

<u>Overview</u>

- G4 simulation in the BaBar-like software
 - physics list
 - validation
- Electron identification with the EMC (december 2006)
 - e/p and shower shape
 - neural network
 - results for a test sample (march 2007)
 - status and possible improvements
- e+e- analysis
 - reconstruction efficiency
 - π + π background study

1

G4 simulation

- BaBar-like software with G4.7.1
- All detectors of the present favoured design implemented
 - apart from Cherenkov detectors in forward direction
- Physics list
 - took over the list used by BaBar
 - em processes for e-: G4MultipleScattering, G4eIonisation, G4eBremsstrahlung (G4 standard)
 - em processes for e+: G4MultipleScattering, G4eIonisation, G4eBremsstrahlung, G4eplusAnnihilation (G4 standard)
 - em process for $\pi-$ and $\pi+:$ G4MultipleScattering, G4hIonisation
 - hadronic interactions for π and π +:
 - > hadr. elast. interactions for all hadrons: G4HadronElasticProcess with G4LElastic model
 - hadr. inelast. interactions unique to each hadron: G4PionPlusInelasticProcess and G4PionMinusInelasticProcess with <u>Bertini model</u>

G4 simulation

Dennis Wright (SLAC): G4 Tutorial, 8-10 March 2004

BaBar EM Calorimeter (EM shower shapes)

PANDA EM workshop, Orsay 2007

panda

B. Kopf, Ruhr-Universität Bochum

3

G4 simulation

Dennis Wright (SLAC): G4 Tutorial, 8-10 March 2004

π Production from 730 MeV p (LEP Model)

panda

π Production from 730 MeV p (*Bertini Model*)

4

Full simulation chain

panda

- G4 simulation with the complete detector, digitization, full reconstruction for the EMC
- single particles between 0.2 ... 6.0 GeV/c and $\cos(\Theta) = -0.7 \dots 0.7$
 - appr. 100k e^+ , π^+ , K⁺ each
- Electron can be identified via
 - E/p (E: energy deposit of the cluster; p: reconstructed momentum of the track)
 - shower shape of the cluster
- Studies based on
 - complete EMC reconstruction
 - reconstructed energy deposit of the cluster
 - reconstructed shower shape of the cluster (Zernike momenta)
 - events with exactly one cluster and no multi-bump cluster

(no split offs, no e⁺ which produces one or more photons via bremsstrahlung, ...)

- tracking not taken into account
 - no matching of the charged track with the cluster
 - MC truth momentum

B. Kopf, Ruhr-Universität Bochum

- Suitable properties for electron ID
 - e/p, p, Zernike momenta of the cluster
- Problem

panda

- how to find the optimal cut parameters in the multi-dimensional space
- possible solution: usage of neural networks
- BaBar like software
 - 8 different (supervised and non supervised) neural networks available
 - first training of a multi layer perceptron (MLP) already done
 - training files: ~90k for e+ , π +, K+ each
 - 9 input parameters: e/p, p, Zernike00, 31, 33, 42 and Zernike lateral,
 - 2. momentum Φ , 2. momentum Θ
 - net response = 1 for "good" tracks (electrons)
 - net response = -1 for ",bad" tracks (π ,K)

Test sample

- Test files (March 2007)
 - single particles between 0.2 ... 6.0 GeV/c and $\cos(\Theta) = -0.966 \dots 0.966$
 - 10k e⁺, π^+ , K⁺, μ^+ , p each
- Reconstructed and Kalman fitted STT tracks used
 - Θ coverage: ~15⁰-170⁰
 - pion @ 0.5 GeV/c : $\sigma(p_T)$ /p_T ~ 1.3%, $\sigma(d0)$ ~560 $\mu m,$ $\sigma(z0)$ ~5260 μm
 - combined fit with MVD without and with material site also possible but not yet used
 - pion @ 0.5 GeV/c (without material): $\sigma(p_T)/p_T \sim 0.66\%$, $\sigma(d0) \sim 41 \mu m$, $\sigma(z0) \sim 42 \mu m$
 - pion @ 0.5 GeV/c (with material) : $\sigma(p_T)/p_T \sim 0.42\%$, $\sigma(d0) \sim 35\mu m$, $\sigma(z0) \sim 37\mu m$
- Track matching with EMC

- association of the reconstructed track with the corresponding bump

B. Kopf, Ruhr-Universität Bochum

Test sample

panda

B. Kopf, Ruhr-Universität Bochum

Status and possible improvements

- Electron ID via e/p and shower shape seems to work
- Background in the order of 10⁻³ for equal fluxes
- Improvements possible

panda

- complete tracking and track matching should be included for the training files
- additional/other properties as input for NN
- how many hidden nodes for the MLP?
- test with other neural networks
- combination with other detectors (e.g. dE/dx, tof, cherenkov)

• 4 different BtaElectronCandLists based on NN (part of reconstruction)

• 10k e+e- events @ η_c (phasespace)

panda

• 910k π + π - background events @ η_c (phasespace)

e+e- analysis

• 10k e+e- events @ η_C (phasespace)

B. Kopf, Ruhr-Universität Bochum

e+e- analysis

• vertex and kinematic fitting works

panda

B. Kopf, Ruhr-Universität Bochum

e+e- analysis: π + π - background

• 910k π + π - events @ η_{c} (phasespace)

p a n d a

B. Kopf, Ruhr-Universität Bochum