Dissertation Agnes Lundborg The Charm of Excited Glue Uppsala, February 23, 2007

Exotic Particles in Meson Spectroscopy (1)

Constituents of matter

Constituents of a proton: Quarks and Gluons

	Flavor (q)	Mass [MeV]	Q/e
	u	5	+ 2/3
	d	7	- 1/3
and the second second	S	95	- 1/3
Join Harris	С	1250	+2/3
12-8	b	4200	- 1/3
	t	174200	+ 2/3

Theory: Quantum Chromo Dynamics (QCD)

Naive Quark Model:

Baryons: qqqProton = uudAntiproton = $\overline{u}\overline{u}\overline{d}$ Mesons: q \overline{q} $\pi^+ = u\overline{d}$ $\pi^- = u\overline{d}$ Characterization: Mass (m), Decaytime (τ) or Width ($\Gamma = \hbar/\tau$), Decay modes,
Quantum numbers (J^{PC})

Exotic Particles in Meson Spectroscopy (2)

Problems with the naive Quark Model

- DIS-Experiments
- Mass of the Hadrons much heavier than expected Example (Proton): $M \approx 17 \text{ MeV}$ $M_{exp.} = 938 \text{MeV}$ Large dynamical mass generation process
- Many of the new discoveries don't fit into the picture (see later)
- QCD allows many more states than described by the naive model (Exotic Particles)

New feature: Spin-exotic quantum numbers possible, not allowed in $q\bar{q}$ (J^{PC} = 0⁺⁻, 1^{-+,} ...)

Exotic Particles in Meson Spectroscopy (3)

Glueballs (gg)

Predictions:

Masses:

1.5-5.0 GeV/ c^2 (Ground state found?;

Candidates for further states?)

Quantum numbers:

Several spin exotics (oddballs), e.g.

 $J^{PC} = 2^{+-} (4.3 \text{ GeV/c}^2)$

Widths: $\geq 100 \text{ MeV/c}^2$

 Decay into two lighter glueballs often forbidden because of q.-n.

- No mixing effects for oddballs

Decays: $\phi\phi$, $\phi\eta$, $\eta\pi$

Exotic Particles in Meson Spectroscopy (4)

Charmonium Hybrids ($c\bar{c}g$, H_c)

42] K. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90, 161601 (2003).

Exotic Particles in Meson Spectroscopy (5)

Candidates for Exotics in the low mass sector (mainly from LEAR/CERN)

Exotic Particles in Meson Spectroscopy (6)

Glue-Ball Candidate

 $f_0(1500)$ (Best candidat for the Glueball-ground state)

Production : $p\bar{p} \rightarrow f_0(1500)\pi^0$ (Crystal Barrel/LEAR) Decays : $f_0(1500) \rightarrow 2\pi, 4\pi, \eta\eta, \eta\eta', K\bar{K}$ $M = (1505 \pm 9) \text{ MeV}; \Gamma = (111 \pm 12) \text{ MeV}; J^{PC} = 0^{++}$

Exotic?

- Surplus state in 0⁺⁺-Nonett
- Relatively narrow width
- Decays in particles, which contain u, d and s-Quarks
- Mass and Quantum numbers in good agreement with Lattice QCD-predictions for the Glueball-ground state

H. Koch: Diss. A. Lundborg, Uppsala, Febr. 23, 2007

Exotic Particles in Meson Spectroscopy (7)

Hybrid Candidates with exotic quantum number combination $\pi_1(1400) / \pi_1(1600)$

Production/Decays : $\pi^- p \rightarrow \pi_1(1400)p$ (E835/BNL) and $pn \rightarrow \pi_1(1400)\pi^0$ (Crystal Barrel/LEAR) $\rightarrow \eta\pi^ \pi^- p \rightarrow \pi_1(1600)p$ (E835 BNL) and $pp \rightarrow \pi_1(1600)\pi^+$ (Crystal Barrel/LEAR) $\rightarrow \pi^- \eta$ $\rightarrow \pi^- \eta$

 $M \approx 1400, 1600 \text{ MeV}; \Gamma \approx 300 \text{ MeV}; J^{PC} = 1^{-+} (\text{Exotic Q.-N., At variance with} naive Quark-model})$

H. Koch: Diss. A. Lundborg, Uppsala, Febr. 23, 2007

Exotic Particles in Meson Spectroscopy (8)

Contributions of A. Lundborg:

Look for Glueballs in radiative decays: $(c\overline{c}) \rightarrow \gamma + f_0(1500), ...$ Production of $(c\overline{c}): e^+e^- \rightarrow (c\overline{c})$

Exotic Particles in Meson Spectroscopy (9)

Beijing Electron Positron Collider (BEPC)

Exotic Particles in Meson Spectroscopy (10)

Results:
$$\psi' \rightarrow \gamma + X$$

 $\mapsto \pi^{+}\pi^{-}, K^{+}K^{-}$
 $BR(\psi' \rightarrow \gamma f_{2} (1270) \rightarrow \gamma \pi^{+}\pi^{-}) = (2.2 \pm 0.1^{+0.2}_{-0.2}) \times 10^{-4}$
 $BR(\psi' \rightarrow \gamma f_{0} (1500) \rightarrow \gamma \pi^{+}\pi^{-}) = (1.5 \pm 0.7^{+0.9}_{-0.4}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{0} (1710) \rightarrow \gamma \pi^{+}\pi^{-}) = (2.4 \pm 0.6^{+0.7}_{-1.1}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{4} (2050) \rightarrow \gamma \pi^{+}\pi^{-}) = (2.8 \pm 0.9^{+0.8}_{-0.6}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{0} (2200) \rightarrow \gamma \pi^{+}\pi^{-}) = (4.6 \pm 1.0^{+4.5}_{-1.0}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{2} (1270) \rightarrow \gamma K^{+}K^{-}) = (1.9 \pm 0.6^{+1.0}_{-0.6}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{2} (1525) \rightarrow \gamma K^{+}K^{-}) = (6.9 \pm 4.4^{+4.1}_{-2.1}) \times 10^{-5}$
 $BR(\psi' \rightarrow \gamma f_{0} (1710) \rightarrow \gamma K^{+}K^{-}) = (3.1 \pm 0.6^{+1.1}_{-0.7}) \times 10^{-5}$

Significance much higher than for BES I-data. Further improvements expected from BES III For the first time BR was given for $\psi' \rightarrow \gamma f_0(1500)$ The appearances of $f_0(1500)$ and $f_0(1710)$ are consistent with the hypothesis, that $f_0(1500)$ is the ground state glue ball H. Koch: Diss. A. Lundborg, Uppsala, Febr. 23, 2007

Exotic Particles in Meson Spectroscopy (11)

Discussion of the $J^{PC} = 0^{++}$ nonet

Nine open slots, but twelve candidates

Possible scenario:

 $a_0(980), f_0(980) : 4$ quark states

Exotic Particles in Meson Spectroscopy (12) Candidates for Exotics in the high mass sector (BaBar/BELLE/CLEO-c/...) $e^+e^- \rightarrow Y(4s) \rightarrow B\overline{B}$ \rightarrow (c \overline{c}) + (J/ ψ) + X, BaBar Belle 3.5 GeV

Exotic Particles in Meson Spectroscopy (13)

Candidates for exotics states

X(3872),
$$J^{PC} = 1^{++}(?)$$
, Γ < 2.3 MeV!!
 $\mapsto \pi^{+}\pi^{-}J/\psi$

Y(3949),
$$J^{PC} = ?$$
, $\Gamma = (92 \pm 24)$ MeV
 $\rightarrow \omega J/\psi$

Y(4260),
$$J^{PC} = 1^{--}$$
, $\Gamma = (88 \pm 23) \text{ MeV}$
 $\mapsto \pi^{+}\pi^{-}J/\psi$ H_{c} ?

Exotic Particles in Meson Spectroscopy (14)

Contributions of A. Lundborg

High energies antiprotons at GSI: FAIR-Project

Exotic Particles in Meson Spectroscopy (15)

The PANDA-Detector

Detector requirements

- full angular acceptance and angular resolution for charged particles and γ , π^0
- particle identification (π , K , e, μ) in the range up to ~ 8 GeV/c
- high momentum resolution in a wide energy range
- high rate capabilities, especially in interaction point region and forward detector : expected interaction rate $\sim 10^{7}/s$
- precise vertex reconstruction for fast decaying particles

Exotic Particles in Meson Spectroscopy (16)

Simulation of a Charmed Hybrid (H_c)

 $\overline{p}p \rightarrow H_c \pi^0 / \eta; H_c \rightarrow \chi_{c_1} (\pi^0 \pi^0)_{S-wave}; \chi_{c_1} \rightarrow \gamma J/\psi; J/\psi \rightarrow e^+ e^- (\mu^+ \mu^-) \rightarrow \ell^+ \ell^- + 7\gamma' s$ Assumption: $M(H_c) = 4.28 \text{ GeV}$ $\Gamma(H_c) = 20 \text{ MeV}$ $\sigma(\overline{p}p \rightarrow H_c \pi^0) = 100 \text{ pb}$ Problem: Signal/Hadronic background $\approx 10^{-9}$ Good test case for requests of EMC-properties: Energy resolution/Energy threshold/

solid angle coverage

Work not yet finished because of lacking description of components and kinematical fits Preliminary, very encouraging results:

• Channel measurable in spite of a high hadronic background

• Many detailed results relevant for the final design of EMC

Exotic Particles in Meson Spectroscopy (17)

Simulation of $\gamma\gamma$ -decay of the Charmonium ground state: $\eta_c \rightarrow \gamma\gamma$

Reasons for a refined measurement: Precision determination of $\alpha_s(2.9 \text{ GeV})$ Precision determination of total width

Peak/Background: $5.4 \pm 0.4 \pm 1.1$ (In spite of dominant background channels: $\overline{p}p \rightarrow \pi^0 \pi^0, \pi^0 \gamma$)

Exotic Particles in Meson Spectroscopy (18)

Production of $(c\overline{c})$ -states in pp-annihilations (Lundborg, Barnes, Wiedner)

Example: $p\overline{p} \rightarrow J/\psi + \pi^0(m)$

Knowledge of cross section very important for PANDA-research program

Until now: Only one measurement, only one calculation

New Method: Use $J/\psi \rightarrow m\overline{p}p$ branching ratio to determine the cross section

Good result for $J/\psi + \pi^0$, in reasonable agreement with data

Resumee

- The thesis of A. Lundborg deals with a very exciting part of modern Hadron Physics
- A. Lundborg has used high level and very sophisticated tools for her analysis
- The results contributed essentially to a further understanding of exotic hadronic states