Workshop at ETC*, Trento, July 3-7, 2006 "Observables in pp-interactions and their relevance to QCD"

Castello di Trento ("Triat"), watercolour, 19.8 x 27.7, par tex, by 4. Duration into way back from benus, (1695)

C. Britsi, Nuccuri, Londrer

Organizers: Mauro Anselmino, Helmut Koch (Coordinator), Ulrich Mosel, Dan-Olof Riska

All talks available: http://www.ep1.ruhr-uni-bochum.de/~dagmar/Trento.htm

H. Koch, PANDA-Coll. Meeting, Vienna, September 2, 2006

Program of the Workshop

Sunday Evening: Welcome Pizza							
Time	Monday	Tuesday	Wednesday	Thursday	Friday		
9.00 - 9.45					Weise (pdf 4,6MB) Notes on Spectroscopy and String Breaking		
9.45 - 10.30		Mosel (pdf 1,3MB) Hadrons in Matter: Theory and Observables	Brodsky (pdf 25.1MB) Testing Novel Phenomena in QCD and AdS/CFT using Antiprotons	Mulders (ppt 520KB) Single spin asymme- tries in pp scattering	Vairo (pdf 548KB) Use of EFT's in the Charmonium system		
Coffee Break							
11.00 - 11.45	Ritman (ppt 12.1MB) Precision spectroscopy in the charmonium mass region using antiproton annihilation	Kroll (pdf 452KB) Quarks and Gluons in pp Annihilations	Brodsky continuation	Oelert (ppt 35.1 MB) Physics with low Energy Antiprotons	Timmermans (pdf 5.6MB) Partial-wave analysis of pp reactions: (LEAR) and future (FAIR)		
11.45 - 12.30	Anselmino (ppt 2,1MB) Spin and k ₁ dependent parton distributions (pdf 1,3MB)	Barnes (ppt 10,6MB) Meson and exotics decays in QCD inspired models	Leupold (pdf 1,3MB) Drell-Yan process in a parton model with offshellness	Pire/Szymanowski (pdf 1.3MB) Hard exclusive reactions in ppbar interactions	Pochodzalla (ppt 24,7MB) Hypernuclear experiments at PANDA		
		•	Lunch	•			
14.00 - 14.45 14.45 - 15.30	Kienle (ppt 7.1MB) Some Perspectives of Antiproton and Antikaon Physics Morningstar (pdf 668KB) Towards the spectrum of Hadrons using LatticeOCD	Metag (ppt 8MB) Hadron modifications seen with electromagnetic probes Gillitzer (ppt 4MB) Study of hadron in- medium properties in antiproton-nucleus collisions	14:00 Excursion to <u>Bolzano</u> Visit of "Oetzi" in <u>Museum of</u> <u>Archeology</u>	Bettoni (pdf L6MB) Charmonium Spectroscopy Lenisa (ppt 2MB) The PAX Project			
	Coffee Bre	ak		Coffee Break			
16.00 - 16.45	Diren (ppt 10,1MB) Results from Hermes in view of future pp Experiments	Bali (pdf 444K B) Quarkonium on the lattice		Rathmann (ppt 2,6MB) Polarization of Antiprotons <u>Nikolaev (pdf</u> <u>304KB)</u> Understanding the Filtex Results			
16.45 - 17.30	Lutz (ppt 2.5MB) Hadrogenesis and spectroscopy with PANDA	Oset (pdf 2.2MB) In medium properties of strange hadrons		Walcher (pdf 232KB) An alternative method for Polarizing Antiprotons			
17.30 – 18:15	Johansson (pdf 4,6MB) Polarization effects in ppinteractions with final state hyperons	Metz (pdf 184KB) The Sivers effect and pp-interactions	19:00 Conference Dinner	Große-Perdekamp (ppt 4,9MB) Hadron Physics at RHIC			

— Three main topics:

Spectroscopy

(Ritman, Kienle, Morningstar, Lutz, Kroll, Barnes, Bali, Brodsky, Bettoni, Weise, Vairo)

Hadrons in matter

(Kienle, Lutz, Mosel, Metag, Gillitzer, Oset, Brodsky)

Nucleon Structure

(Anselmino, Brodsky, Düren, Kroll, Metz, Mulders, Pire, Szymanowski, Lenisa, Große-Perdekamp)

- + **pp-reactions in general** (Brodsky, Johansson, Kienle, Timmermans)
- + Contributions to p-polarization (Rathmann, Nikolaev, Walcher)
- + FLAIR (Oelert)
- + Hypernuclei (Pochodzalla)

Spectroscopy (1)

Experiment (Ritman, Kienle, Bettoni)

Many new states (hidden and open charm) seen recently by B-Factories, Cleo-c and BES. Several of them very narrow.

- Problems: Γ_{Total} often not measurable, only few decay modes accessible, Low statistics
- \checkmark Job for PANDA: Measure Γ_{Tot} and $\Gamma_{Part.}$ for as many decays as possible
- Solution Nature of states, which are probably often mixtures of $Q\overline{Q}$, $Q\overline{Q}Q\overline{Q}$, and Hybrids

Spectroscopy (2)

Theory

LQCD (Bali, Morningstar)

Systematic approach to ground state- and excited hadrons: Lattice Hadron Physics Collaboration (LHPC).

- Goal: Spectra of Hadrons (first: Baryons) Hadron Structure (Form Factors, Structure Functions) Hadron-Hadron Interaction
- Slow progress: Extension of the basis, Many (multi-hadron) operators, First Results in one year

Effective Field Theories (Vairo, Weise, Kroll, Lutz)

Expansion in terms of (several) small parameters, Effective Interactions

Spectroscopy (3)

Theory Models (Barnes)

Very comprehensive overview on different models. Emphasis on the ${}^{3}P_{0}$ -model, which works well in many cases

Prediction: $\overline{p}p \rightarrow D_{s0}^{*}(2317) + D_{s}$ with high rate **D**_{s0}^{*}-Factory !

Spectroscopy (4)

Theory

New developments (Brodsky)

Duality between Conformal Field Theory and Anti-de Sitter Space (5 Dim.) AdS/CFT

It is claimed that this model has impact on many observables

- Non-Perturbative Derivation of Dimensional Counting Rules (Strassler and Polchinski)
- Light-Front Wavefunctions: Confinement at Long Distances and Conformal Behavior at short distances (de Teramond and Sjb)
- Power-law fall-off at large transverse momentum, $x \rightarrow 1$
- Hadron Spectra, Regge Trajectories

Spectroscopy (5)

Fig: Light meson orbital spectrum: 4-dim states dual to vector fields in the bulk, $\Lambda_{QCD}=0.26~GeV$

Guy de Teramond SJB

H. Koch, PANDA-Coll. Meeting, Vienna, September 2, 2006

Spectroscopy (6)

Key experiments

Use the high statistics and precision of $\overline{p}p$ -reactions \overline{p} (various fixed energies) $p \rightarrow many final states (\pi, K, D, \Lambda, ...)$ \swarrow Look for new states Scan around the energy of these states and other already known states \And Γ_{Tot} Look for as many decay channels as possible \clubsuit Nature of the states Partial Wave Analysis \clubsuit J^{PC}

Hadrons in Matter (1)

Experiment (Metag, Kienle, Gillitzer) J/ψ nucleon interaction, important for QGP

PANDA: $\overline{p} + A \rightarrow J/\psi + X$ 300 $(qd) (-e^+ e^-) 00$ $\mathfrak{V}_{\ell^+\ell^-}$ $\bar{p} A \rightarrow J/\psi + (A-1)$ **J**/ψ $(J/\psi \rightarrow e^+ e^-)$ μ J/ψ 150 σ(**J**/ψ đ 100 μ 50 4.5 3.5 5 4 . \bar{p} momentum (GeV/c) K. Seth, Proc. Hirschegg 2001, p.183

> Recent Simulation: ≈ 220 events/d o.k. ! More problematic : $\overline{p} + A \rightarrow \psi' + X$: ≈ 8 events/d difficult !

Hadrons in Matter (2)

Mass shifts of PS mesons in matter

- Deeply bound pionic states
- K^+/K^- production in HI reactions
- High energy HI reactions (CERES, NA 60)
- Recent TAPS results: ω -mass shift in nuclei, $\Gamma(\omega)$ in nucleus, ω -nucleon bound state?

PANDA-Observables (Charmed Sector):

Subthreshold DD production: Quantitative results under discussion (see theory) D/D-meson mass shift via widths of cc̄-states: Assumes zero mass shift of cc̄ Collisional width may dominate D/D transverse momentum distribution: May work for some 10 MeV potentials

Problems: D's are fast

(Slow D's by 2-step process, e.g. D + d head-on collisions (Costs rate !)) Mass effects small

Mass shifts of $c\overline{c}$ in matter

Maybe small (see theory)

Hadrons in Matter (3)

Theory (Mosel, Oset, Brodsky))

- QCD sum rules
- Hadronic models
- Connection with experiment through universal transport method for low and high energies
 - In-medium changes seem to be established in light quark sector:
 - CERES, NA60, TAPS/CB, Photoabs., hadronattenuation
 - One common feature in all cases: influence of resonancehole excitations, detailed spectral function not seen!
 - In heavy-quark sector main problems are:
 - Smallness of predicted effects,
 - Production mechanism that leads to large p
 - qualitative disagreement between theories
 - Essential problem: link of in-medium props to observables → FSI must be part of theory

Hadrons in Matter (4)

Hadrons in Matter (5)

Key experiments (Kienle, Gillitzer)

See proposal, but critical view to the underlying theory. Are the observables firmly connected to QCD d.o.f.?

New ideas:

Produce ppK^- , $pnnK^-K^-$, $\overline{p}-{}^{3}He-$ and $\overline{\Lambda}$ - clusters in nuclei (FINUDA, FOPI, KEK)

e.g.:
$$\overline{p} + {}^{3}\text{He} \rightarrow [ppK^{-}] + K^{0}$$

 $\overline{p} + {}^{4}\text{He} \rightarrow K^{+}K^{+} + [K^{-}K^{-}pnn]$
 $\overline{p} + {}^{4}\text{He} \rightarrow n + [\overline{p}{}^{3}\text{He}]$

Nucleon Structure (1)

Experiment (Düren, Lenisa, Große-Perdekamp)

Observables:

\boldsymbol{k}_{\perp} integrated parton distributions

 $q(x, Q^2) = q_+ + q_-$ Quark distribution - well known $\Delta q = q_+ - q_-$ Quark helicity distribution - well known (Chiral even) $h_1 = \Delta_T q = q \uparrow - q \downarrow$ Transversity distribution - unknown (Related to Chiral odd) $\Delta g = g_+ - g_-$ Gluon helicity distribution - pooly known

- + 8 spin-k_{\perp} dependent distribution functions: q(x, $\vec{k_{\perp}}$) \rightarrow Sivers, Collins, Boer-Mulders-Asymmetries - first results
- + Space dependent distribution functions (GPD's; Handbag): $q(x, \vec{b})$

Processes:

DIS, SIDIS, Drell-Yan, DVCS, HEMP (HERMES, COMPASS, HERA, RHIC, JLAB)

Nucleon Structure (2)

Theory (Anselmino, Kroll, Metz, Brodsky, Leupold, Mulders, Pire, Szymanowski)

Two Approaches for hard, exclusive processes

- ERBL (Efremov, Radyushkin, Brodsky, Lepage) Describtion in terms of complete (\vec{x}, \vec{p}) dependent Wave Functions for valence quarks
- Handbag-Model (one active parton), Description of non-perturbative soft part: GPD's

Quantitive predictions for processes

Key experiments for FAIR (Lenisa, Düren)

Experiments with transverse polarized antiprotons and/or polarized target (PAX) $\overline{p}\uparrow p\uparrow \rightarrow e^+e^-X$ (Drell-Yan): Observable: A_{TT} -Asymmetry \rightarrow Transverse spin distribution of quarks (h₁) Unique access: Direct measurement, No knowledge of polarized fragmentation functions needed

 $\overline{p}\uparrow p \rightarrow e^+e^-X$, Single spin asymmetries (SSA) AN \rightarrow Sivers-Function Sivers (DY) $\stackrel{?}{=}$ – Sivers (DIS)

Nucleon Structure (3)

 $\overline{p}\uparrow p\uparrow \rightarrow \overline{p}\uparrow p\uparrow$ (elastic), Measure $A_N, A_{NN}, A_{LL}, A_{SS}, A_{SL}$ Spin mysteries like in pp? $\overline{p}\uparrow p \rightarrow e^+e^- \rightarrow$ Form Factors, also phase of G_E/G_M

Experiments without \overline{p} , p-polarization (PANDA) (Düren, Kroll, Brodsky)

Annihilation into two Photons	$\overline{p}p \rightarrow \gamma \gamma$	\rightarrow Timelike GPD's	
and related processes .	$\overline{p}p \rightarrow \gamma \pi, \rho, \phi$		
Annihilation into $\gamma^*\gamma$:	$\overline{p}p \to \gamma \gamma^* (\to \ell^+ \ell^-) \Big\}$	· Check of Factorization	
Drell-Yan Dilepton Production:	$\overline{p}p \to \ell^+ \ell^- + X \qquad \Big\}$	Boer – Mulders – Function	
$\overline{p}p \rightarrow Dileptons$:	$\overline{p}p \to \ell^+ \ell^- \qquad \Big\}$	Timelike Proton FF	

Proposal (M. Düren): Transverse p-polarization not compatible with PANDA, but transverse polarization of ³He possible

General Aspects of $\overline{p}p$ -interactions (1)

Test of reaction mechanisms (Brodsky)

Scaling predictions, dimensional counting: $(\overline{p}p)_{elastic}$, $\overline{p}p \to K^+K^-$, $\overline{p}d \to \pi^-p$, @ high p_{\perp} Diffractive hidden charm production: $\overline{p}p \to \overline{p} + J/\psi + p$ Double diffractive DY: $\overline{p}p \to \overline{p} + \ell^+\ell^- + p$ Color Transparency: $\frac{d\sigma}{dt}(\overline{p}A \to \overline{p}p(A-1)) \to Z \times \frac{d\sigma}{dt}(\overline{p}p \to \overline{p}p)$ Non universal Anti-Shadowing in DY: $\overline{p}A \to \ell^+\ell^-X$

Final Analysis of $\overline{p}p(\uparrow) \rightarrow \Lambda \overline{\Lambda}$ @ LEAR (Johansson)

Diff. cross section, Asymmetries, Depolarization, Polarization Transfer, Spin Correlations (24 Observables)

Scomplete determination of the scattering matrix (12 real numbers, overdetermined)

 $\stackrel{\text{t}}{\Rightarrow} p(\overline{p})/\Lambda(\overline{\Lambda})$ -structure + reaction mechanism

HESR: Study reactions in similar way in the 2, 3-strange sector (Ξ, Ω) and in the Charm-sector (up to Ω_c) Structure of $\Lambda(1405)$

General Aspects of $\overline{p}p$ -interactions (2)

Virtues of PWA-analyses (Timmermans, Walcher)

 Very good initial interaction Resonance/background separation Search for exotics YY production
Should be extended to HESR energies

Antiproton Polarization

Spin Filtering method seems to work, but understanding still incomplete (Rathmann, Nikolaev, Walcher)

- Filtering by nuclear interactions (polarized fixed target)
- Filtering via interaction with a high intensity polarized e⁻-beam

 \Rightarrow High \overline{p} -Polarization

Discussion going on (Time development of density matrix, ...) Tests foreseen at COSY, TSR and AD

(Personal) Conclusions

Spectroscopy

Follow the proposed program with emphasis on the investigation of the nature of the recently discovered states Look also for exotics in the Baryon sector (K⁻pp, ...)

Hadrons in Matter

Very good case : J/ψ -N absorption Hadronic modifications in matter in the light quark sector seem to be established No clear predictions in the Charm sector (More theory needed)

Nucleon Structure

Clear theoretical pictures and predictions The aspects without polarized antiprotons should be investigated at PANDA ($\overline{p}p \rightarrow \gamma\gamma$; $\gamma\gamma^*$, γM ; Timelike FF)

General aspects

Scaling predictions, dimensional counting, production mechanisms should be an essential topic (Good for tests of the detector)