PANDA-Status

(PANDA: Proton Antiproton Detector Array)

- Aims of the experiment
- Detector
- Simulations
- Hardware F&E
- Collaboration
 - Ongoing activities
 - Distribution of Work
 - Finances
 - Future Plans

Finances

Fundings from National Agencies and Laboratories

EU-Projects:

Network	•	PANDAnet	(570k€)
JRA's	•	Future DAQ	(1170 k€)
		Fast EM calorimeters	(1700 k€)
		Hyper Gamma	(720 k€)
		Internal Targets	(1020 k€)
		RICH Detectors	(2030 k€)

INTAS-Requests

PID

DIRC (Barrel) (n = 1.47)

Babar Realization very costly 1-dimensional Readout + Time Information ?

RICH (Forward Direction)

Aerogel (n = 1.02) \leftrightarrow Visible Light Photo Detector (Problem: Rayleigh Scattering of UV-Light)

or

 C_6F_{14} (n = 1.24) \leftrightarrow CsI coated Photocathode (UV)

EM-Calorimeter

Most expensive component, dictates geometry of the whole detector

Materials: PWO, CeF₃, BGO

PWO : Fast, relativ cheap

Not much light, Radiation resistant?

- CeF_3 : Ideal, but substantial R&D needed
- BGO : Factor 15 more light than PWO Slower, higher in price than PWO, Radiation resistant?

Read Out:

PM-Readout only if ECAL outside coil APD work astonishingly well Further possibilities: Triodes

Future Plans

- Continuation of Simulation
- R&D Work
- -MoU
- Proposal/Technical Report

Target

- Pellet-Target
 - Size of Pellets, Higher Frequency, Narrow Beam
- Cluster-Target
 - Higher Intensity, Pumps away from Interaction Point
- Super-Fluid He R&D needed
- Nuclear Target
 - Fine Wire, well positioned
- Polarized Target
 - Use of Solenoid Field for Polarization