b))$ Connected to new physics beyond SM ?
- *t*-Quark has a very short life time (Γ ≈ 1 GeV $\stackrel{\wedge}{\approx}$ 10⁻²⁴s (SM)) $\stackrel{\leftarrow}{\rightarrow}$ life time shorter than hadronization time (≈ 10⁻²³s) $\stackrel{\leftarrow}{\rightarrow}$ *t*-Quark forms no hadrons

t-mass can be measured very accurately (in contrast to masses of other quarks (hadronization effects are disturbing))

-m(t) important for Higgs-mass estimate Strong coupling to Higgs-field because of high mass

Production Mechanisms (1)

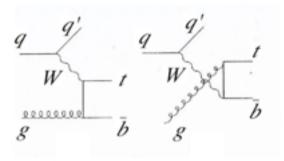
SM:(a) Pair production $p\bar{p} \rightarrow t\bar{t} + X$


Dominant for $\sqrt{s} = 1.8$ TeV and m(t) = 175 GeV *Z*, $\gamma \rightarrow t\bar{t}$ also possible, but small cross section

$$\sigma(\bar{p}p \rightarrow t\bar{t} + X) (\sqrt{s} = 1.8 \text{ TeV}; m(t) = 175 \text{ GeV}) \approx 10pb$$

($\approx 10^{-10} \text{ x } \sigma_{\text{inelast.}}$)

(b) Drell-Yan Production (Single *t*-production) $\bar{p}p \rightarrow W^+ + X$ $\downarrow t\bar{b}$


Small cross section for $\sqrt{s} = 1.8 \text{ TeV} \approx 0.9 pb$

Top-production cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. (a) $p\bar{p} \rightarrow t\bar{t}$ from Laenen, Smith, and van Neerveen (1994) (the band represents the estimated theoretical uncertainty), (b) sum of $t\bar{b}$ and $\bar{t}b$ from W decay (Drell-Yan), (c) sum of $t\bar{b}$ and $\bar{t}b$ from W-gluon fusion. See text for details.

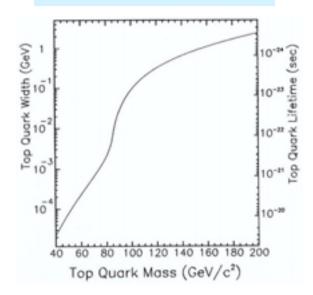
Production Mechanisms (2)

(c) W-Gluon-Fusion (Single *t*-production) $p\bar{p} \rightarrow t\bar{b} + X$

Small cross section for $\sqrt{s} = 1.8 \text{ TeV} \approx 2.4 pb$

$$[\sigma_{pp} \rightarrow t\bar{t} + X (\sqrt{s} = 14 \text{ TeV} ; \text{LHC}) \approx 700 pb]$$

Decay Modes


SM: $t \rightarrow W + b$ Dominant $\xrightarrow{W+c} \\ \xrightarrow{W+d} CKM unterdrückt$

> Very small rates: $t \rightarrow q\gamma$ (FCNC) $t \rightarrow qZ (")$

Decay mode	Branching ratio	
tī→gāgābb	36/81	
tī→qąevbb	12/81	
$t\bar{t} \rightarrow q\bar{q} \mu \nu b\bar{b}$	12/81	
$t\bar{t} \rightarrow q\bar{q}\tau\nu b\bar{b}$	12/81	
$l\bar{l} \rightarrow e \nu \mu \nu b \bar{b}$	2/81	
$t\bar{t} \rightarrow e \nu \tau \nu b\bar{b}$	2/81	
$l\bar{l} \rightarrow \mu \nu \tau \nu b\bar{b}$	2/81	
ti→evevbb	1/81	
$t\bar{t} \rightarrow \mu \nu \mu \nu b\bar{b}$	1/81	
$t\bar{t} \rightarrow \tau \nu \tau \nu b\bar{b}$	1/81	

Decay modes in $p\bar{p} \rightarrow t\bar{t} + X$ Decay modes for a $t\bar{t}$ pair and their lowest-order

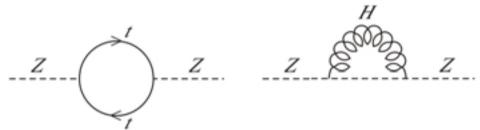
Lifetime of Top-Quark

Non SM: See later

- 5 -

Indirect Evidence

Request for 6th quark in SM:

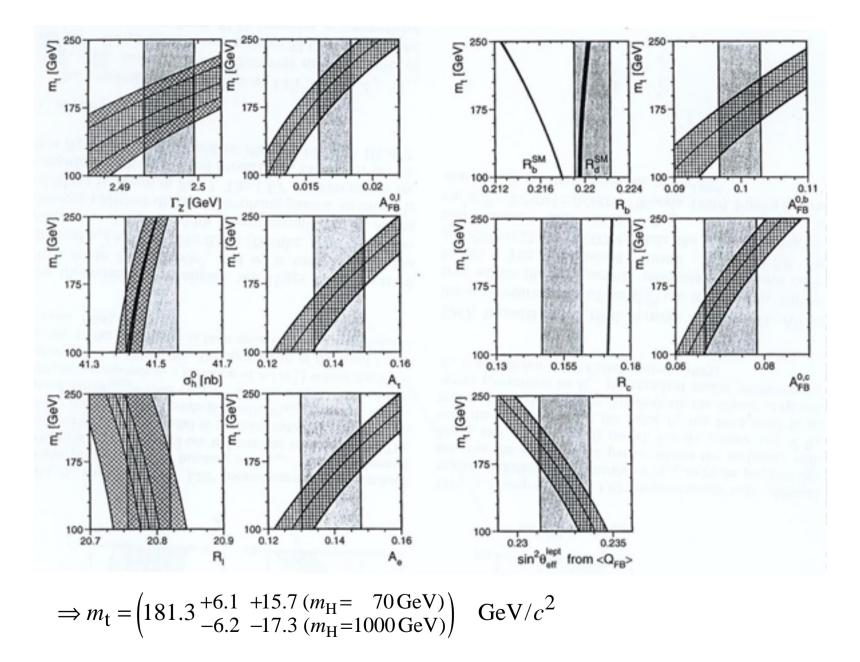

– Weak Isospin of *b*-quark was measured to be $(I_3)_W = -1/2 \Rightarrow$ Top = Weak Isospin Dublett Partner

– SM only renormalizable, if triangle diagrams cancel for each generation Only possible, if *t*-Quark ($Q = +^2/_3$) exists

Top-Quark and Higgs play essential roles in radiative corrections of electro-weak processes \rightarrow Mass Constraint for *t*-Quark (and Higgs)

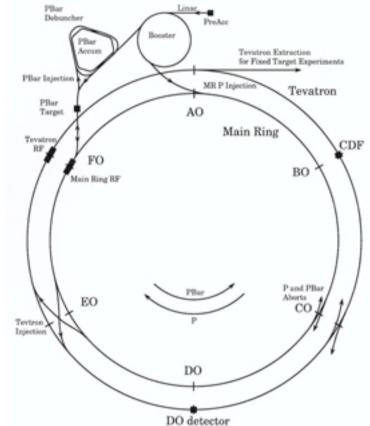
Example:

Z-Mass


Sensitive Quantities (Line shape and asymmetries at the Z-peak)

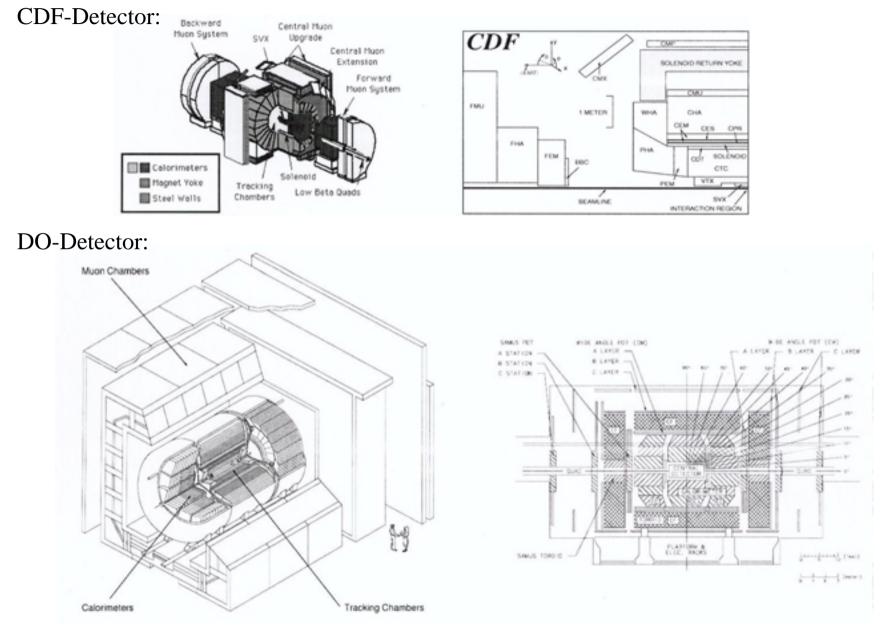
(1) Total Width of *Z* : Γ_Z

(2) Hadronic Cross section (m_Z) : $\sigma_{\text{Hadr.}}^{o}$


(3) Ratio of hadronic/leptonic widths : R_{ℓ}

(4) Forward/Backward Asymmetry in $Z \rightarrow \mathcal{U}$ -decays : $A_{FB}^{o, \ell}$

Direct Observation of the Top-Quark at Fermilab (1)


Run 1: $\bar{p}p \ (E_{CM} = 1.8 \text{ TeV}); \ L_{Peak} = 2 \text{ x } 10^{31} \text{ cm}^{-2} \text{s}^{-1}; \ \int \text{Ldt} = 162 (pb)^{-1}$ (1992-96)

Run 2: Main Ring \rightarrow Main Injector $(L \rightarrow 8 \ge 10^{31} \text{ cm}^{-2} \text{s}^{-1})$; Recycler $(L \rightarrow 2 \ge 10^{32})$; (2001 \rightarrow) 1.8 TeV \rightarrow 2.0 TeV Detector Upgrades: DO: Central magnetic field: Si-Vertex-Det.: Scint. Fiber T

Detector Upgrades: DO: Central magnetic field; Si-Vertex-Det.; Scint. Fiber Tracker CDF: Expanded Vertex Detector

Direct Observation of the Top-Quark at Fermilab (2)

H. Koch, Seminar on New Theories and Experiments in Particle, RUB, 30.01.04

Direct Observation of the Top-Quark at Fermilab (3)

t-Signals in various decay channels

Up to now (Run1) only *t*-pair production has been seen; No single *t*-signals yet $p\overline{p} \rightarrow \overline{t}t + X; \quad t \rightarrow W^+ + b; \quad \overline{t} = W^- + \overline{b}$ $\mapsto \ell^+, \overline{v} \qquad \mapsto \ell^-, v$ $q, \overline{q} \qquad q, \overline{q}$

Dilepton Channel:

 $b, \bar{b}, 2\ell, 2\bar{\ell} \triangleq b$ -Jet; \bar{b} -Jet; Charged Lepton; Anticharged Lepton (e, μ, τ) ; Missing v; Missing \bar{v}

```
Background (For \ell = e, \mu):

Drell-Yan (W \rightarrow t\bar{b})

Z \rightarrow \tau \tau

QCD b\bar{b}

WW (W \rightarrow \ell + \nu)

Radiative Z, W\bar{b}, WZ, ZZ

+

Fake Leptons

Mismeasured \mu-tracks
```

Direct Observation of the Top-Quark at Fermilab (4)

Cuts:

	Standard Dilepton ($ee, e\mu, \mu\mu$)	$\begin{array}{c} \tau \text{-Dilepton} \\ (e\tau, \ \mu\tau) \end{array}$	$\ell + \text{jets}/b\text{-tag}$	All jets
Lepton $p_T(\text{GeV}/c)$	> 20	$p_T^{\tau} > 15$ $p_T^{e,\mu} > 20$	> 20	-
Lepton $ \eta $	< 1.0	$ \eta^{ au} < 1.2$ $ \eta^{e,\mu} < 1.0$	< 1.0	_
E_T (GeV)	> 25	_	> 20	_
$S_{\not\!\!E_T}$ (GeV ^{1/2})	_	> 3	_	_
Jet E_T (GeV)	> 10	> 10	> 15	> 15
Jet $ \eta $	< 2.0	< 2.0	< 2.0	< 2.0
Number of jets	≥ 2	≥ 2	≥ 3	≥ 5
$H_T (\text{GeV})$	_	_	_	> 300
$H_T^{\mathrm{all}}(\mathrm{GeV})$		> 180	-	

Direct Observation of the Top-Quark at Fermilab (5)

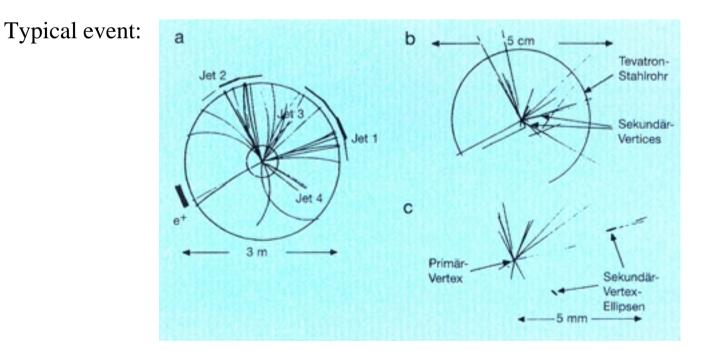
Most important cuts: Large $(P_T)_{Lepton}$ \rightarrow Eliminates QCD-background ($\approx 10^{10} \text{ x } \sigma_{t\bar{t}}$), mostly along the beam direction *b*-Tagging \rightarrow Eliminates q(=u, d, s) – and gluon-jets

Soft Lepton Tagging (SLT)	Displaced Vertices Tagging (DVT)		
22% of all b's decay emitting an electron or muon.	b's travel several mm's (ps)		
The leptons are close to a jet and have $P_{\perp} < 20 \text{ GeV/c}$	before they decay $\rightarrow 2$. Vertex		

Also important: Kinematical Fitting of events / Neural Network Techniques

Modeling of events/background: PHYTHIA / HERWIG

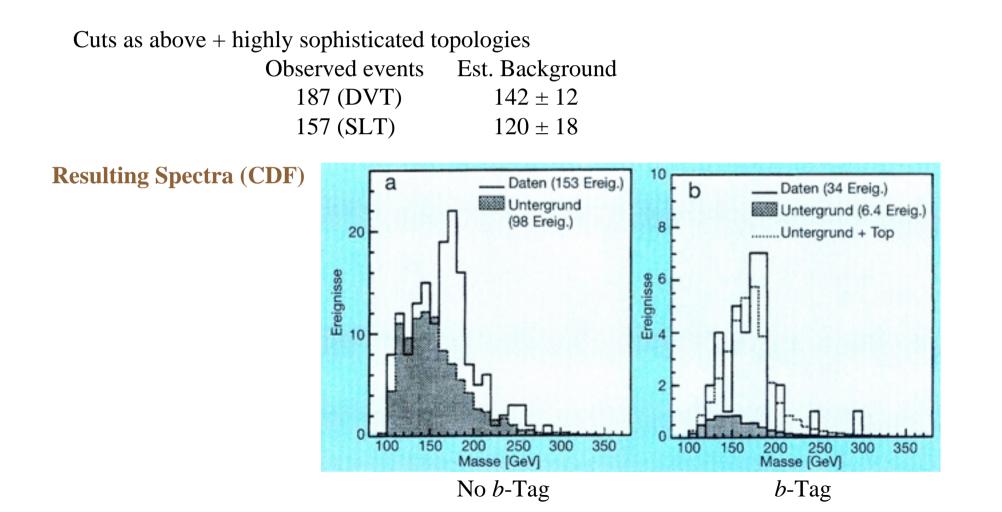
 $t\bar{t}$ -efficiency: (0.74 ± 0.08) %

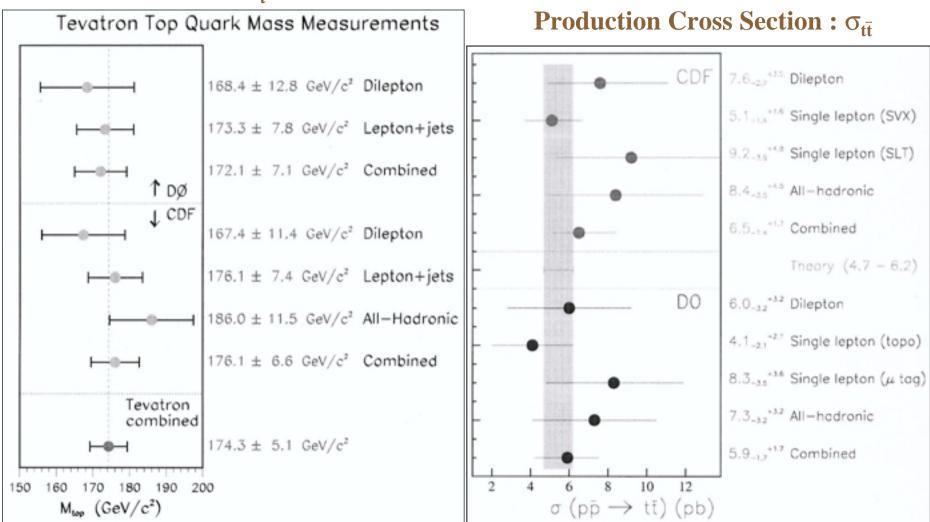

Observed events () Ldt = $109 \pm 7 \ pb^{-1}$): 9 Dilepton events (*e*, μ); Estimated Background: 2.4 \pm 0.5

Direct Observation of the Top-Quark at Fermilab (6)

Lepton + Jets-Channel:

b-Jet, \overline{b} -Jet, Charged Lepton, Missing v, *q*-Jet, \overline{q} -Jet

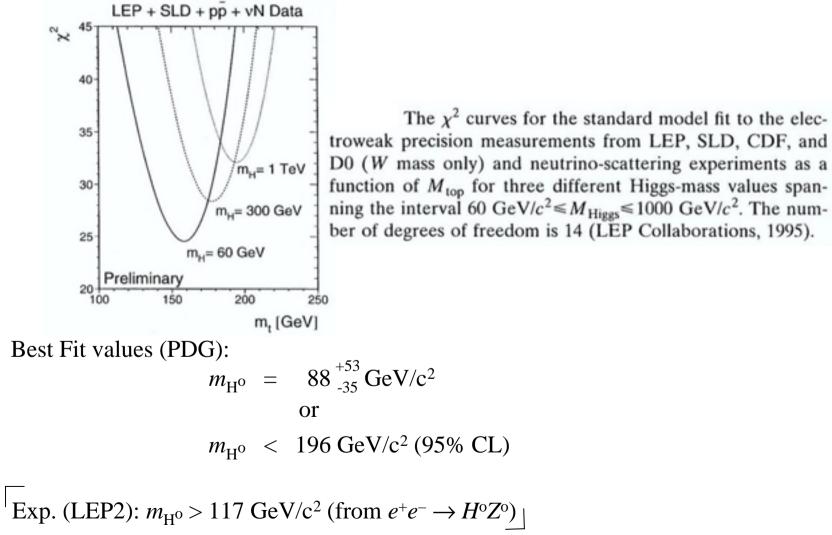

Cuts as above + topologial conditions (sphericity/aplanarity)Observed eventsEst. Background34 (DVT) 9.2 ± 1.5 40 (SLT) 22.6 ± 2.8


Direct Observation of the Top-Quark at Fermilab (7)

All Jet-Channels

b-Jet; \overline{b} -Jet; 2q-Jets; $2\overline{q}$ -Jets

Mass, Production cross section of the Top-Quark


Mass : m_{t}

Common Fit to data with m_t and $\sigma_{t\bar{t}}$ as free parameters SM predictions well fulfilled. Also width in agreement with SM

Implications for the Higgs-Mass $(m_{\rm H^0})$

SM: Dependence of many observables on $m_{\rm H^0}$ is mostly logarithmic, therefore no accurate constraints are possible.

 $m_{\rm t}$ is very essential in these considerations

Further Studies (Fermilab (Run 2) / LHC)

- 1) $\sigma(m_t) \rightarrow 3-4 \text{ GeV/c}^2$
- 2) Test of SM SM: $B(t \rightarrow bW) > 0.998$ Also allowed, but very rare and beyond future sensitivities: $t \rightarrow Ws, Wd, WbZ$ $t \rightarrow X^0q (X^0 = g, \gamma, Z, H; q = c, u)$ (FCNC)
- Top related effects beyond SM (Extended Higgs-Sector/SUSY/New Strong Dynamics (Technicolor, ...)/...)
 - *t*-production: $t\bar{t}$ -resonances (visible in $t\bar{t}$ -pair production cross section) New Heavy Vector Boson (W^{\pm}) or Charged Scalar (ϕ^{\pm}), ... (Enhanced single Top production)
 - *t*-decays: $t \rightarrow bH^{\pm} \text{ (Extended Higgs Sector)}$ $\mapsto (\tau v_{\tau})$ $t \rightarrow X^{0}q \ (X^{0} = g, \gamma, Z; q = c) \text{ (FCNC) Greatly enhanced compared to SM}$ $t \rightarrow \tilde{t}_{1} \ \tilde{\chi}_{1}^{0} \text{ (t-squark + neutralino) (SUSY)}$ $\mapsto c \ \tilde{\chi}_{1}^{0}$