Hadron Physics Experiments with Antiprotons

- Introduction
- Basic Facts about Antiprotons
- Historical Survey
- Production of Antiprotons and Antiproton Beams
- Antiproton-Nucleon Interactions
- Discovery of the TOP-Quark
- \clubsuit Discovery of the Intermediate Vector Bosons $W^{\pm},\,Z^{0}$
- Charmonium Spectroscopy
- LEAR Results
- Future Prospects

Basic Facts about $\overline{p}(\overline{n})$'s (1)

– Properties

Antiparticles of Protons (Neutrons) CPT-Symmetry: $q_{\overline{q}} = -q_q$; $m_{\overline{p}(\overline{n})} = m_{p(n)}$; $\mu_{\overline{p}(\overline{n})} = -\mu_{p(n)}$; $S = \frac{1}{2}\hbar$; $I = \frac{1}{2}$; $\tau_p = \tau_{\overline{p}}$

Experimental results (PDG):

$$\begin{split} & \left| q_{p} + q_{\overline{p}} \right| / e \qquad < 6 \cdot 10^{-8} (\text{C.L.} = 90\%) \\ & \left| m_{p} - m_{\overline{p}} \right| / m_{p} < 6 \cdot 10^{-8} (\text{C.L.} = 90\%) \\ & \left| \frac{q_{\overline{p}}}{m_{\overline{p}}} \right| / \left| \frac{q_{p}}{m_{p}} \right| \qquad < 0.999\,999\,999\,91\pm 0.000\,000\,000\,000\,009 \\ & \left| \mu_{p} + \mu_{\overline{p}} \right| / \mu_{p} = (-2.6\pm 2.9)\,x\,10^{-3} \\ & \tau_{\overline{p}} > 1.3\,x\,10^{6}\,y\,(\overline{p} \to e^{-}\gamma) \\ & (\tau_{\overline{p}} > 10^{17}\,y\,; \text{ Cosmological Limit)} \end{split}$$

Basic Facts about $\overline{p}(\overline{n})$'s (2)

$-\overline{\mathbf{p}}(\overline{\mathbf{n}})$ - Interactions

Interactions with protons (neutrons)

- Elastic scattering , e.g. $\overline{p} + p \rightarrow \overline{p} + p$
- Charge exchange , e.g. $\overline{p} + p \rightarrow \overline{n} + n$
- Inelastic scattering, e.g. $\overline{p} + p \rightarrow \overline{p} + p + \pi^+ + \pi^-$ Annihilation , e.g. $\overline{p} + p \rightarrow \pi^+ \pi^- \pi^0 \pi^0$ Rich of resonances

(Dominant al low energies)

Basic Facts about $\overline{p}(\overline{n})$'s (3)

Low and medium energy antiprotons

- pp-atoms as initial state (1)
 - Final states: Only Annihilation $(2\pi, 3\pi, \rho\pi, f_2\pi, ..)$
- Prediction measurements in the $c\overline{c}$ -system (2)Rare process (nb)

High energy antiprotons (SPSC, Tevatron)

Discovery of W^{\pm} , Z^0 (3)

Rare process (nb): Drell-Yan-Production

Discovery of t-quark (4)Rare process (pb): Pair $(t \bar{t})$ -Production

Basic Facts about $\overline{p}(\overline{n})$'s (4)

– Interactions with nuclei

Similar processes as in $\overline{p}p(n)$ interactions \rightarrow Intranuclear cascade

– Particular situation for very low energy \overline{p} 's:

Formation of \overline{p} -atoms $\xrightarrow{X - rays, \dots}$ Low excited or ground state \rightarrow Annihilation from atomic state

- Special Features of Antiprotons

- Cooled \overline{p} -beams (Low emittance)
- Low energy antiprotons can be trapped in e.-m. bottles (Storage of antiprotons for larger times)

Physics with Antiprotons (Antineutrons): Historical Overview (1)

- Before 1955: Interest to test Dirac's Theory for complex particles First weak evidences for antiprotons in cosmic ray events (Cloud Chamber, Photographic Emulsions)
 - Nov. 1955: Chamberlain, Segrè, Wiegand, Ypsilantis Bevatron, Berkeley: Production of antiprotons and first experiments After 3 years of measurement: $\Delta m_{\overline{p}}/m_{\overline{p}} \le 2\%$ $J^{P} = ?$, but indirect evidence for $1/2^{+}$ Annihilation observed, Multiplicities determined Production in pairs confirmed Cross sections for $\overline{p}N$ and $\overline{p}A$ -collisions, Angular distributions First purified beams (Be-absorber; Wien-Filter) $\overline{p} + p \rightarrow n + \overline{n}$ (Detection of Antineutrons)

Physics with Antiprotons (Antineutrons): Historical Overview (2)

1956 - 1981: p̄-physics (≤ 30 GeV/c) on fixed targets (BNL, Argonne, CERN, Serpukhov, KEK, ...) Secondary beams of low intensity, ill defined energy, large contamination by negatively charged meson inspite of separation techniques Detectors: Bubble Chambers + Electronic Detectors
→ Cross sections New Mesons : ω(782), f₁(1285), K₁(1270), E/η(1440) Antiprotonic Atoms

Physics with Antiprotons (Antineutrons): Historical Overview (3)

1980:	: Antiproton Accumulator @ CERN (AA)		
	Use of stochastic Cooling Techniques \rightarrow Availability of high intensity, high		
	quality p-beams @ 3.5 GeV/c		

1981 - 1996: Experiments with high energy antiprotons (\rightarrow 315 GeV) in the SPSC @ CERN

→ Measurement of cross sections and inclusive quantities (Multiplicities, p_{\perp} -, Rapidity-distributions, ...) up to $\sqrt{s} \approx 630$ GeV

Highlight: Discovery of W⁺, Z⁰

1981 - 1983: Experiments with medium energy antiprotons (\rightarrow 30 GeV) at ISR @ CERN

 \rightarrow Measurement of cross sections Highlight: Formation of $c\overline{c}$ -states: $\overline{p}p \rightarrow c\overline{c}$

1983 - 1996: Low energy antiproton ring (LEAR) @ CERN ($p_{\overline{p}}^{\text{max}} = 1.940 \text{ GeV/c}$)

- → Extremely rich physics program:
 - Details of $\overline{p}(\overline{n})$ p-scattering, Polarisation Observables

- Meson-Spectroscopy:

Detection of new states:

 $f_0(1500)$ (Glueball?); $a_0(1450)$, $f_0(1370)$; $E/\eta(1450)$; ...

– Inelastic Reactions:

 $\overline{p}p \rightarrow \Lambda \overline{\Lambda}$ (Detailed investigation)

Physics with Antiprotons (Antineutrons): Historical Overview (4)

- Exotic atoms:

pp-atoms: pp-scattering length

 $\overline{p}A\text{-atoms}$: Best value for $\mu_{\overline{p}},$

High precision spectroscopy in the \overline{p} -He-system Neutron densities in the nuclear periphery

- T(CP)-violation in the K^0/\overline{K}^0 -system
- $-m_{p}/m_{p}$ with extreme precision (E.-M. Traps)
- Discovery of (hot) Antihydrogen (\overline{H})

1986-Today: High energy antiprotons at Fermilab ($\sqrt{s} \approx 1.8 \text{ TeV}$)

- Test of perturbative QCD Asymptotic pp/pp-reactions Inclusive measurements
 - Highlight: Discovery of the Top-Quark

Constraints for the Higgs-Mass

1986 - 2001: Medium Energy Antiproton at Fermilab $(p_{\overline{p}} \le 8 \text{ GeV/c})$

 $\rightarrow \quad \text{Precision spectroscopy in the } c\overline{c}\text{-system}$

Physics with Antiprotons (Antineutrons): Historical Overview (5)

2001-Today: Antiproton Decelerator (AD) @ CERN

Formation of (cold) Antihydrogen Atoms
 High precision experiments on p
-He-atoms

Future: Facility for Antiproton and Ion Research (FAIR) @ GSI/Germany Japan Hadron Facility (JAERI-KEK)

Production of Antiprotons and Antiproton Beams (1)

Threshold (p): 5.63 GeV

Conventional p-beams:

Typical Example (Bevatron Set up) $p(6.2 \text{ GeV}) + \text{Cu} \rightarrow p + p + p + \overline{p} + X$

Threshold (A): 4.30 GeV (25 MeV Fermi Energy) T: Production target (Cu) $p_{\text{beam}} = 1.19 \text{ GeV/c}; \ \beta_{\overline{p}} = 0.78; \ \beta_{\pi^{-}} = 0.99 \left(N_{\pi^{-}} / N_{\overline{p}} \approx 50000 \right)$ S_1, S_2 : TOF – Counters (\overline{p} 's: 51ns; π 's = 40ns) $\rightarrow \beta$ C_1 :Cerenkov–Counter for pions ($\beta > 0.79$) C_2 : Cerenkov – Counter : $0.75 \le \beta \le 0.78$ M1, M2: Dipole Magnets $\rightarrow p_{\overline{p}}$ Mass (\overline{p}) from $p = mc\beta\gamma$; $\gamma = \frac{1}{\sqrt{1-B^2}}$ $\rightarrow \Delta m_{\overline{p}} / m_{\overline{p}} \approx 5\%$

Production of Antiprotons and Antiproton Beams (2)

After Bevatron era:

Higher p-energies (26 GeV) \Rightarrow Higher \overline{p} -rates ($\approx 10^2 - 10^5/s$)

 \rightarrow Cross section measurements in the µb, nb-regime

Use of separator techniques:

Electrostatic separators (≈ 1970) for lower \overline{p} -energies HF-separators (s.c.) at higher energies

Low energy beams (200 MeV/c): Degradation of the \overline{p} -beams of higher energy by absorbers (Dramatic loss of \overline{p} 's) Deflection of particles with same - momentum, but different mass, Spatial separtion of $\bar{p}/\pi^-/e^-$

Production of Antiprotons and Antiproton Beams (3)

Cooled p-beams:

Production of Antiprotons

AA/AC: Production Target: 50 mm Ir (\emptyset 3 mm) @ CERN $L_{coll} = L_{abs} \approx 50 \text{ mm}$

Focusing of antiprotons: Magnetic Horn, Li-Lense

p-intensity limited by several factors, e.g. thermal shock in the target

Machine	CERN Antiproton Collector	Fermilab debuncher
Production momentum (GeV/c)	26	120
Collection momentum (GeV/c)	3.5	9
\bar{p} /sr/GeV/c/Interacting p	0.013	0.25
Acceptances A_h (π mm mrad)	200	25
A_v (π mm mrad)	200	25
$\Delta p/p \times 10^{-3}$	60	40
$\sqrt{A_{h}A_{n}} \times \Delta p/p$ (π mm mrad $\times 10^{-3}$)	12×10^{3}	10^{3}
Yield (\bar{p}/p)	3.5×10^{-6}	14×10^{-6}
Protons per pulse	1.5×10^{13}	0.5×10^{13}
Antiprotons per pulse	5×10^{7}	7×10^{7}

Production of Antiprotons and Antiproton Beams (4) Accumulation of Antiprotons: AA (1980)

 $10^7 \,\overline{p}$'s occupy ≈ 50 % of the AA phase-space valume

 \rightarrow Beam cooling needed in order to store $10^{11} \overline{p}$'s (necessary for SPSC-experiments)

After 1988: AC (Antiproton Collector)-Ring, Concentric with AA: Debunching and Recooling

Production of Antiprotons and Antiproton Beams (5)

Experiments with high energy antiprotons: Acceleration of \overline{p} 's in PS (\rightarrow 26 GeV), Transfer to SPSC, Acceleration up to 315 GeV. Experiments with low energy antiprotons: (Loss free) Deceleration of p's in PS (600 MeV/c), Transfer to LEAP (Low Energy)

Transfer to LEAR (Low Energy Antiproton Ring) (1983-1996)

Pure, high intensity ($\leq 10^7/s$) \overline{p} -beams with small emittances 200 MeV/c $\leq p_{\overline{p}} \leq 1940$ MeV/c

Experiments with stopped antiprotons no problem: \overline{p} of 200 MeV/c are easily produced and stopped in a target

Special case: Trap experiments

Production of Antiprotons and Antiproton Beams (6)

Production of Antiprotons and Antiproton Beams (7) Antiproton-Decelerator at CERN (AD) (2001 - Today)

Refurbished version of AC with electron cooling

Pulsed machine, only usable for special kinds of experiments

Delivers pulsed \overline{p} -beams down to 100 MeV/c $\approx 10^7 \overline{p}$'s in a pulse of 0.2 - 0.5 µs Cycle time ≈ 1 min

$\overline{p}(\overline{n})$ -N-Interactions (1)

- Special inelastic channels (Very high energy):

 $\overline{p}p \rightarrow W^{\pm}, Z^{0} + X$ $\overline{p}p \rightarrow t\overline{t} + X$

$\overline{p}(\overline{n})$ -N-Interactions (2)

Characteristic Features

Total Cross Section

Low energy: $\sigma_{Tot} (\overline{p}p) > \sigma_{Tot} (pp)$ (Annihilation!)

High energy: $\sigma_{Tot} (\overline{p}p) \approx \sigma_{Tot} (pp)$ (Pomeranchuk) Regge-Description

Elastic Cross Section

Mainly diffractive (\emptyset disc \approx 1.3 fm)

$\overline{p}(\overline{n})$ -N-Interactions (3)

Inelastic Interactions

Low Energies :

Baryon-Spectroscopy, e.g.

High Energies :

Only inclusive measurements (Multiplicities, Rapidity distributions, ...) Bulk of events: Most particles forward/backward in CMS: $\langle p_t \rangle \approx 0.4 \text{ GeV/c}$

$\overline{p}(\overline{n})$ -N-Interactions (4)

High pt-events: Formation of Jets

 $\overline{p}p \rightarrow Jet + X, |\eta_{Jet}| < 0.5$

$\overline{p}(\overline{n})$ -N-Interactions (5)

Annihilation

Annihilation cross sections drop quickly with energy Mass production favored in comparison with energy production

Source for Meson/Exotic-Spectroscopy

$\overline{p}(6 \text{ GeV/c})p \rightarrow \eta\eta \pi^0(E835)$

$\overline{p}(\overline{n})$ -N-Interactions (6)

Special case: \overline{p} -Interactions at rest ($p_{\overline{p}} \approx 0$ MeV/c)

Low energy ($\leq 200 \text{ MeV/c}$) antiprotons are slowed down in a Hydrogen target (Bethe-Bloch) and finally form a $\overline{p}p(d)$ -atom

Energy Level Scheme of pp

Capture in atomic levels: $n \approx 30 - 40$ Population of L-substates: $0 \le L \le n - 1$ Lifetime of states ($\rightarrow \mu$ s) Deexcitation: Collisions, Auger-, X-ray emission Level mixing: Stark-Effect Atom disappears via annihilation from s- and p-states mainly Vacuum: Mainly annihilation from 2p-state LH₂: Mainly annihilation from s-state s-, p- levels are shifted (ϵ) and broadened (Γ) by strong interaction effects

$\overline{p}(\overline{n})$ -N-Interactions (7)

Physics with stopped Antiprotons

Very rich possibilities, mostly explored at LEAR

– Low energy $\overline{p}p(n)$ -interactions

Measurement of shifts and widths of atomic levels \rightarrow Complex scattering lengths, ρ -parameter at threshold

- Meson/Exotics-Spectroscopy

pp-annihilation at rest very rich source for most qq̄-resonances ($\leq 1.7 \text{ GeV/c}^2$) Candidates for exotic states clearly seen: f₀(1500), $\pi_1(1400)$, E/i(1400)

Unique possibility:

Observe the same annihilation process for different H_2 -pressures

- → Change of initial state distribution
 - \rightarrow Helps identifying J^{PC} of the resonances
- $-\overline{p}p$ -Annihilation = Rich source for K^0 , \overline{K}^0 , η , K^{\pm} , ...
 - → Precision Test of CP/T-Violation
 - → Test of chiral perturbation QCD
 - → Production of Hypernuclei
- Strangeness Content of Nucleon/Antinucleon
- Antiprotonic Atoms

Discovery of the Top-Quark (1)

FNAL: 1995

H. Koch, Hadron Physics, Varenna, June 2004

Discovery of the Top-Quark (2)

Production Mechanisms

SM: (a) Pair production $p\bar{p} \rightarrow t\bar{t} + X$

Dominant for $\sqrt{s} = 1.8$ TeV and m(t) = 175 GeV Z, $\gamma \rightarrow t\bar{t}$ also possible, but small cross section

$$\sigma(\overline{p}p \rightarrow t\overline{t} + X) (\sqrt{s} = 1.8 \text{ TeV}; m(t) = 175 \text{ GeV}) \approx 10 \text{pb}$$

($\approx 10^{-10} \text{ x } \sigma_{\text{inelast.}}$)

(b) Drell-Yan Production (Single *t*-production)

$$q \qquad \bar{b}$$

 $\bar{q} \qquad \bar{b}$
 $\bar{q} \qquad \bar{b}$
 $\bar{q} \qquad \bar{b}$

Small cross section for $\sqrt{s} = 1.8 \text{ TeV} \approx 0.9 \text{pb}$

Top-production cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. (a) $p\bar{p} \rightarrow t\bar{t}$ from Laenen, Smith, and van Neerveen (1994) (the band represents the estimated theoretical uncertainty), (b) sum of $t\bar{b}$ and $\bar{t}b$ from W decay (Drell-Yan), (c) sum of $t\bar{b}$ and $\bar{t}b$ from W-gluon fusion. See text for details.

 $\overline{p}p \rightarrow W^+ + X$ $\overleftarrow{}tb$

Discovery of the Top-Quark (3)

(c) W-Gluon-Fusion (Single t-production) $p\bar{p} \rightarrow t\bar{b} + X$

Small cross section for $\sqrt{s} = 1.8 \text{ TeV} \approx 2.4 \text{pb}$

$$\overline{\sigma}_{pp} \rightarrow t\bar{t} + X \ (\sqrt{s} = 14 \text{ TeV}; \text{LHC}) \approx 700 \text{pb}$$

Discovery of the Top-Quark (4)

Decay Modes

SM:
$$t \rightarrow W + b$$
 Dominant
 $\rightarrow W + c$
 $\rightarrow W + d$ CKM unterdrückt

Very small rates: $t \rightarrow q\gamma$ (FCNC) $t \rightarrow qZ$ (") :

Decay modes in $p\bar{p} \rightarrow t\bar{t} + X$

Decay modes for a $t\bar{t}$ pair and their lowest-order branching ratios standard model decays

Decay mode	Branching ratio	
$t\bar{t} \rightarrow q\bar{q}q\bar{q}b\bar{b}$	36/81	
$t\bar{t} \rightarrow q\bar{q}e\nu b\bar{b}$	12/81	
$t\bar{t} \rightarrow q\bar{q}\mu\nu b\bar{b}$	12/81	
$t\bar{t} \rightarrow q\bar{q}\tau\nu b\bar{b}$	12/81	
$t\bar{t} \rightarrow e \nu \mu \nu b \overline{b}$	2/81	
$t\bar{t} \rightarrow e \nu \tau \nu b \overline{b}$	2/81	
$t\bar{t} \rightarrow \mu \nu \tau \nu b\overline{b}$	2/81	
$t\bar{t} \rightarrow evevb\overline{b}$	1/81	
$t\bar{t} \rightarrow \mu\nu\mu\nu b\overline{b}$	1/81	
$t\bar{t} \rightarrow \tau \nu \tau \nu b\bar{b}$	1/81	

Lifetime of Top-Quark

Discovery of the Top-Quark (5)

Run 2: Main Ring \rightarrow Main Injector (L $\rightarrow 8 \ge 10^{31} \text{ cm}^{-2} \text{s}^{-1}$); Recycler (L $\rightarrow 2 \ge 10^{32}$); (2001 \rightarrow) 1.8 TeV $\rightarrow 2.0 \text{ TeV}$

Detector Upgrades: DO: Central magnetic field; Si-Vertex-Det.; Scint. Fiber Tracker CDF: Expanded Vertex Detector

Discovery of the Top-Quark (6)

CDF-Detector:

DO-Detector:

H. Koch, Hadron Physics, Varenna, June 2004

Discovery of the Top-Quark (7)

Lepton + Jets-Channel:

b-Jet, \overline{b} -Jet, Charged Lepton, Missing v, q-Jet, \overline{q} -Jet

Cuts as above + topologial conditions (sphericity/aplanarity)Observed eventsEst. Background34 (DVT) 9.2 ± 1.5 40 (SLT) 22.6 ± 2.8

Typical event:

Discovery of the Top-Quark (8)

All Jet-Channels

b-Jet; b-Jet; 2q-Jets; 2q-Jets

Discovery of the Top-Quark (9)

Production Cross Section : $\sigma_{t\bar{t}}$

Common Fit to data with m_t and σ_{tt} as free parameters SM predictions well fulfilled. Also width in agreement with SM

Discovery of the Intermediate Vector Bosons W^{\pm} , $Z^{0}(1)$

CERN (1983)

Discovery of the Intermediate Vector Bosons W^{\pm} , $Z^{0}(2)$

In the meantime: More data from from FNAL and LEP

$$m_{W^{\pm}} = (80.423 \pm 0.039) \text{GeV/c}^2 ; \Gamma_{W^{\pm}} = (2.118 \pm 0.042) \text{GeV/c}^2 m_Z^{0} = (91.1876 \pm 0.0021) \text{GeV/c}^2 ; \Gamma_Z^{0} = (2.4952 \pm 0.0023) \text{GeV/c}^2$$

$c\overline{c}$ -Spectroscopy (1) $\overline{c}c$ -system (QCD) corresponds to e⁺e⁻-system (QED)

pp-collisions

All ($c\bar{c}$)-states can be directly formed

Production
$$p = \underbrace{\bigcirc & c \\ \overline{p} = \underbrace{\bigcirc & G & \overline{c} \\ G & \overline{c} \\ 3 \text{ Gluons} \rightarrow (1^{--}, ..) }$$

Drawback:

Only $J^{PC} = 1^{--}$ states are directly produced in e^+e^- Other states are only visible in γ -transitions,

e.g.
$$\chi_1, \chi_2, \chi_0, \eta_c, \eta'_c, ...$$

→ Data with moderate mass resolution

H. Koch, Hadron Physics, Varenna, June 2004
$c\overline{c}$ -Spectroscopy (2)

Experimental method

Scan with \overline{p} -beam with adjustable momenta (3.4 - 6.3 GeV/c)

$$\begin{split} &\sigma(\bar{p}p \rightarrow (c\bar{c}) \rightarrow e{+}e{-}, ..) \approx nb \rightarrow pb \\ &Background: \\ &\sigma_{Tot} = 50mb \rightarrow Trigger \text{ on } e^{+}e^{-}, \,\mu^{+}\mu^{-}, \,\gamma\gamma, \,.. \end{split}$$

Resonance parameters from excitation curve Critical:

Excellent knowledge of beam energy Very good \bar{p} -beam energy resolution ($0 \approx 10^{-4}$)

Experiments:

CERN/ISR: R 704 (Demonstration of method)

Fermilab/p̄-Cooler-Ring (≤ 8 GeV/c): E 760, E 835

Many beautiful results

But: Much is to done

- Search for missing states
- Specific decay modes

LEAR: Low and medium energy $\overline{p}p(n)$ - Reactions (1)

Total = Elastic + CEX + Annihilation cross section

No structures near threshold \rightarrow No narrow Baryonium states

Elastic + CEX-scattering

 $\frac{d\sigma}{d\Omega}$ (θ), Analyzing Power (θ), measured from 180(70)-1940 MeV/c

Forward peak like in diffractive scattering Strong p-wave already at threshold (Strong s-wave absorption, ≠ pp)

LEAR: Low and medium energy $\overline{p}p(n)$ - Reactions (2)

H. Koch, Hadron Physics, Varenna, June 2004

LEAR: Low and medium energy $\overline{p}p(n)$ - Reactions (3)

Interpretation of data (Elastic + CEX)

Often in terms of a potential-model

- Real part (Long range): No problem, Meson-exchange picture (G-parity transformation from V_{NN})
- Real part (Short range): Problem ! Annihilation region Several (phenomenological) ansaetze:
 - $-q\bar{q}$ -interactions
 - Cut-off parameters
- Imaginary part: Short range strong absorption (annihilation)

Resumee:

Good description of data, but not from first principles

H. Koch, Hadron Physics, Varenna, June 2004

LEAR: Low and medium energy $\overline{p}p(n)$ - Reactions (4)

Specific annihilation channels

Few high statistics data in flight: $\overline{p}p \rightarrow \pi^+\pi^-, \pi^0\pi^0$ (up to 20 \overline{p} -momenta) Angular distributions change rapidly with

p-momentum

• Dominating partial waves

$$(p_{\overline{p}} = 1940 \text{ MeV/c}: L_{\text{max}} = 5)$$

$$\overline{p}p \rightarrow \underbrace{\omega \pi^0, \omega \eta, \omega \omega}_{\text{Unambiguous}}, \pi^0 \eta \eta \ (9 \ \overline{p}\text{-momenta})$$

analysis

LEAR: Antiprotonic X-rays (1) $\bar{p}p(d)$ - System : Measurement of strong interaction effects (ϵ , Γ)

$$E_n = \mu c^2 \frac{\alpha^2}{2n^2}$$

Three problems:

- Energies of 2p-1s, 3d-2p-transitions small
 (≈ 10 keV, ≈ 2 keV)
- Yield of the 2p-1s-X-ray very small $(\Gamma_{2p-1s}^{x})/\Gamma_{2p}^{ann.} \approx 1\%$
- 2p-level only populated in dilute H₂-gas

Long list of experiments to search for $\overline{p}p(d)$ -X-rays:

LH₂-Experiments: Failed Asterix (H₂-gas, STP) \rightarrow L_{α}+L_{∞}-lines, K_{α}-line (pp̄) Cold Gas Experiment (H₂-gas @ various densities) \rightarrow L-Series (p̄p, pd), K-series (p̄p) Inverse Cyclotron Trap: (H₂-gas of 20m bar) \rightarrow Fine Structure of L-/and K-series H. Koch, Hadron Physics, Varenna, June 2004

LEAR: Antiprotonic X-rays (2)

Inverse Cyclotron Trap

LEAR: Antiprotonic X-rays (3) Inverse Cyclotron Trap

LEAR: Antiprotonic X-rays (4)

Inverse Cyclotron Trap

Strong interaction shifts and widths of antiprotonic hydrogen and deuterium atoms.

Antiprotonic hydrogen atoms							
Ener	nift	Energy width					
ϵ_{1S}	$\epsilon_{1S} = -730 \pm 30 \mathrm{eV}$		Γ_{1S}	=	$1060\pm80\mathrm{eV}$		
$\epsilon(2^{3}P_{2}, 2^{1}P_{1}, 2^{3}P_{1})$	=	$+4.0~\pm~5.8\text{meV}$	$\Gamma(2^{3}P_{2}, 2^{1}P_{1}, 2^{3}P_{1})$	=	$30.5\pm2.0meV$		
$\epsilon(2^{3}P_{0})$	=	$+139\pm20meV$	$\Gamma(2^{3}P_{0})$	=	$120~\pm~25meV$		
			$\Gamma(2^1P_1)$	=	$51\pm18meV$		
Mean 2P level widths							
using (3.72)			using (3.73)				
Γ_{2P}	=	$38.0\pm2.8meV$	$\overline{\Gamma}_{2 extsf{P}}$	=	$44 \pm 8 meV$		
S-wave sca	atterin	ng length	P-wave scattering volume, imag. part				
$a_o^{\rm sc} = (0.88 \pm 0.04)$	$10.64 \pm 0.05) {\rm fm}$	$Im a_1^{sc} = -(0.77 \pm 0.06) fm^3$					
ρ-paramete	er at t	hreshold					
$ \rho(E=0) $	=	-1.38 ± 0.12					
Antiprotonic deuterium atoms							
Energy shift			Energy width				
ϵ_{1S}	=	$-1.05\pm0.25\mathrm{keV}$	Γ_{1S}	=	$1.10\pm0.75~keV$		
$\overline{\epsilon}_{2P}$	=	$243 \pm 26 \text{ meV}$	$ar{\Gamma}_{2 extsf{P}}$	=	$489\pm30\mathrm{meV}$		

LEAR: Annihilation at Rest (1)

Isospin statistical model (Pais) $\sigma(\overline{p}p \rightarrow n\pi) \propto n_{\pi^+} ! n_{\pi^-} ! n_{\pi^0} ! (n = n_{\pi^+} + n_{\pi^-} + n_{\pi^0})$

Threshold Dominance model (Vandermeulen), Valid up to 3.5 GeV/c BR (Non strange meson pair) = $p \cdot C_{ab} \exp \left[-A \left(E_{cm}^2 - (m_a + m_b)^2\right)^{1/2}\right]$

Production rate increases with higher masses of a, b Annihilation prefers to produce mass, not energy

LEAR: Annihilation at Rest (2)

Particularly well measured: 2 Body Final States

Branching ratios B for $\overline{p}p$ annihilation at rest in liquid. See Amsler and Myhrer (1991)
or annihilation in gaseous hydrogen. Further branching ratios from Dalitz plot analyses are listed in
Table XIII below.

Channel	filler i politik	ille nik or	В		Reference
e ⁺ e ⁻	3.2	±	0.9	10 ⁻⁷	Bassompierre et al. (1976)
$\pi^0\pi^0$	6.93	±	0.43	10^{-4}	Amsler et al. (1992a)‡
	4.8	±	1.0	10^{-4}	Devons et al. (1971)
$\pi^+\pi^-$	3.33	±	0.17	10^{-3}	Armenteros and French (1969)
$\pi^+\pi^-$	3.07	±	0.13	10^{-3}	Amsler et al. (1993b)‡
$\pi^0 \eta$	2.12	<u>+</u>	0.12	10^{-4}	Amsler et al. (1993b)‡
$\pi^0 \eta'$	1.23	<u>+</u>	0.13	10^{-4}	Amsler et al. (1993b)‡
$\pi^0 \rho^0$	1.72	±	0.27	10^{-2}	Armenteros and French (1969)
$\pi^{\pm} \rho^{\mp}$	3.44	±	0.54	10^{-2}	Armenteros and French (1969)
ηη	1.64	<u>+</u>	0.10	10^{-4}	Amsler et al. (1993b)‡
$\eta \eta'$	2.16	<u>+</u>	0.25	10^{-4}	Amsler et al. (1993b)‡
$\omega \pi^0$	5.73	<u>+</u>	0.47	10^{-3}	Amsler et al. (1993b) ^a ‡
	6.16	±	0.44	10^{-3}	Schmid (1991) ^b ‡
ωη	1.51	±	0.12	10^{-2}	Amsler et al. (1993b) ^a ‡
	1.63	±	0.12	10^{-2}	Schmid (1991) ^b ‡
$\omega \eta'$	0.78	±	0.08	10^{-2}	Amsler et al. (1993b)‡
ωω	3.32	±	0.34	10^{-2}	Amsler et al. (1993b)‡
$\eta \rho^0$	4.81	±	0.85	10^{-3}	c oncerns a start of the start
	3.87	<u>+</u>	0.29	10^{-3}	Abele et al. (1997a)‡
$\eta' \rho^0$	1.29	<u>+</u>	0.81	10^{-3}	Foster et al. (1968a)
	1.46	<u>+</u>	0.42	10^{-3}	Urner (1995)‡
$\rho^0 \rho^0$	1.2	<u>+</u>	1.2	10^{-3}	Armenteros and French (1969)
$\rho^0 \omega$	2.26	±	0.23	10^{-2}	Bizzarri et al. (1969)
K^+K^-	1.01	±	0.05	10^{-3}	Armenteros and French (1969)
K^+K^-	0.99	±	0.05	10^{-3}	Amsler et al. (1993b)‡
$K_{S}K_{L}$	7.6	±	0.4	10^{-4}	Armenteros and French (1969)
$K_S K_L$	9.0	±	0.6	10^{-4}	Amsler et al. (1995c)‡

^aFrom $\omega \rightarrow \pi^0 \gamma$.

^bFrom $\omega \rightarrow \pi^+ \pi^- \pi^0$.

^cAverage between Baltay et al. (1966), Espigat et al. (1972) and Foster et al. (1968a).

[‡]Crystal Barrel experiment.

LEAR: Annihilation at Rest (3) **Selection Rules for Two-Body-Annihilation Channels**

 $\pi^0 \pi^0$, $K_S K_S$, $\eta \eta$: L even $\rightarrow P = C = +1$ $rightarrow J^{PC} = 0^{++}, 2^{++}$ $K_{S}K_{L}$: L = 1, P = C = -1 $rightarrow J^{PC} = 1^{--}$

Conservation of quantum numbers in annihilation process:

$$\pi^0 \pi^0$$
, ... only possible from 3P_0 and 3P_2
K_SK_L, ... only possible from 3S_1

LEAR: Annihilation at Rest (4) Selection Rules for Two-Body Channels

State	J^P	С	1	G	2π ⁰	$\pi^{+}\pi^{-}$	$K_1^0 K_1^0 + K_2^0 K_2^0$	$K_1^0 K_2^0 - K_2^0 K_1^0$
¹ S ₀	0-	+1	0 1	+1 _1	X X	X X	Х	Х
³ S ₀	1-	-1	0 1	—1 +1	X X	Z _	Х	_
¹ P ₁	1+	-1	0 1	—1 +1	X X	X X	Х	х
³ P ₀	0+	+1	0 1	+1 _1	– Z	– Z	_	х
³ P ₁	1+	+1	0 1	+1 _1	X X	X X	Х	х
³ P ₂	2+	+1	0 1	+1 _1	– Z	– Z	_	х

Forbidden: X; G-Forbidden: Z; Allowed: -

LEAR: Annihilation at Rest (5)

Determination of p-/s- state annihilation as function of H₂-pressure

LEAR: Antiprotonic Atoms (1)

Antiprotonic Atoms: pA

Form easily in a nuclear target, X-rays much easier to observe than in pp-system (No Stark-Mixing, Higher Energies)

Observation of X-rays:

- Capture Mechanism
- Properties of particles involved, e.g. $\mu_{\overline{p}}$
- Measurement of ε , Γ of last observable transition $\Rightarrow \overline{p}$ -nuclear interaction (ρ_N at nuclear surface)
- Study of annihilation products

Special case:

```
\overline{p}-He: Metastable states \rightarrow High Resolution Laser Spectroscopy
```

LEAR: Antiprotonic Atoms (2)

Antiprotonic Atoms: pA

X-rays of transitions between various energy levels measured in many nuclei

Levels, affected by strong interaction $\Rightarrow (\varepsilon, \Gamma)_{S.I.}$ (last accessible level)

Interpretation:

 $\epsilon + i \frac{\Gamma}{2} \propto \int (a_{\overline{p}p} \cdot \rho_p + a_{\overline{p}n} \rho_n) |\psi|^2 d\tau$

Only nuclear surface contributes \Rightarrow Neutron halo established, e.g. $t_n - t_p = 0.6$ fm (¹⁷²Yb)

LEAR: pHe-Atoms

Metastable states ($\tau \approx \mu s$), deexcited by Laser-injection \Rightarrow Measurements on ΔE with extreme precision

 $\Rightarrow - \text{Very stringent test of calculations} \\ - \left| \frac{m_{\overline{p}} - m_{p}}{m_{p}} \right| \le 5 \times 10^{-7} \\ - \left| \frac{q_{\overline{p}} - e}{e} \right| \le 5 \times 10^{-7} \end{aligned}$

Future (AD): Increase of precision, $\mu_{\bar{p}}$

Pulsed excimer-pumped tunable Dye-Laser Resonant enhancement of annihilation, $\Delta\lambda/\lambda_0 = 0.5$ ppm

H. Koch, Hadron Physics, Varenna, June 2004

LEAR: $\overline{p}(\overline{n})$ -A-Interactions (1)

$\bar{\mathbf{p}}_{\mathrm{stop}}$:

Interaction only with nuclear periphery

Discrimination between $\overline{p}n$ and $\overline{p}p$ annihilations in single nucleon interactions (quite rare) Identification of residual nuclei from γ -ray spectra $\rightarrow N(\overline{p}n)/N(\overline{p}p)$

Bulk annihilation, Heating of nuclei to \geq 800 MeV, Soft heating \Rightarrow No dramatic density increase, No violent collective effects (High-Spins, Deformation), Formation of five pions in average (Δ -matter ?) Experimental results:

1 GeV: Particle spectra in good agreemeent with INC-calculations

8. GeV (ideal energy): INC-model works, Higher particle multiplicities than in π -induced reactions

LEAR: $\overline{p}(\overline{n})$ -A-Interactions (2)

 \overline{n} -A cross section measurement (50! - 400 MeV/c)

LEAR: CP/T/CPT - Tests (1)

CP-Lear: Investigation of CP-/T-/CPT-symmetries in the neutral Kaon system

- Measurement of time dependent decay asymmetries for the main K^0 , \overline{K}^0 decay modes
- Tagging of Strangeness of K^0 , \overline{K}^0 at production time $\left(\overline{p}p \rightarrow \frac{K^- \pi^+ K^0}{K^+ \pi^- \overline{K}^0}\right)$

- Tagging of Strangeness of K^0 , \overline{K}^0 at decay time $0 \le t \le 20\tau_s(K^0 \to \pi^- e^+ \nu_e, \overline{K}^0 \to \pi^+ e^- \overline{\nu}_e, \Delta S = \Delta Q)$ (For semileptonic decay only)

$$\begin{split} & K^{0}(t) = a_{L}^{-} \left| K_{s} \right\rangle e^{-i\gamma_{s}t} + a_{s}^{-} \left| K_{L} \right\rangle e^{-i\gamma_{L}t} \\ & \overline{K}^{0}(t) = a_{L}^{+} \left| K_{s} \right\rangle e^{-i\gamma_{s}t} - a_{s}^{+} \left| K_{L} \right\rangle e^{-i\gamma_{L}t} \\ & \gamma_{s,L} = m_{s,L} - \frac{i}{2}\Gamma_{s,L} \\ & a_{s,L}^{\pm} = \frac{1}{\sqrt{2}}(1 \pm \varepsilon_{s,L}) \end{split}$$

$$\varepsilon_{s,L} = \varepsilon \pm \delta$$

 $\epsilon \neq 0$: T and CP violation $\delta \neq 0$: T and CPT violation

Measurement of asymmetries $A(t) = \frac{R(\overline{K}^0 \to f) - R(K^0 \to f)}{R(\overline{K}^0 \to f) + R(K^0 \to f)} \quad f = \pi^+ \pi^-, \ \pi^0 \pi^0, \ \pi^+ \pi^- \pi^0, \ \pi^0 \pi^0 \pi^0$ \Rightarrow Parameters of CP-violation: $|\eta_+|, \phi_{+-}$ (Best Value !), $|\eta_{00}|, \phi_{00}, ...$

LEAR: CP/T/CPT - Tests (2)

Semileptonic decay: $f = \pi e v_e$

Measurement: $4 \operatorname{Re}(\varepsilon) = (6.2 \pm 1.4 \pm 1.0) \times 10^{-3} \neq 0 \blacksquare$ i.e.: $R(\overline{K}^0 \to \overline{K}^0) > R(\overline{K}^0 \to \overline{K}^0)$

– Direct Test of CPT-violation ($\delta \neq 0$?)

$$A_{\delta}(t) = \frac{R(\overline{K}^{0} \to \overline{K}^{0}(\pi^{+}e^{-}\overline{\nu}_{e}) - R(K^{0} \to K^{0}(\pi^{-}e^{+}\nu_{e}))}{R(\overline{K}^{0} \to \overline{K}^{0}(\pi^{+}e^{-}\overline{\nu}_{e}) + R(K^{0} \to K^{0}(\pi^{-}e^{+}\nu_{e}))}$$
$$= 8 \operatorname{Re}(\delta) \qquad (\text{for } t >> \tau_{s})$$

Measurement:

$$(\text{Im}\,\delta = (2.4 \pm 5.0) \times 10^{-5}, \text{ Unit. Relat.})$$

CPT-Invariance proven

 $\operatorname{Re}(\delta) = (24 \pm 28) \times 10^{-5} !!$

→ **!!** CP-Invariance in K-decays due to T-violation **!!** (Furthermore: No violation of $\Delta S = \Delta Q$ in semilept. decays)

H. Koch, Hadron Physics, Varenna, June 2004

LEAR: CP/T/CPT - Tests (3)

CP-LEAR-Detector

LEAR: Formation of (hot) Antihydrogen (H) in Flight Idea: Brodsky, Munger, Schmitt

PS 210 (LEAR)

Production of \overline{H} in Coulomb field of Xe-(cluster) target (1.94 GeV/c antiprotons)

2.1m

DHSc Nal

-3.2m

Stripping in Si-counter $\rightarrow e^+$ (stopped $\rightarrow \gamma\gamma$ (511 keV)) + \overline{p} (Spectrometer)

DI Sc

(Background estimate: 2 ± 1)

E 862 (Fermilab)

Production of \overline{H} in H2-cluster target by 5.2-6.2 GeV/c antiprotons

Sc

67 events identified

Continuation @ AD: \overline{H} -Formation at low energies

LEAR: Meson/Exotics-Spectroscopy (1)

Mesons: qq Exotics: Glueballs (gg, ggg), Hybrids (qqg) Multi quark-states (qqqq, ...) (Exotic q.-n. combinations, like J^{PC} = 1⁻⁺, ...)

pp-annihilation:

- Production mode ($\mathbf{E}_{\overline{p}}$ fixed) e.g. $\overline{p}p \rightarrow (\pi^{+}\pi^{-})_{\rho}\pi^{0}$ $\rightarrow (\eta\eta)_{f_{0}(1500)}\pi^{0}$ $\rightarrow ((\pi^{+}\pi^{-})_{\rho}(\pi^{+}\pi^{-})_{\rho})_{f_{0}(1500)}\pi^{0}$ [Unique feature : $\overline{p}_{stop} \rightarrow (\overline{p}p)_{atom}$ as initial state]
- Formation mode ($E_{\overline{p}}$ variied)

e.g. $\overline{p}p \rightarrow \xi(2220) \rightarrow \phi \phi \rightarrow K^+ K^- K^+ K^-$ Mass/Width determination: Invariant masses (Dalitz Plot) J^{PC} determination: Partial wave analysis (Angular distribution)

 p_{max} LEAR) = 1.94 GeV/c \Rightarrow Masses < 2.3 GeV/c²

LEAR: Meson/Exotics-Spectroscopy (2)

$q\bar{q}$ -States/Exotic States

Review of Particle Physics

$N^{2S+1}L_J$	J ^{PC}	$u\overline{d}, u\overline{u}, d\overline{d}$ I = 1	$u\overline{u}, d\overline{d}, s\overline{s}$ I = 0	$\overline{s}u, \overline{s}d$ I = 1/2
$1 \ {}^{1}S_{0}$	0-+	π	η,η'	К
$1 {}^{3}S_{1}$	1	ρ	ω,φ	K*(892)
1 ¹ P ₁	1+-	b ₁ (1235)	h ₁ (1170), h ₁ (1380)	K_{1B}^{\dagger}
$1 {}^{3}P_{0}$	0++	a ₀ (1450)*	$f_0(1370)^*, f_0(1710)^*$	K ₀ *(1430)
1 ³ P ₁	1++	a ₁ (1260)	$f_1(1285), f_1(1420)$	K _{1A} †
$1 {}^{3}P_{2}$	2++	a ₂ (1320)	f ₂ (1270), f ₂ '(1525)	K ₂ *(1430)
1 ¹ D ₂	2-+	π ₂ (1670)	$\eta_2(1645), \eta_2(1870)$	K ₂ (1770)
1 ³ D ₁	1	ρ(1700)	ω(1650)	K*(1680) [‡]
$1 {}^{3}D_{2}$	2			K ₂ (1820)
$1 {}^{3}D_{3}$	3	ρ ₃ (1690)	$\omega_3(1670), \phi_3(1850)$	K ₃ *(1780)
$1 {}^{3}F_{4}$	4++	a ₄ (2040)	$f_4(2050), f_4(2220)$	K ₄ *(2045)
$2 {}^{1}S_{0}$	0-+	π(1300)	η(1295), η(1440)	K(1460)
$2^{3}S_{1}$	1	ρ(1450)	ω(1420), φ(1680)	K*(1410) [‡]
2 ³ P ₂	2++		f ₂ (1810), f ₂ (2010)	K ₂ *(1980)
3 ¹ S ₀	0-+	π(1800)	η(1760)	K(1830)

LEAR: Meson/Exotics-Spectroscopy (3)

Crystal Barrel Experiment

Not mentioned: Test of Quark Line Rule, Radiative Annihilations, Radiative ω , η '-decays, Limit for light gauge bosons, Strangeness in Nucleon/Antinucleon (ϕ/ω), Test of χ PT; Scan of specific annihilation channels ($\pi^0\pi^0$, $\pi\omega$, ..., $\phi\phi$)

Strength of the experiment: Very good π^0 , η ,

 η '-identification ($\rightarrow 2\gamma$) 1380 CsI crystals ($\approx 4\pi$) Experiments at rest and in flight Target: Mainly LH₂

LEAR: Meson/Exotics-Spectroscopy (4)) $\overline{p}_{\text{Stop}} p \rightarrow 3\pi^0$, $2\pi^0 \eta$, $2\eta\pi^0$, $5\pi^0$, $\pi^0 K_L K_L$, $\pi^0 \eta \eta'$

DP: $3\pi^0$ (712 000 events)

Contributing Resonances: $a_0(980), f_0(980), f_2(1270), a_2(1320), \dots$

Firstly discovered: $f_0(1500)$ $a_0(1450)$ $f_0(1370)$

Similar statistics: $\pi^0 \pi^0 \eta$ (280 000 events), $\pi^{0}\eta\eta$ (198 000 events), $\pi^{0}K_{I}K_{I}$ (48 000 events)

LEAR: Meson/Exotics-Spectroscopy (5) 2) $\overline{p}_{\text{Stop}}n \rightarrow \pi^0 \eta \pi^-$

LEAR: Meson/Exotics-Spectroscopy (6)

3) $\overline{p}(1940 \text{ MeV/c})p \rightarrow 3\pi^0$, $2\pi^0\eta$, $2\eta\pi^0$

Contributing Resonances: $a_0(980), f_0(980), f_2(1270), a_2(1320), f_0(1500)$

Further states needed: $a_2(1660)$ $f_2(1650)$ (? AX) $f_J(2100)$

Resumee: Most of the known $(q\bar{q})$ resonances confirmed Additional states found

 \rightarrow New input for a reinterpretation of $q\bar{q}$ -Nonetts

LEAR: Meson/Exotics-Spectroscopy (7) Obelix-Experiment

Not mentioned:

Precise determination of annihilation rates (pressure); Stopping Power of very low energy antiprotons (keV); Pontecorvo-Reactions; \overline{p} -He metastable states; ...

Strength of the experiment: Good K[±] indentification Variable target pressure np-interactions

LEAR: Meson/Exotics-Spectroscopy (8)

) $\bar{p}_{Stop}p \to \pi^{+}\pi^{-}\pi^{0}; \ K^{+}K^{-}K^{0}; \ K^{\pm}K^{0}K^{\mp}, \ (LH, \ NTP, \ LP)$

Contributing Resonances:

 $\phi(1020), K^*(892), \rho(770), \rho(1414), \rho(1620) (1^{--})$ $a_2(1320), f_2(1270), f'_2(1525), f_2(1565) (2^{++})$ $K_0^*(1430), a_0(980), a_0(1300) (0^{++})$ $f_0(980), f_0(1540), f_0(1460) (0^{++})$

Confirmation of CB-results

LEAR: Meson/Exotics-Spectroscopy (9)

2) $\overline{n}(150-380 \text{ MeV/c})p \rightarrow \pi^+\pi^-\pi^+$

H. Koch, Hadron Physics, Varenna, June 2004

LEAR: Meson/Exotics-Spectroscopy (11)

Discusion of scalar resonances (0^{++})

Many 0^{++} -states found: $\sigma(600) = \alpha (080) = f(1)$

 $\sigma(600)$?, $a_0(980)$, $f_0(1370)$, $a_0(1450)$, $K_0^*(1430)$, $f_0(1500)$

Nature of these states ?

Possible Scenario:

Further Scenarios also possible, Common to all: Supernumerary states

Situation not fixed, further experimental information needed, e.g. @ higher energies

LEAR: Meson/Exotics-Spectroscopy (12)

Future Prospects (1) FAIR-Project at GSI/Darmstadt: Heavy Ions + Antiproton Physics JAERI-KEK Hadron Facility: Emphasis on K-, v-beams, Antiprotons in 2. stage

FAIR-Project

Production of Antiprotons up to 15 GeV/c

Future Prospects (2)

Physics Proposals involving Antiprotons:
Spectroscopy and pN/pA reactions in the Charm
Domain (PANDA)
Nucleon Structure Functions with/without Polarization
(PAX, ASSIA)
Low energy p-physics: FLAIR (H-Spectroscopy, p-He, ...)

PANDA – Detector

Detector requests

- Nearly full solid angle for charged particles and Gammas
- High rate capability
- Good particle identification (e, μ , π , K, p)
- Efficient trigger on e, μ, K, D

General purpose detector

- Target: Jet/Pellet/Wire
- Tracking: Pixels (MVD) / Straws / Mini-Drift-Chambers (MDC)
- E.M. Calorimeter: PbWO₄, APD-Readout
- Muons: Plastic Scint. Strips
- PID: Aerogel Cerenkov (ACC) / DIRC
- Trigger: High p_{\perp} electrons/muons / Multiplicity jump ($K_{s}, \Lambda, ...$)

Secondary vertex (D's,...) / Invariant masses / Global kinematical conditions

counter

hadron

PANDA - Detector

- tracking of charged particles
- measurement and identification of $\gamma,\,e^{\pm},\,\mu^{\pm},\,\pi^{\pm},\,K^{\pm},\,p,\,\overline{p}$

high rate capability

• sophisticated and fast trigger scheme

Detector features:

PANDA - Physics Program / Charmonium Spectroscopy (1)

$c\bar{c}$ - system (QCD) $\hat{=} e^+e^-$ -system (QED)

Energies/Energy splittings/Widths of states → Details of QQ-interactions Confinement Potential Exclusive Decays

→ Mixing of perturbative/non-pert. effects

PANDA - Physics Program / Charmonium Spectroscopy (2)

Experimental situation

R704 (CERN/ISR) / E760/835 (Fermilab)

 \hookrightarrow Discovery of h_c (¹ P_1) - state

Very precise values for masses and withs of χ_c , η_c -states

Measurement of previously unknown branching ratios

Determination of $\alpha_s(m_c)$

But : Severe limitations (Non magnetic detector, beamtime, beam momentum reproducibility, ...)

Many questions left open:

- $-\eta_{c}$ (Cball) not yet established (Spin-Spin-Interaction)
- $-{}^{1}P_{1}$ (E760) unconfirmed
- D-wave states (some of them very narrow) and radially P-states not fully understood (Structure of states)
- Angular distributions of radiative decays not understood (Mixing of pert./non-pert. Effects)

e.g.
$$J/\psi \rightarrow \rho \pi^0$$
; $\eta_c, \chi_{co} \rightarrow B\overline{B}$ (Hadron helicity non conserving process)

$$J/\psi \rightarrow \pi^+\pi^-, \omega\pi^0, \rho\eta$$
 (G-parity violating decays)

 $\psi' \rightarrow \gamma + \pi, \eta \dots$ (Radiative ψ' -decays)

 $\chi_{cJ} \rightarrow \rho \rho, \phi \phi, \rho \eta, \rho \eta', \eta' \eta'$ (Higher Fock state contributions)

PANDA - Physics Program / Charmed Hybrids

Charmed Hybrids : (ccg)

Predictions: (LQCD, Bag-Model, Flux-Tube-Model,...)

PANDA - Physics Program / Charmed Hybrids

High chances to find charmed hybrids Less mixing than in (qqg)-sector Measuring program at HESR

States with non exotic q.-n.:

$$\overline{p}$$
-scan: $\overline{p}p$ → (c $\overline{c}g$) 3.9 - 4.3 GeV/c²; J/ψ-trigger)
 $\overline{p}p$ → (c $\overline{c}g$) (4.3 - 5.0 GeV/c²; D-trigger),
~ 10⁴ (c $\overline{c}g$) → L/w + n per day (Decay channel set

 $\approx 10^4 (c\bar{c}g) \rightarrow J/\psi + \eta$ per day (Decay channel selects q.-n.)

States with exotic q.-n.:

Production experiment: $\overline{p}p \rightarrow (c\overline{c}g) + \pi^0(\eta)$ $\rightarrow J/\psi + \omega, \phi, \gamma$ $\approx 10^2 (c\overline{c}g)$ per day, PWA of Dalitz-Plots (see LEAR)

In addition: Measuring program on light hybrids $\approx 2 \text{ GeV/c}^2$, Scan- and production mode Favorite channels: $\overline{p}p \rightarrow (c\overline{c}g) \rightarrow f_1(1285)\pi$, $K_1\overline{K}$, ... Large cross sections (µb), Complementary to Hall D

PANDA - Physics Program / Heavier Glueballs

Glueballs (gg)

Predictions:

Masses:

1.5-5.0 GeV/ c^2 (Ground state found?;

Candidates for further states?)

Quantum numbers:

Several spin exotics (oddballs), e.g.

 $J^{PC} = 2^{+-} (4.3 \text{ GeV/c}^2)$

Widths: $\geq 100 \text{ MeV/c}^2$

 Decay into two lighter glueballs often forbidden because of q.-n.

- No mixing effects for oddballs

Charmonium States and Predicted Glueballs

JPC

- UKQCD Collaboration, G. S. Bali et al., Phys. Lett B309 (1993) 378.
- C. Morningstar, M. Peardon; Phys. Rev. D 60 (1999) 034509.

H. Koch, Hadron Physics, Varenna, June 2004

PANDA - Physics Program / Heavier Glueballs

Production cross section:

Maybe high in $\overline{p}p$ -annihilation (see f₀(1500)) Comparable to q \overline{q} -systems (! µb)

Experimental program at HESR $\overline{\mathbf{p}}$ -scan for non-exotics: $\overline{\mathbf{p}}\mathbf{p} \rightarrow (\mathbf{g}\mathbf{g}) \rightarrow \phi\phi, \phi\eta$ (Most reasonable channels, easily distinguishable, low ℓ - waves (simple PWA))

Production exp. for exotics: $\overline{p}p \rightarrow (gg) + \pi$

Reasonable measuring times

PANDA - Physics Program / Hadrons in Nuclear Matter

1) Effective masses of hadrons in the nuclear medium

PANDA - Physics Program / Hadrons in Nuclear Matter

Effective D-masses in nuclear medium

– Dramatically increased DD-decay rate of ψ '- and χ_{C2} -states in nuclear medium

→Substantial increase of widths $(0.3 \text{ MeV} \rightarrow ?; 2.0 \text{ MeV} \rightarrow ?)$

– Increased width of $\psi(3770)$ (24 MeV \rightarrow ?)

PANDA - Physics Program / Hadrons in Nuclear Matter

2) J/ ψ - nucleon absorption cross section

Important for J/ψ - suppression in QGP

PANDA - Physics Program / Double Hypernuclei

PANDA - Physics Program / Further Options

- Baryon Spectroscopy

New states, Quantum numbers and decay rates

- **Rare D-decays**
Example:
$$D^+ \to \mu^+ \nu(BR \sim 10^{-4}) \stackrel{c}{\overline{d}} \stackrel{\mu^+}{\longrightarrow} \Gamma \sim f_0^2 \sim |\psi(0)|^2$$

Sensitive Test of LQCD,....

– Direct CP-Violation in Λ , $\overline{\Lambda}$ -decays

Compare angular decay asymmetries $(\alpha, \overline{\alpha})$ for $\Lambda \to p\pi^-/\overline{\Lambda} \to \overline{p}\pi^+$

$$\mathbf{A} \approx \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

Prediction (SM) $\approx 2x10^{-5}$ HESR: 1 year of beamtime

PANDA - Physics Program / Further Options

CP-Violation in charmed region

 $D^{0}/\overline{D}^{0} - Mixing(r) < 10^{-8}(SM)$ HESR: $\Delta r/r \sim 10^{-4}$

Direct CP-Violation (SCS)

Compare $D^+ \rightarrow K^+ \overline{K}^{0*}/D^- \rightarrow K^- K^{0*}$ Asymmetries A (SM)<10⁻³ HESR = $\Delta A/A \approx 10^{-4} - 10^{-3}$

PANDA - Physics Program / Further Options

Study of reversed Deeply Virtual Compton Scattering (DVCS) $\overline{p} + p \rightarrow \gamma^* + \gamma \rightarrow \ell^+ \ell^- + \gamma \rightarrow \text{Nucleon structure functions}$

Conclusions

- Physics with Antiprotons very fruitful in the past and in the future Production of heavy particles (W^{\pm}, Z^{0}, t) Copious and tagged production of particles $(K^{0}, \overline{K^{0}}, \eta, \eta', \Lambda, \Xi, n, ...)$ Study of resonant states up to the Charm Region with high statistics Antiprotonic atoms and \overline{H}

– Annihilation Process ideal source for the search for gluonic degrees of freedom

- Cooled Antiproton beams have unique features as far as precision experiments are concerned
- Bright Future ahead

Physics Program / Measurements in the Charm Region

Spin non-exotic states $X: \overline{p}p \to X(\overline{p}-scan)$

 $\begin{array}{rcl} X: \text{Heavier } q\overline{q}-\text{mesons} & \to & n\pi+mK,...\\ & \text{Heavier Glueballs} & \to & \varphi\varphi, \ \varphi\eta,...\\ & \text{Charmed Hybrids} & \to & J/\psi\eta,...\end{array}$

Spin-exotic states $(\#q\overline{q})Y:\overline{p}p \rightarrow Y + \pi, \eta,...$ (Production mode)

Y: Oddballs $\rightarrow \eta \pi, \phi \phi, ...$ Charmed Hybrids $\rightarrow \chi(\pi \pi)_{s}, ...$ (e.g. groundstate) Basic Facts about $\overline{p}(n)$'s

LEAR: Meson/Exotics-Spectroscopy

Meson-like states with exotic quantum number combination

$\pi_{1}(1400) / \pi_{1}(1600)$ Production/Decays : $\pi^{-}p \rightarrow \pi_{1}(1400)p \quad (E835/BNL) \quad \text{and} \quad \bar{p}n \rightarrow \pi_{1}(1400)\pi^{0} \text{ (Crystal Barrel/LEAR)}$ $\stackrel{\leftarrow}{\rightarrow}\eta\pi^{-} \qquad \stackrel{\leftarrow}{\rightarrow}\eta\pi^{-}$ $\pi^{-}p \rightarrow \pi_{1}(1600)p \quad (E835 \text{ BNL}) \quad \text{and} \quad \bar{p}p \rightarrow \pi_{1}(1600)\pi^{+} \text{ (Crystal Barrel/LEAR)}$ $\stackrel{\leftarrow}{\rightarrow}\pi^{-}\eta \qquad \stackrel{\leftarrow}{\rightarrow}\pi^{-}\eta$

 $M \approx 1400, 1600 \text{ MeV}; \Gamma \approx 300 \text{ MeV}; J^{PC} = 1^{-+} (\text{Exotic Q.-N., At variance with naive Quark-model})$

Exotic? Exotic J^{PC}-combination

Hybrids? Multi-Quark-states?

H. Koch, Hadron Physics, Varenna, June 2004

Medium energies:

High energies (only inclusive measurements)

- Most particles go forward or backward in CMS
- $-\!<\!\!p_t\!\!>\approx 0.4~GeV/c$
- Leading particle effects

Rapidity

Adequate variable to describe the p_L -distribution of particles (π^{\pm} , all charged, beam-, target particle)

 $F + n_{-}$ $F + n_{-}$

1

Rapidity:

ity:
$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} = \ln \frac{E + p_L}{\sqrt{p_t^2 + m^2}}$$
; $p_L = (\vec{p} \cdot \vec{e})$; $\vec{e} = \text{direction of beam}$
Lab: $0 \le y \le 2 \ln \frac{E_{CM}}{m}$
CMS: $-\ln \frac{E_{CM}}{m} \le y^* \le \ln \frac{E_{CM}}{m}$
Advantage: $y' = y + \ln(\gamma(\beta + 1))$ Additive!
 $\beta = \text{velocity of system' relative to system}$; $\frac{\delta y}{\delta p_L} = \frac{1}{E}$

Pseudorapidity $\eta^* = \frac{1}{2} \ln \frac{|\vec{p}| + p_L}{|\vec{p}| - p_L} = -\ln(\tan(\Theta^*/2)) \text{ Advantage: no measurement of particle momentum necessary}$ $\Rightarrow = y^* \text{ for } p_t^2 \gg m^2; \ p_L \sim E;$ $= y^* \text{ for } \gamma' \text{ s } (m = 0)$

(Qualitative) Explanation for low <p_t>: Relativistic Fireball Model

Data (UA5, ...)

Multiplicities of a typical event @ $\sqrt{s} = 546/53 \text{ GeV}$

	$\sqrt{s} = 546 \text{ GeV}$	$\sqrt{s} = 53 \text{ GeV}$
Particle type	$\langle {f n} angle$	$\langle {f n} angle$
All charged	28.4 ± 0.3	10.1
$K^{+} + K^{-}$ *	2.24 ± 0.16	0.75
$K^0 + \overline{K^0}$ *	2.24 ± 0.16	0.7
all γ	33.0 ± 3.0	11.8
$p + \overline{p}$ *	1.45 ± 0.15	0.3
$n + \overline{n}$ *	1.45 ± 0.15	0.3
$\Lambda + \overline{\Lambda} + \Sigma^0 + \overline{\Sigma}^0 \qquad *$	0.53 ± 0.11	0.1
$\overline{\Xi}^{-} + \overline{\Xi}^{-} $ *	0.10 ± 0.03	_
$\Xi^0 + \overline{\Xi}^0 $ *	0.10 ± 0.03	_
$\Sigma^+ + \Sigma^- + \overline{\Sigma}^+ + \overline{\Sigma}^- \;\; *$	0.27 ± 0.06	0.04
$e^{+} + e^{-}$	0.41 ± 0.04	0.15
$\pi^+ + \pi^-$	23.9 ± 0.4	8.9
η *	3.4 ± 1.1	1.1
γ (from η)	11.0 ± 3.5	3.4
π^{\pm} (from η)	1.9 ± 0.6	0.6
π^{\pm} (not from η) *	22.0 ± 0.7	8.4
π^0 (not from η) *	11.0 ± 0.4	4.2

Energy dependence of *<***n***>***:**

H. Koch, Hadron Physics, Varenna, June 2004

Rapidity Distributions

Feynman-Scaling for $|\eta| \leq 3$.

H. Koch, Hadron Physics, Varenna, June 2004

