Recent Developments in Hadron Spectroscopy

- Introduction
- Naive Quark Model of Hadrons
- Extensions of the Model/Exotic States
- Determination of Hadronic Properties
- Experiments/Analysis Methods in Hadron Spectroscopy
- Overview on Exotic States
 (see M. Amarian / K. Götzen / T. Nakano / M. Ostrick)
- Conclusions

Introduction (1)

Leptons –	– Hadrons
$(e, \mu, \tau, \nu_e, \nu_\mu, \nu_\tau)$	$(p, n, \pi, K, \dots, f_2(1270, \dots))$
(only weak and em. interactions)	(In addition: Strong interaction (QCD))
	Baryons (B=1) Mesons (B=0)
	Mass Region: 140 MeV(π) - 10 GeV (Y)

Life times (Decays) Proton (938) : $\tau = \infty$? Neutron (940) : $\tau = 885$ s (Weak Decay) $\pi^+(140)$: $\tau = 2.6 \times 10^{-8} \text{ s}$ (") $K^+(494)$: $\tau = 1.2 \times 10^{-8} s$ (") Ground States/Particles $D^+(1869)$: $\tau = 1.05 \times 10^{-12} s$ (") B⁺(5279) : $\tau = 1.67 \times 10^{-12} s$ (") $\pi^0(135)$: $\tau = 8.4 \times 10^{-17} \, \mathrm{s}$ (e. – m. Decay) $f_2(1270)$: $\tau = 3.5 \times 10^{-24} \text{ s} / \Gamma = 185 \text{MeV}$ (Strong Decay) Excited States/Resonances

Light Hadrons : Few Decay Modes (π^+) Heavy Hadrons : >100 Decay Modes (D^+)

Meson	
Summary	
Table	010001-55

See also the table of suggested $q\bar{q}$ quark-model assignments in the Quark Model section.

Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.
 Indicates that the value of J given is preferred, but needs confirmation.

NON-97 CANDIDATES						
NON-qq CANDIDATES						
• T(11020) 0-(1						
• T(10860) 0-(1	0(2)	 D_{4J}(2573)[±] 				
• 7(4S) 0-(1	0(1+)	 D_{\$1}(2536)[±] 				
• Xb2(2P) 0. (2	0(22)	• D*±				
• X _{b1} (2P) 0 ⁺ (1 ⁺ ⁺	0(0-)	• D [±]	_			
• Xto(2P) 0+(0++	= ±1)	(C = S =				
• T(2S) 0-(1	STRANGE	CHARMED			1 (2)	• 32(10/U)
 X62(1P) 0⁺(2⁺⁺ 	1/2(??)	D*(2640)±		- united states	0-(3-+)	• w3(1670)
• X _{b1} (1P) 0 ⁺ (1 + +	1/2(2+)	 D[*]₂(2460)⁺ 		Further States	0-(1)	• w(1650)
• Xm(1P) 0+(0++	$1/2(2^+)$	 D[*]₂(2460)^a 	B = 0	= C = S)	0+(2-+)	7/2(1645)
• T(1S) 0-(1	1/2(71)	D1(2420)1	UNFLAVORED	OTHER LIGHT	0*(2 * *)	f2(1640)
Jb(1S) 0 ⁺ (0 - +	1/2(1+)	 D₁(2420)⁰ 	0.(0)	l(2510)	1+(1++)	a1(1640)
<u>4</u>	1/2(1-)	 D*(2010)[±] 	1-(6 + +)	at (2450)	2+(2++)	X(1600)
-) - (curld -	1/2(1-)	 D*(2007)⁰ 	1+(5)	PS(2350)	$1^{-}(1^{-+})$	$\pi_1(1600)$
11	1/2(0-)	· D ⁰	0+(2++)	 6(2340) 	0-(1 + -)	h1(1595)
1) 0 (1000) • (0000)	1/2(0-)	• D [±]	0+(0++)	6(2330)	$0^{+}(2^{+})$	f2(1565)
\$(3636) U (2	±1)	(C =	0+(4++)	f4(2300)	0+(2++)	 I'₂(1525)
• \(3770) 0 (1 -	MED	CHAR	0+(2++)	· f2(2300)	0+(1++)	6(1510)
• \$\phi(2S) 0^-(1^	2:(2:1)	K(3100)	1+(3)	P3(2250)	0+(0++)	• 6(1500)
η _c (2S) 0 ⁺ (0 ⁻⁺	1/2(4-)	K4(2500)	0+(0-+)	11(2225)	1+(1)	- a(1450)
*Xc2(1P) 0+(2++	1/2(5-)	K;(2380)	0.(2 ++)	(n277)/1	1-10++1	• T/(1460)
V ^c (1b) i _j (i _{jj})	1/2(3+)	K3(2320)	0+(0++)	f0(2200)	0+(2++)	6(1430)
• Xci(1P) 0+(1++	1/2(2-)	K2(2250)	1+(1)	p(2150)	0-(1)	• w(1420)
• Xra(1P) 0+(0++	1/2(4+)	• K (2045)	0+(2++)	62(2150)	0+(1++)	 f1(1420)
• 1/4/15) 0-/1	1/2(2+)	K;(1980)	0+(0++)	f ₀ (2100)	1-(1-+)	T 1(1400)
33	1/0/01	K-(1960)	1-(2-+)	π ₂ (2100)	7-(1+-)	h (1380)
	1/2(2-)	• K2(1820)	0+(4++)	• 44(2050)	0+(0++)	• 6(1370)
· B [±] 0(0)	1/2(3-)	• K3(1780)	0.(0)	In(2020)	1 (0 1)	• #(1300)
$(B = C = \pm 1)$	1/2(2-)	 K₂(1770) 	0+(2++)	· f2(2010)	0+(0-+)	• ŋ(1295)
BOTTOM CHARMED	1/2(1-)	• K*(1680)	1-(??+)	X(2000)	0+(1++)	 f1(1285)
B: (5850) ?(??)	1/2(1+)	K1(1650)	1+(3)	P3(1990)	0+(2++)	 f₂(1270)
B: 0(1)	1/2(??)	K(1630)	0+(2++)	f2(1950)	1-(1++)	• a1(1260)
 	1/2(2-)	Ka(1580)	0+(2++)	6(1910)	1+(1+-)	• b ₁ (1235)
(B = ±1, S = ∓1)	1/2(2*)	• K2(1430)	1+(1)	(10001) (10101)	0-(1+-)	(0201)¢ •
ROTTOM STRANGE	1/2(0+)	• K ₀ (1430)	0-(3)	· \$3(1850)	1-(0++)	• 0(980) 0 • •
B',(5732) ?(? ^f)	1/2(1-)	• K*(1410)	0+(2++)	62(1810)	0+(0++)	• (080)
 B[*] 1/2(1⁻) 	1/2(1+)	 K₁(1400) 	1-(0-+)	 π(1800) 	0+(0-+)	 η'(958)
Elements	$1/2(1^+)$	 K₁(1270) 	0+(0-+)	η(1760)	0-(1)	+ w(782)
ADMIXTURE	1/2(1-)	• K*(892)	0+(0++)	 f₀(1710) 	1+(1)	• p(770)
 B[±]/B⁰/B⁰_s/b-baryon 	1/2(0-)	·Ko	1-(2++)	a ₅ (1700)	0+(0++)	• 4 (600)
 B±/B⁰ ADMIXTURE 	1/2(0-)	· Ko	1+(1)	• p(1700)	0+(0 - +)	
• B ⁰ 1/2(0 ⁻)	1/2(0)	· * *	0 (1)	• \$(1690)	1-(0-+)	
P(J~)	(2)		P(Jrc)		P(JPC)	
(B = ±1)	= 8 = 0)	(S = ±1, C		= B = 0)	(S = C =	
				The second secon		

010001-56 Baryon Summary Table

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3-or 4-star status are included in the main Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the short table are not established as baryons. The names with masses are of baryons that decay strongly. For N, Δ , and Ξ resonances, the partial wave is indicated by the symbol $L_{2N,2J}$, where L is the orbital angular momuntum (S, P, D, ...), I is the isospin, and J is the total angular momentum. For A and Σ resonances, the symbol is $L_{I,2J}$.

11 00 11 00 11 00 11 00	20	Ξ _c (2815)	 Ξ_c(2790) 	 Ξ_c(2645) 		: =: =:	••• $\Sigma_c(2520)$	G17 * Ec(2455)	P13 ** Ac(2890)+	F15 • Ac(2765)+	F17 **** Ac(2625)+	S11 * Ac(2593)*	D13 N.	F15	P11 ** 17(2470)-	P13 . 17(2380)-	D15 D(2250)	P11 . 12	S11	·· Ξ(2500)	D13 =(2370)	P11 *** == (2250)	S11 E(2120)	D13 Ξ(2030)	·· Ξ(1950)	= (1820) D ₁₃	P13 =(1690)	P11 **** = (1620)	P11 **** = (1530) P13	11 11.
			E(3170)	E(3000)	E(2620)	Σ(2455)	Σ(2250)	E(2100)	E(2080)	E(2070)	E(2030)	E(2000)	E(1940)	E(1915)	I(1880)	Σ(1840)	£(1775)	Y(1770)	Σ(1750)	Σ(1690)	Σ(1670)	Σ(1660)	Σ(1620)	Σ(1580)	E(1560)	E(1480)	Σ(1385)	Y-	Σ ⁰	2
													:	:	•	:		•	•				:	:		:	:		:	
													A(2585)	A(2350) Ho	A(2325) Do	A(2110) Fee	A(2100) Go	A(2020) Fo	A(2000)	A(1890) P0.	A(1830) Do	A(1820) For	A(1810) P ₀	A(1800) Sol	A(1690) Do	A(1670) Sol	A(1600) P ₀	A(1520) Do	A(1405) Set	V 101
		_				_			:	:	:	:	•	•	:	•	•	:	1	*	:	:	:	:	:	•		****		
								auto.	Kan	hin	Ham	Gyg	Fa	D35	Hyp	Gy	Sil	F35	Fy	D33	D35	Py3	P3I	F35	SI	Pu	D33	531	P33	P33
									L(2950)	A(2750)	△(2420)	∆(2400)	∆(2390)	A(2350)	4(2300)	∆(2200)	A(2150)	A(2000)	∆(1950)	∆(1940)	∆(1930)	∆(1920)	A(1910)	A(1905)	∆(1900)	∆(1750)	A(1700)	A(1620)	A(1600)	D(1232)
			į					:	:	:	:	:	1	•	•	:	:	:	:	:	:	:	1	:	1	1	:	:	1	
							-	K1.13	4.11	G10	H19	Dis	G17	P11	SII	D13	F15	F	P13	P13	Pu	D13	FIS	D15	SII	SII	D13	PII	PII	Pu
								(2700)	(2600)	(2250)	(2220)	(2200)	(2190)	(2100)	(2090)	(2080)	(2000)	(1990)	(1900)	(1720)	(1710)	(1700)	(1680)	(1675)	(1650)	1535)	(1520)	1440)		

-Existence is certain, and properties are at least fairly well explored

:

Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

÷ Evidence of existence is only fair

Evidence of existence is poor-

Naive Quark Model of Hadrons (1)

Two Quarks with similar masses ($\bar{q}q$, $Q\bar{Q}$)Heavy-Light Quark Systems ($q\bar{Q}$) $\uparrow\downarrow$ (S = 0); L = 0; $n_r = 0$ $f\downarrow$ (J = 0); L = 0; $n_r = 0$ $\uparrow\downarrow$ (J = 0); L = 0; $n_r = 0$ $\uparrow\downarrow$ (J = 0); L = 0; $n_r = 0$ Example: $\pi^+ = u\bar{d}$ ($\uparrow\downarrow$); J^{PC} = 0⁻⁽⁺⁾Example: D⁺ = c\bar{d} (\uparrow (j), \downarrow (S₀)); J^P = 0⁻

$\begin{array}{l} & \begin{array}{l} \hline \textbf{Resonances (Spin Flip States; L = 0)} \\ \uparrow\uparrow(S = 1); \ L = 0; \ n_r = 0 \\ \hline \uparrow\uparrow(J = 1); \ L = 0; \ n_r = 0 \\ \hline \text{Example: } \rho^+ = u\bar{d} \ (\uparrow\uparrow); \ J^{PC} = 1^{-(-)} \\ \end{array} \begin{array}{l} & \begin{array}{l} \uparrow\uparrow(J = 1); \ L = 0; \ n_r = 0 \\ \hline \text{Example: } D^{*+} = c\bar{d} \ (\uparrow\uparrow); \ J^P = 1^{-} \end{array} \end{array}$

Resonances (Orbital Excited States; L > 0)

 L = 1: One Singlett and three Triplett States
 L = 1: T

 $S = 0: J^{PC} = 1^{+-}$ $j = \frac{1}{2}: 0$
 $S = 1: J^{PC} = 0^{++}, 1^{++}, 2^{++}$ $j = \frac{3}{2}: 1$

 Example: $b_1^+ = u\bar{d} \ (\uparrow \downarrow); J^{PC} = 1^{+-}$ Example

L = 1 : Two Doubletts $j = \frac{1}{2} : 0^{+}_{1/2}, 1^{+}_{1/2}$ $j = \frac{3}{2} : 1^{+}_{3/2}, 2^{+}_{3/2}$ Example: $D_{2}^{*+} = c\bar{d} (\uparrow(j), \downarrow(S_{0})); J^{P} = 2^{+}$

Naive Quark Model of Hadrons (3)

Naive Quark Model of Hadrons (4)

Quantitative Calculations:

SU(N)-Symmetry QCD inspired models (Bag-Model, Potential Models, ...) \leftrightarrow Constituent Quarks

LQCD

Explanation of most of the states Decay Probabilities Magnetic moments Masses Ratios

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Baryons: qqq, Qqq, QQq, QQQ

SU(3) / SU(4) - Flavor-Symmetry \rightarrow Baryon-Multipletts SU(3) : $3x3x3 = 10_S + 8_M + 8_M + 1_A$ SU(4) : $4x4x4 = 20_S + 20_M + 20_M + 4_A$

Problems with the naive Quark Model

– DIS-Experiments:

- Mass of the Hadrons much heavier than expected: Example (Proton): $M \approx 3 \times 5 \text{MeV}$ $M_{exp.} = 938 \text{MeV}$ Large dynamical mass generation process
- Many of the new discoveries don't fit into the picture (see later)
- QCD allows many more states than described by the naive model (Exotic States)

Three categories of Exotic States

	Mesons	Baryons						
1.	e.g.: $I / S / C / B > 1$	e.g.: $I > 3/2, S > 0, C < 0, B > 0$						
2.	$J^{PC} = 0^{+-}, 0^{}, 1^{-+}, 2^{+-}, \cdots$ (Exot. QN.)							
3.	Surplus in Multipletts; Masses, Total- (Partial-) widths at variance with naive Ouark Model predictions.							

Often characteristic for exotics: Long lifetimes (Γ small)

Reality: Mixing of states with same quantum numbers:

Best, but very tedious solution: Solve the QCD-Lagrangian (Lattice)

 \rightarrow

In parallel: Model calculations

BAG Model Flux Tube Model Quark-Molecule Models Chiral models Properties of qq̄, qqq-states, but also:
Hybrid state predictions
Spectrum of molecular states
Prediction of Parity-Doubletts, ...

Electromagnetic Probes

Low Energies:
$$\gamma (2 \text{ GeV}) p \rightarrow \Theta^+ + K_s^0$$
 (ELSA/Bonn)
 $\mapsto nK^+ \to \pi^+\pi^-$
High Energies: $e^-(9.0 \text{ GeV}) e^+(3.1 \text{ GeV}) \rightarrow D_{sJ}^*(2317) + X$ (BaBar/Stanford)
 $\mapsto D_s \pi^0$
 $\mapsto \phi \pi$
 $\mapsto K^+K^-$

Total process calculable, small cross section

Hadronic Probes

Low Energies: $\overline{p}(200 \text{MeV}) p \rightarrow G + \pi^0$ (LEAR/CERN) $\mapsto \pi^0 \pi^0$ High Energies: $\pi^-(500 \text{GeV}) p \rightarrow D^{\pm} + X$ (E791/Fermilab) $\mapsto K^- \pi^+ \pi^{\pm}$

Large cross sections \rightarrow High sensitivity for rare states

Determination of Hadronic Properties (1)

Mass/Life Time:Long living particles(Protons, Pions, ...):Deflection and TOF in combined electr./magn. fields

<u>Short living particles/Resonances</u> ($f_2(1270), \Delta^{++}, \cdots$): Invariant Mass Spectra of decay products

Examples: $\rho^0 \rightarrow \pi^+ \pi^- (2 \text{ Particle Decay})$

$$m_{\pi^{+}\pi^{-}} = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$N = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$N = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ \left(E_{\pi^{+}} + E_{\pi^{-}} \right)^{2} - \left(\vec{P}_{\pi^{+}} + \vec{P}_{\pi^{-}} \right)^{2} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

$$M = \left\{ e_{\pi^{+}} + e_{\pi^{-}} + e_{\pi^{-}} \right\}^{1/2} (\text{Invariant } 2 - \text{Body} - \text{Mass})$$

 $D \rightarrow K\overline{K}\pi$ (3 particles)

$$m_{K\overline{K}\pi} = \left\{ \left(E_K + E_{\overline{K}} + E_{\pi} \right)^2 - \left(\vec{p}_K + \vec{p}_{\overline{K}} + \vec{p}_{\pi} \right)^2 \right\}^{1/2}$$
 (Invariant 3-Body-Mass)

Spin^{Parity} (J^P):

Long living particles (Proton, Neutron, Λ , Antiproton, \cdots):

Deflection in inhomogeneous B-field, Rotation in homogeneous B-field, Exot. Atoms

Resonances:

Angular distribution of decay particles

```
Example: D^0 \rightarrow \rho^0 \pi^0 (0^{-+} \rightarrow 1^{--} + 0^{-+})
```

 $\overset{ \smile}{\pi^{+} \pi^{-}} \pi^{0}(\rho^{0}) \text{ are emitted isotropically}$ But: Preferred direction of $\pi^{+}(\pi^{-})$ in respect to ρ^{0} -direction
Reason: ρ^{0} is polarized $I_{\pi^{+}}(\Theta) \propto \cos^{2}(\Theta)$, Characteristic for J=1 intermediate state (ρ^{0})

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Determination of Hadronic Properties (4)

In addition:

$$a_0^+(980) \rightarrow \overline{K}^0 K^+$$

Experiments/Analysis Methods in Hadron Spectroscopy (1)

Example: BaBar-Detector/SLAC/Stanford

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Experiments/Analysis Methods in Hadron Spectroscopy (2)

 $\rightarrow K^+K^-$

Analysis of Data (10⁹ hadronic events ; 1 Peta Byte) Example: $e^+(3.1 \text{ GeV}) e^-(9 \text{ GeV}) \rightarrow D_s^{\pm} + X$ $\mapsto \phi \pi^{\pm}$

Cuts:

- At least two charged Kaons in event
- -3 tracks with different charges (Q=±1) with common vertex
- 2 tracks must belong to Kaons of different charge,3. track must not be a Kaon
- Momentum of $(\overline{K}K\pi)$ -system in e⁺e⁻-CMS must be > 2.5 GeV/c (Select jet-like (non $\overline{B}B$) events)

Optimization of all cut parameters via neural net- and evolutionary algorithmtechniques

- K^+ , K^- must originate from ϕ -decay
- $-|\cos \theta_{K^+(K^-)}| > 0.5$ (Helicity Cut; J = 1-system (ϕ) emitts (K⁺(K⁻) preferably

along/against flight direction)

Experiments Analysis Methods in Hadron Spectroscopy (3)

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

 $m^2(\pi_1\pi_3)$

Glue-Ball Candidate

$f_0(1500)$ (Best candidat for the Glueball-ground state)

```
Production : p\bar{p} \rightarrow f_0(1500)\pi^0 (Crystal Barrel/LEAR)
Decays : f_0(1500) \rightarrow 2\pi, 4\pi, \eta\eta, \eta\eta', K\bar{K}
\mathbf{M} = (1505 \pm 9) \text{ MeV }; \Gamma = (111 \pm 12) \text{ MeV }; \mathbf{J}^{PC} = \mathbf{0}^{++}
```

Exotic?

- Surplus state in 0⁺⁺-Nonett
- Relatively narow width
- Decays in particles, which contain u, d and s-Quarks
- Mass and Quantum numbers in good agreement with mit Lattice QCD-prediction for the Glueball-ground state

Meson-like states with exotic quantum number combination

$\pi_{1}(1400) / \pi_{1}(1600)$ Production/Decays : $\pi^{-}p \rightarrow \pi_{1}(1400)p \quad (E835/BNL) \quad \text{and} \quad \bar{p}n \rightarrow \pi_{1}(1400)\pi^{0} \text{ (Crystal Barrel/LEAR)}$ $\stackrel{\leftarrow}{\rightarrow}\eta\pi^{-} \qquad \qquad \stackrel{\leftarrow}{\rightarrow}\eta\pi^{-}$ $\pi^{-}p \rightarrow \pi_{1}(1600)p \quad (E835 \text{ BNL}) \quad \text{and} \quad \bar{p}p \rightarrow \pi_{1}(1600)\pi^{+} \text{ (Crystal Barrel/LEAR)}$ $\stackrel{\leftarrow}{\rightarrow}\pi^{-}\eta \qquad \qquad \stackrel{\leftarrow}{\rightarrow}\pi^{-}\eta$

 $M \approx 1400, 1600 \text{ MeV}; \Gamma \approx 300 \text{ MeV}; J^{PC} = 1^{-+} (\text{Exotic Q.-N., At variance with naive Quark-model})$

Exotic? Exotic J^{PC}-combination

Hybrids? Multi-Quark-states?

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

 $D_{sJ}^{*}(2317), D_{sJ}(2458)$

- Quark-Potential-Models in the D_s Sector (e. g. Godfrey, Isgur & Kokoski)
- Already known states: D_s , $D_s^*(2112)$, $D_{s1}(2536)$, $D_{s2}(2573)$
- Recently disvovered new states (BABAR, BELLE, CLEO, ...) m=2317 MeV and m=2458 MeV
- Masses much lower than predicted values
- States below DK- and D*K-thresholds, respectively, and very narrow ! (Γ < 9 MeV)

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

$D_{sJ}^*(2317)^{\pm} \rightarrow D_s^{\pm}\pi^0$ (BABAR)

- Combine D_s^{\pm} candidate with π^0 candidate
- narrow signal at $m \approx 2.32 \text{ GeV/c}^2$ ($\approx 2200 \text{ events}$)
- no signal in sidebands (D_s^{\pm}, π^0)
 - \Rightarrow signal associated with D_s^{\pm} and π^0
- known state $D_s^{*\pm}(2112) \rightarrow D_s^{\pm}\pi^0$ also visible

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

 $D_{sJ}^{*}(2317)^{+} \to D_{s}^{+} \pi^{0}$ $D_{s}^{+} \to K^{+}K^{-}\pi^{+}$ $M = 2316.8 \pm 0.4 \text{ MeV/c}^{2}$ $\sigma = 8.6 \pm 0.5 \text{ MeV/c}^{2}$ Resolution from MC:

 $\sigma = 8.9 \pm 0.2 \text{ MeV/c}^2$

 $\begin{array}{c} D_{sJ}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0} \\ D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+} \pi^{0} \end{array}$

 $M = 2317.6 \pm 1.3 \text{ MeV/c}^2 \\ \sigma = 8.8 \pm 1.1 \text{ MeV/c}^2$

D*(2317)[±] : CLEO / BELLE

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

D*(2317)[±]: Decay Scheme

1) Forbidden for $0 \rightarrow 0$

$D_{sJ}^{*}(2317)^{\pm}$: Quantum Numbers

I = ? : Not seen in $D_s^{\pm}\pi^{\pm}$ and $D_s^{\pm}\pi^{\pm}$ (CDF) \Rightarrow I ($D_{sJ}^*(2317)$) = 0 \rightarrow Transition is isospin violating $J^P = ?$

Angular distribution consistent with being unform $\rightarrow J^P = 0^+$ or isotropic polarization \Box In conjunction with unobserved transitions: $J^P = 0^+$ highly probable

$\Delta m(D_s \gamma) = m(D_s \gamma) - m(D_s)$ $\Delta m(D_s^* \pi^0) = m(D_s \gamma \pi^0) - m(D_s \gamma)$

• $\mathbf{m} = (2458.0 \pm 1.4) \text{ MeV/c}^2$

•
$$\sigma_{\text{Gauss}} = (8.5 \pm 1.0) \text{ MeV/c}^2$$

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

D_{sJ}(2458)[±] : Spin/Parity

 D_{sI} -Polarization unknown \Rightarrow No discrimination between $J^P = 1^+, 2^-, 3^+$

D_{sJ} -**Production in B-Decays (BELLE):**

 $BF(B \to DD_{sJ}^{*}(2317)) \ge BF(D_{sJ}^{*}(2317) \to D_{s}\pi^{0}) = (8.5\pm2.0\pm2.6) \ge 10^{-4}$ $BF(B \to DD_{sJ}(2458)) \ge BF(D_{sJ}(2458) \to D_{s}^{*}\pi^{0} = (17.8\pm4.2\pm5.3) \ge 10^{-4}$ $BF(B \to DD_{sJ}(2458)) \ge BF(D_{sJ}(2458) \to D_{s}\gamma) = (6.7\pm1.3\pm2.0) \ge 10^{-4}$

Angular Distribution of $D_{sJ}(2457) \rightarrow D_s \gamma$

Consistent with

 $J^{P} = 1^{+}$ Hypothesis;

0+, 2+ excluded

Explanations for $D_{sJ}^*(2317)/D_{sJ}(2457)$:

 $- 0^{+}/1^{+}$ cs-states ?

Very problematic to achieve a consistent fit for all $c\bar{s}$ -states Also very difficult to reproduce in LQCD-calculations

- DK-Molecules
- Charmed Cousins of the light scalar nonet
- Charmed Four Quark States
- Chiral Multiplets of Heavy-Light Mesons

Charmonium-like State : X(3872) \rightarrow J/ ψ $\pi^+\pi^-$

BELLE finds new, very narrow state in the decay $B^{\pm} \rightarrow K^{\pm} (J/\psi \pi^{+} \pi_{-}), J/\psi \rightarrow \mu^{+} \mu^{-}$ and $e^{+}e^{-}$ Confirmed by CDF

CDF, preliminary, Bauer, QWG 2003

 $M = 3872.0 \pm 0.6 \pm 0.5 \text{ MeV}$ $\Gamma < 2.3 \text{ MeV} (90 \% \text{ C.L.}) !!$

 $M = 3871.4 \pm 0.7 \pm 0.4 MeV$

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

X(3872) : Interpretations

- • $\psi(1^{3}D_{2})$ D-state(L=2) has negative Parity; J=2 forbids decay to DD State narrow, if below $D\overline{D}^{*}$ -threshold But: Models predict large partial decay width for $\pi^{+}\pi^{-}J/\psi$ -decay Models can't explain the observed ³D-pattern
- • $\psi(1^1D_2)$ decays dominantly to h_{1c} ; decay to $\pi^+\pi^-J/\psi$ is suppressed

•D⁰D^{*0} Molecule?

Rediscovery

 $\eta_c(2S) = \eta'_c \rightarrow K^0_S K^+ \pi^-$ from B-decays (Belle)

m($\eta_c(2S)$) important for determination of $c\bar{c}$ -Hyperfine interaction

Production: $B \rightarrow K \eta_c(2S)$

Decay: $\eta_c(2S) \rightarrow K^0_S K^+ \pi^-$

$$\begin{split} M(\ \eta_c(2S)\) &= 3654 \pm 6 \pm 8\ MeV/c^2 \\ \Gamma(\ \eta_c(2S)\) &< 55\ MeV/c^2 \end{split}$$

Discrepancy with respect to Crystal Ball measurement (m = $3594 \pm 5 \text{ MeV/c}^2$)

Overview on Exotic States (22)

Exotic Baryons/Penta-Quarks

Non Exotic Baryons : Three Quark Model $3 \oplus 3 \oplus 3 = 1_A + 8_M + 8_M + 10_S$

Only states with zero or negative Strangeness possible Positive Parity States only possible for L > 0

Experimental Evidences for Θ^+ :

Exclusive Reactions

 $\gamma p(d, C)$: SPRING-8/CLAS/SAPHIR pp : TOF-COSY

(Semi)-Inclusive Reactions

$K^+Xe \rightarrow K^0_s pX$	ITEP
$\nu A \rightarrow p K_s^0 X$	CERN/Fermilab
$e(\mu)A \rightarrow pK_s^0X$	HERMES/ZEUS/COMPASS

Overview on Exotic States (26)

LEPS-Coll.@SPRING8

- Spring-8: synchotron radiation facility
- photon beam 1.5 2.4 GeV

- charged particle tracking in magnetic field
 → momentum
- time of flight (ToF) measurement

$$ightarrow$$
 particle identification: $M_{tof} = p \cdot \sqrt{\left(t/s
ight)^2 - 1}$

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Overview on Exotic States (28)

Overview on Exotic States (29)

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Overview on Exotic States (30)

Overview on Exotic States (31)

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Overview on Exotic States (32)

Overview on Exotic States (33)

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Overview on Exotic States (34)

Overview on Exotic States (35)

 CERN (WA21,WA25,WA59) FNAL(E180, E632)

$$\nu_{\mu}(\overline{\nu_{\mu}}) \rightarrow \mu^{-}(\mu^{+}) p K_{S}^{0} X$$

DESY (HERMES)

 $eD \rightarrow pK^0_S X$

Summary of positive results

Experiment	Θ ⁺ Mass (MeV)	Γ (MeV)
LEPS/SPring-8	$: 1540 \pm 10 \pm 5$: 25
DIANA	: 1539 ± 2 ± few	:9
CLAS(d)	$: 1542 \pm 2 \pm 5$: 21
SAPHIR	$: 1540 \pm 4 \pm 2$: 25
ITEP(v)	: 1533 ± 5	: 20
CLAS(p)	$: 1555 \pm 1 \pm 10$: 26 ± 7
HERMES	: $1528 \pm 2.6 \pm 2.1$: 19 \pm 5 \pm 2
ITEP(p)	$: 1526 \pm 3 \pm 3$: 24
ZEUS	: 1527 ± 3	$: 10 \pm 2$

Quantum Numbers : I = 0; $J^P = ?$

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

The Θ^+ Isospin from Hermes (prelim.)

Questions to be answered

- To be or not to be?
- What is the true mass?
 - Ranges from 1526 MeV to 1555 MeV.
- How narrow is the width?
 - Only upper limits were given.
 - Hard to explain if Γ<1 MeV.
- What is the Spin and Parity? How to measure?
 - 1/2⁻ (Lattice, Quark Model) or 1/2⁺ (Di-quark, Chiral soliton)
- Is there J⁺=3/2⁺ partner? Still narrow?
- Other members of the anti-decuplet?

Theory prediction

D. Diakonov *et al.* (chiral quark soliton) : 1/2⁺, I=0 Naive quark model : 1/2-S. Capstick et al. (isotensor formulation) : 1/2-, 3/2-, 5/2-, I=2 Fl. Stancu, D.O. Riska (qq with π int.) : $1/2^+$ A. Hosaka (chiral potential) $: 1/2^+$ (strong π) M. Karliner et al. (qq-qqq) $: 1/2^+, I=0$ R. L. Jaffe *et al.* (qq-qq-q : 10 + 8) : 1/2+, I=0J. Sugiyama *et al.* (QCD sum rule) : 1/2⁻, I=0 F. Csikor et al. (Lattice QCD) $: 1/2^+ \rightarrow 1/2^-, I=0$ S. Sasaki (Lattice QCD) : 1/2⁻, I=0

Mass, width, Spin, Parity, Production mechanism, Partners...

Theoretical predictions for Multi-Quark-States

Strange Sector:

- Uncorrelated Bag Models (R. Jaffe, D. Strottman, 1979)

Many states predicted

 $1/2^{-}$ -states (ground states) < 1500 MeV (No exp. evidence)

– Correlated Bag Models (R. Jaffe/F. Wilczek; M. Karliner/H. Lipkin; 2003)

 $(qq)(qq) \ \overline{s}$ -state : $\overline{3} \oplus \overline{3} \oplus \overline{3} \oplus \overline{3} = (3 + \overline{6}) \oplus \overline{3} = 1 + 8 + 8 + 10$

 $\Theta^{+}|[ud]^{2}\overline{s}\rangle$ $N^{+}|[ud]^{2}\overline{d}\rangle$ $N^{+}|[ud][su]_{+}\overline{s}\rangle$ $\Sigma^{+}|[ud][su]_{+}\overline{d}\rangle$ $\Sigma^{+}|[ud][su]_{+}\overline{d}\rangle$ $\Sigma^{+}|[su]^{2}\overline{s}\rangle$ $\Xi^{--}_{3/2}$ $\Xi^{++}_{3/2}$ $U^{+}|[ud]^{2}\overline{d}\rangle$

Fewer states predicted

Exotic states $\Theta^+ = [ud]^2 \overline{s}, \Xi^- = [ds]^2 \overline{u}, \Xi^+ = [us]^2 \overline{d}$ $N^+ = [ud]^2 \overline{d} = \text{Roper-Resonance (N(1440) ?)}$ Mass splittings, Widths \approx in accordance with (preliminary) data $J^P = \frac{1}{2}^+ \text{ plausible}$ H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Overview on Exotic States (42)

– Skyrme Model (M. Praszalowicz, 1987) Lightest 5q-state \approx 1530 MeV; Widths: No statements $-\chi QSM$ (Chiral Quark Soliton Model) (D. Diakonov, V. Petrov, M. Polyakov, 1997) χ QSM predicts existance of an anti-decuplet $\Theta^+ = \text{uudd}\bar{s}, J^P = 1/2^+$ $M(\Theta^+) = 1530 \text{ MeV}$ (Assuming N(1710) is duud $\overline{d}(\overline{10})$); $\Gamma < 15 \text{ MeV}$ – LQCD (Sasaki, F. Csikor et al., 2003) Sasaki: $M(uudd\bar{s}) = \frac{1.76 \text{ GeV} (J^{P} = \frac{1}{2})}{2.62 \text{ GeV} (J^{P} = \frac{1}{2})}$ Csikor et al.: M(uudds): Consistent with 1540 GeV $(J^P = 1/2^-)$ > 1540 GeV $(J^P = 1/2^+)$ **Charme/Bottom-Sector:** – Correlated Bag Models (R. Jaffe/F. Wilczek; M. Karliner/H. Lipkin) $\Theta_{c}^{0} = [ud]^{2}\bar{c} : M(\Theta_{c}^{0}) \approx 2710 - 2985 \text{ MeV}$ $\Theta_{\rm h}^+ = [{\rm ud}]^2 {\rm b} : {\rm M} (\Theta_{\rm h}^0) \approx 6050 - 6398 {\rm MeV}$ – LQCD $M(uudd\bar{c}) \approx \frac{3.45 \text{ GeV} (J^{P} = \frac{1}{2})}{(>M(DN))}$

- R.L.Jaffe: "Physicist do not understand how quarks fit together into the particles that make up 99% of the familiar matter in the universe. Looking at these exotic states is one of the ways we can learn the subtleties of the structure of matter"
- F.Wilczek: "The discovery of a "pentaquark" exotic opens a new chapter in hadronic physics"
- J.Ellis: "Whatever the explanation of this exotic turns out to be, it is very exciting. It looks like the beginning of a whole new hadron spectroscopy. That would become a key testing ground for quark and skyrmion views of baryon structure"

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Negative results from HERA-B

H. Koch, Graduiertenkolleg HU Berlin, TU Dresden, DESY Zeuthen, 6.4.04

Further Exotics: Θ_c^0 (H1/DESY)

Conclusions

- Recently many new and surprising discoveries in Hadron Physics
- Extension of Hadron Spectrocopy in the Charm/Bottom-sector very valuable
- There is evidence for mesonic/hadronic states, whose properties are hard (or not) to explain in the usual quark-picture
- Possibly, the ideas regarding the structure of hadrons must be revised
- Further interesting results are expected in the future (Medium and High Energy Laboratories)