New Insights for $Q C D$ from AdS/CFT and
 Novel Tests of QCD at GSI

Stan Brodsky, SLAC

Trento GSI-FAIR Workshop

Quantum Chromodynamics (QCD)

- Quantum Chromodynamics is the fundamental theory of hadron and nuclear physics, as fundamental as Quantum Electrodynamics is to atomic physics and chemistry!
- In fact: limit $\mathrm{QCD}\left(\mathrm{N}_{\mathrm{C}}->\mathbf{0}\right)=$ Quantum Electrodynamics (QED)
- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: "hidden color", "color transparency", "quark-gluon plasma", "intrinsic charm" anomalous heavy quark phenomena, diffraction, spin effects
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

$\mathcal{H a d r o n}$ Dynamics at the Amplitude Level

- DIS studies have primarily focussed on probability distributions: integrated and unintegrated.
- Test QCD at the amplitude level: Phases, multi-parton correlations, spin, angular momentum, exclusive amplitudes
- Impact of ISI and FSI: Single Spin Asymmetries, Diffractive Deep Inelastic Scattering, Shadowing, Antishadowing
- Hadron wavefunctions: Fundamental QCD Dynamics
- Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Novel Tests of QCD at GSI

Polarized 15 GeV stored anti-proton beam

- Characteristic momentum scale of QCD: 300 MeV
- Many Tests of AdS/CFT predictions possible
- Exclusive channels: Conformal scaling laws, quark-interchange
- proton-antiproton scattering: test fundamental aspects of nuclear force
- Color transparency: Coherent color effects
- Nuclear Effects, Hidden Color, Anti-Shadowing
- Anomalous heavy quark phenomena
- Spin Effects: $\mathrm{A}_{\mathrm{N}}, \mathrm{A}_{\mathrm{NN}}$

Testing quantum chromodynamics with antiprotons.
Stanley J. Brodsky (SLAC) . SLAC-PUB-10811, Oct 2004. 92pp.
Published in *Varenna 2004, Hadron physics* 345-422
e-Print Archive: hep-ph/0411046

Novel QCD Phenomenology, Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7, Part 8, International School of Physics Enrico Fermi, Varenna, Italy, 6/2004

Light-Front Wavefunctions

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$$
\begin{gathered}
\sum_{i}^{n} x_{i}=1 \\
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
\end{gathered}
$$

Invariant under Goosts! Independent of \mathcal{P}^{μ}

Final-State Interactions Produce T-Odd (Sívers Effect) i $\vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$

- Bjorken Scaling!
- Arises from Interference of Final-State Coulomb Phases in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment
- Sum of Sivers Functions for all quarks and gluons vanishes. (Zero gravito-anomalous magnetic moment: $\mathrm{B}(\mathrm{o})=\mathrm{o})$

Prediction for SingleSpin Asymmetry

Hwang, Schmidt. sjb

Trento July 5, 2006

Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.
Sivers asymmetry from HERMES

Key QCD Experiment at GSI

Measure single-spin asymmetry A_{N} in Drell-Yan reactions

Leading-twist Bjorken-scaling A_{N} from S, P-wave initial-state gluonic interactions
Predict: $A_{N}(D Y)=-A_{N}(D I S)$ Opposite in sign!

$$
p \bar{p}_{\uparrow} \rightarrow \ell^{+} \ell^{-} X
$$

$\vec{S} \cdot \vec{q} \times \vec{p}$ correlation
$x_{1} x_{2}=.05, x_{F}=x_{1}-x_{2}$

Trento
July 5, 2006

Initial-state interactions and single-spin asymmetries in Drell-Yan processes *

Stanley J. Brodsky ${ }^{\text {a }}$, Dae Sung Hwang ${ }^{\text {a,b }}$, Ivan Schmidt ${ }^{\text {c }}$

Nuclear Physics B 642 (2002) 344-356

Here $\Delta=\frac{q^{2}}{2 P \cdot q}=\frac{q^{2}}{2 M v}$ where v is the energy of the lepton pair in the target rest frame.

Trento July 5, 2006

Key QCD Experiment at GSI

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\bar{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional to the Proton Anomalous Moment and α_{s}.

Opposite Sign to DIS! No Factorization

Collins;
Hwang, Schmidt. sjb

AdS/CFT, QCD, \& GSI

Drell-Yan Process and Highen Twist

$$
\begin{aligned}
\pi-N & \Rightarrow \gamma^{2} X \Rightarrow \mu^{+} \mu^{-} x \\
\frac{1}{\sigma} \frac{d \sigma}{d \Omega}= & 1+\lambda \cos ^{2} \theta-\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi \\
& +\mu \lambda_{2}^{\mu^{+}} \\
\lambda, \mu, & \sim=G\left(x_{L}, Q^{2}, Q_{2}^{2}, s\right)
\end{aligned}
$$

Leading twit PQCD predicts

$$
\begin{array}{ll}
\lambda \cong 1 & +\theta(\alpha) \\
\mu, \nu \cong 0 & +\theta(\alpha)
\end{array}
$$

Dats: $\lambda \rightarrow$ negature of $X_{L} \rightarrow 1$?
large μ, v contriletans! (NA3, CD)

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI 14

Key QCD Experiment at GSI

$\cos 2 \phi$ correlation in DY from double ISI

Boer, Hwang, sjb

We show that initial-state interactions contribute to the $\cos 2 \phi$ distribution in unpolarized Drell-Yan lepton pair production $p p$ and $p \bar{p} \rightarrow \ell^{+} \ell^{-} X$, without suppression. The asymmetry is expressed as a product of chiral-odd distributions $h_{1}^{\perp}\left(x_{1}, p_{\perp}^{2}\right) \times h_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)$, where the quark-transversity function $h_{1}^{\perp}\left(x, \boldsymbol{p}_{\perp}^{2}\right)$ is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpolarized proton. We compute this (naive) T-odd and chiral-odd distribution function and the resulting $\cos 2 \phi$ asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function $h_{1}^{\perp}\left(x, \boldsymbol{p}_{\perp}^{2}\right)$ equals the T-odd (chiral-even) Sivers effect function $f_{1 T}^{\perp}\left(x, p_{\perp}^{2}\right)$. This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the $\cos 2 \phi$ asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

$\pi^{-} u \rightarrow d \gamma^{*}$ schprecers

Degeads on pion distributen arplitude

$$
\phi_{\pi}(x, 0)
$$

Calculetions by
Bergen, $\delta J B$, Lepage $\lambda\left(X_{F}\right)$ Brawerburg, khoze, mille, 810

Dets exnsertect with $\phi_{c z}(x, Q)$ rethe than $\phi_{\text {syarreni }}$

Higher Twist seen in Data NAio, CP

Drell-yan $\quad \pi N \rightarrow l^{+} l^{-} \cdot x$

$$
\frac{d \sigma}{d x \operatorname{dcos} \theta}=A(1-x)^{2}\left(1+\cos ^{2} \theta\right)+B \frac{\sin ^{2} \theta}{Q^{2}}
$$

Higlen Twist and Leadiy Twist congarelle of

$$
\mu^{2}=(1-x) Q^{2}
$$

fixed

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI
16

Remarkable observation at HERA

events are diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI

Final State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

1-2005
8711A18

- Quarks Reinteract in Final State
- Analogous to Coulomb phases, but not unitary

Observable effects: DDIS, SSI, shadowing, antishadowing

- Structure functions cannot be computed from LFWFs computed in isolation
- Wilson line not 1 even in lcg

QCD Mechanism for Rapidity Gaps

Kyoto University
I2-5-05

Insights for QCD
from AdS/CFT

Stan Brodsky, SLAC

Key QCD Experiment at GSI

Double-Diffractive Drell-Yan

$$
\bar{p} p \rightarrow \bar{p}+\ell^{+} \ell^{-}+p
$$

Large-Mass Timelike Muon Pairs in Hadronic Interactions S. M. Berman*, D. J. Levy, and T. L. Neff§

Prototype for exclusive Higgs production

Key QCD Experiment at GSI

Measure diffractive hidden charm production
Even close to threshold at forward x_{F}

$$
\begin{gathered}
\frac{d \sigma}{d t_{1} d t_{2} d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+p) \\
\frac{d \sigma}{d t d x_{F}}(\bar{p} p \rightarrow \bar{p}+J / \psi+X)
\end{gathered}
$$

Anomalous nuclear dependence

$$
\bar{p} \rightarrow-\bar{p}
$$

$$
\begin{aligned}
& \frac{d \sigma}{d x_{F}}(\bar{p} A \rightarrow J / \psi+X) \\
& A^{\alpha\left(x_{2}\right)} \text { versus } A^{\alpha\left(x_{F}\right)}
\end{aligned}
$$

$$
\mathrm{p} \quad(\mathrm{X})
$$

Important Tests of Intrinsic Charm

Origin of Nuclear Shadowing
 in Glauber - Gribov Theory

Interference of one-step and two-step processes
Interaction on upstream leading-twist nucleon diffractive
Phase i X i = - I produces destructive interference
No Flux reaches down stream nucleon

Shadowing and Antishadowing in Lepton-Nucleus Scattering

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal!

Electromagnetic and weak currents: different nuclear effects!
Potentially significant for NuTeV Anomaly\}

Schmidt, Yang, Lu, sjb

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Kowalski: HERA DDIS produces observed nuclear shadowing

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_{1} is via $C=-$ Reggeon or Odderon exchange, the one-step and two-step amplitudes are constructive in phase, enhancing
the \bar{q} flux reaching N_{2}
\rightarrow Antishadowing of the
DIS nuclear structure functions

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Crticaltest: Tagged Drell-Yan

Shadowing and Antishadowing in Lepton-Nucleus Scattering

- Shadowing and Antishadowing in DIS arise from interference of multi-nucleon processes in nucleus Phases!
- Not due to nuclear wavefunction Wavefunction of stable nucleus is real. Effect of multi-scattering of $q \bar{q}$ in nucleus.
- Bjorken Scaling :

Interference requires leading-twist diffractive DIS processes

Key QCD Experiment at GSI

Measure Non-Universal Anti-Shadowing in Drell-Yan

$$
\bar{p} A \rightarrow \ell^{+} \ell^{-} X
$$

$$
\begin{array}{ll}
Q^{2}=x_{1} x_{2} s & x_{1} x_{2}=.05, x_{F}=x_{1}-x_{2} \\
& \\
A^{\alpha\left(x_{1}\right)}=\frac{2 \frac{d \sigma}{d Q^{2} d x_{F}}\left(\bar{p} A \rightarrow \ell^{+} \ell^{-} X\right)}{A \frac{d \sigma}{d Q^{2} d x_{F}}\left(\bar{p} d \rightarrow \ell^{+} \ell^{-} X\right)} & \text { Flavor } \\
& \text { u, d tag }
\end{array}
$$

Higher twist effects at high x_{F} :
Deviations from $\left(1+\cos ^{2} \theta\right)$
$\cos 2 \phi$ correlation.

PQCD and Exclusive Processes trimemy yin
$M=\int \Pi d x_{i} d y_{i} \phi_{F}(x, \widetilde{Q}) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \phi_{I}\left(y_{i}, Q\right)$

- Iterate kernel of LFWFs when at high virtuality; distribution amplitude contains all physics below factorization scale
- Rigorous Factorization Formulae: Leading twist
- Underly Exclusive B-decay analyses
- Distribution amplitude: gauge invariant, OPE, evolution equations, conformal expansions
- BLM scale setting: sum nonconformal contributions in scale of running coupling
- Derive Dimensional Counting Rules/ Conformal Scaling

Proton Form Factor

Remarkable

 scaling behavior

AdS/CFT, QCD, \& GSI

Scaling is a manifestation of asymptotically free hadron interactions and AdS/CFT

From dimensional arguments at high energies in binary reactions:

CONSTITUENT COUNTING RULE

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Counting Rules:

$$
\begin{aligned}
& q(x) \sim(1-x)^{2 n_{\text {spect }}-1} \text { for } x \rightarrow 1 \\
& F\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{(n-1)} \\
& \frac{d \sigma}{d t}(A B \rightarrow C D) \sim \frac{F(t / s)}{s^{\left(n_{\text {participants }}-2\right)}} \\
& n_{\text {participants }}=n_{A}+n_{B}+n_{C}+n_{D} \\
& \frac{d \sigma}{d^{3} p / E}(A B \rightarrow C X) \sim F(\widehat{t} / \widehat{s}) \times \frac{\left(1-x_{R}\right)^{\left(2 n_{\text {spectators }}-1\right)}}{\left(p_{T}^{2}\right)^{\left(n_{\text {participants }}-2\right)}}
\end{aligned}
$$

Predictions from conformal symmetry
hadron helicity conservation

Farrar, Jackson;
Lepage, sjb;
Burkardt, Schmidt, Sjb

Trento July 5, 2006

Test of PQCD Scaling

Constituent counting rules

Farrar, sjb; Muradyan, Matveev, Taveklidze

$$
\begin{aligned}
& \mathrm{s}^{\top} d \sigma / d t\left(\gamma p \rightarrow \pi^{+} n\right) \sim \text { const } \\
& \text { fixed } \theta_{C M} \text { scaling }
\end{aligned}
$$

PQCD and AdS/CFT:

$$
\begin{aligned}
& s_{\text {notot }-2 \frac{d \sigma}{d t}}^{\mathrm{F}_{A+B \rightarrow C+D}(A+B \rightarrow C}\left(\theta_{C M}\right) \\
& s^{7} \frac{d \sigma}{d t}\left(\gamma p \rightarrow \pi^{+} n\right)=F\left(\theta_{C M}\right) \\
& n_{\text {tot }}=1+3+2+3=9
\end{aligned}
$$

Conformal invariance at high momentum transfer

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI

Stan Brodsky, SLAC

Form Factors $\ell p \rightarrow l^{\prime} p^{\prime}\left\langle p^{\prime} \lambda^{\prime}\right| J^{+}(0)|p \lambda\rangle$

Lepage, Sjb
Efremov
Radyushkin

QCD Factorization

Scaling Laws from PQCD or AdS/CFT

AdS/CFT, QCD, \& GSI

Why do dimensional counting

 rules work so well?- PQCD predicts log corrections from powers of α_{s}, logs, pinch contributions
- QCD coupling evaluated in IR regime.
- IR Fixed point! DSE: Alkofer, von Smekal et al.
- QED, EW -- define coupling from observable, predict other observable
- Underlying Conformal Symmetry of SemiClassical QCD Lagrangian -- Apply AdS/CFT

QCD Effective Coupling from

AdS/CFT, QCD, \& GSI
Stan Brodsky, SLAC

AdS/CFT and QCD

- Non-Perturbative Derivation of Dimensional Counting Rules (Strassler and Polchinski)
- Light-Front Wavefunctions: Confinement at Long Distances and Conformal Behavior at short distances (de Teramond and Sjb)
- Power-law fall-off at large transverse momentum, $x \rightarrow 1$
- Hadron Spectra, Regge Trajectories

QCD Lagrangian and Conformal Symmetry

Conformal Symmetry - Property of classical renormalizable Lagrangian

$$
\text { Massless quarks } \quad \beta=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}}=0
$$

Poincare transformations plus

$$
\text { dilatation : } x^{\mu} \rightarrow \lambda x^{\mu}
$$

plus
conformal transformations: inversion $\left[x^{\mu} \rightarrow-\frac{x^{\mu}}{x^{2}}\right] \times$ translation \times inversion

Trento
July 5, 2006

5-Dimensional

AdS/CFT, QCD, \& GSI
Stan Brodsky, SLAC

Features of $A d S / Q C D$

- Semi-Classical Approximation to massless QCD
- Coupling is constant, zero beta function
- Conformal symmetry broken by confinement
- No particle creation, absorption
- Spectrum of Mesons, Baryons, Glueballs
- Light-Front Wavefunctions
- Quark Counting Rules

Strongly Coupled Conformal QCD and Holography

- Conformal Theories are invariant under the Poincaré and conformal transformations with $M^{\mu \nu}, P^{\mu}, D, K^{\mu}$, the generators of $S O(4,2)$.
- QCD appears as a nearly-conformal theory in the energy regimes accessible to experiment. Invariance of conformal QCD is broken by quark masses and quantum loops (running coupling). For $\beta=d \alpha_{s}\left(Q^{2}\right) / d \ln Q^{2}=0$ (fixed point theory), PQCD is a conformal theory: Parisi, Phys. Lett. B 39, 643 (1972).
- Phenomenological success of dimensional scaling laws for exclusive processes $d \sigma / d t \sim$ $1 / s^{n-2}$ (n total number of constituents), implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies (PQCD predicts powers of α_{s} and logs).
- Theoretical and empirical evidence that $\alpha_{s}\left(Q^{2}\right)$ has an IR fixed point (constant in the IR): Alkofer, Fischer and Llanes-Estrada, hep-th/0412330; Brodsky, Menke, Merino and Rathsman, hepph/0212078;
 of hadron

AdS/CFT, QCD, \& GSI
43

Match fall-off at small z to Conformal Dimension of State at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots D_{\left.\ell_{m}\right\}}\right.} \psi$ ($\Phi_{\mu}=0$ gauge).
- 4-d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

Fig: Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

Predictions of AdS/CFT

Only one

 parameter!Entire light quark baryon spectrum

Guy de Teramond SJB

Phys.Rev.Lett.94:
201601,2005
hep-th/0501022

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.22 \mathrm{GeV}$

AdS/CFT, QCD, \& GSI
Stan Brodsky, SLAC

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

Features of HolographicModel

- Ratio of proton to Delta trajectories= ratio of zeroes of Bessel functions.
- One scale Λ_{QCD} determines hadron spectrum (slightly different for mesons and baryons)
- Only quark-antiquark, qqq, and $g \mathrm{~g}$ hadrons appear at classical level
- Covariant version of bag model: confinement+conformal symmetry

Fig: Light meson orbital spectrum: 4-dim states dual to vector fields in the bulk, $\Lambda_{Q C D}=0.26 \mathrm{GeV}$
Guy de Teramond SJB

Glueball Spectrum

- AdS wave function with effective mass μ :

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] f(z)=0
$$

where $\Phi(x, z)=e^{-i P \cdot x} f(z)$ and $P_{\mu} P^{\mu}=\mathcal{M}^{2}$.

- Glueball interpolating operator with twist -dimension minus spin- two, and conformal dimension $\Delta=4+L$

$$
\mathcal{O}_{4+L}=F D_{\left\{\ell_{1}\right.} \ldots D_{\left.\ell_{m}\right\}} F
$$

where $L=\sum_{i=1}^{m} \ell_{i}$ is the total internal space-time orbital momentum.

- Normalizable scalar AdS mode $(d=4)$:

$$
\Phi_{\alpha, k}(x, z)=C_{\alpha, k} e^{-i P \cdot x} z^{2} J_{\alpha}\left(z \beta_{\alpha, a} \Lambda_{Q C D}\right)
$$

with $\alpha=2+L$ and scaling dimension $\Delta=4+L$.

Kyoto University
12-5-05

Glueball Regge trajectories from gauge/string duality and the

Pomeron

Henrique Boschi-Filho, ${ }^{*}$ Nelson R. F. Braga, ${ }^{\dagger}$ and Hector L. Carrion ${ }^{\ddagger}$
Instituto de Física, Universidade Federal do Rio de Janeiro,

Neumann Boundary Conditions

Dirichlet Boundary Conditions

Dírac'sAmazing Idea: The "Front Form"

Evolve in

light-front time!

AdS/CFT, QCD, \& GSI

Light-Front Wavefunctions

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

$$
P^{+}, \vec{P}_{\perp}
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

$$
\begin{gathered}
\sum_{i}^{n} x_{i}=1 \\
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
\end{gathered}
$$

Invariant under boosts! Independent of \mathcal{P}^{μ}

Angular Momentum on the Light-Front

$$
\begin{gathered}
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \text { LF Fock state by Fock State } \\
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\bar{\partial}}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \quad \text { n-ı orbital angular momenta }
\end{gathered}
$$

Nonzero Anomalous Moment -->Nonzero orbital angutar momentum
AdS/CFT, QCD, \& GSI

Mapping between $L F(3+1)$ and $A d \delta_{5}$

LF Wavefunctions and QCD Amplitudes from AdS/CFT

$\mathcal{M a p} \mathcal{A} d S / C \mathcal{F T}$ to $3+1 \mathcal{L \mathcal { F }}$ Theory

Effective radial equation:

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
J_{L}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
\end{gathered}
$$

LF Wavefunctions and QCD Amplitudes from AdS/CFT

Stan Brodsky, SLAC

Holographic Model

Guy de Teramond SJB

Two-parton ground state LFWF in impact space $\psi(x, b)$ for a for $n=2, \ell=0, k=1$.

Hadron Distríbution Amplitudes

$$
\phi\left(x_{i}, Q\right) \equiv \Pi_{i=1}^{n-1} \int^{Q} d^{2} \vec{k}_{\perp} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}\right)
$$

- Fundamental measure of valence wavefunction
- Gauge Invariant (includes Wilson line)
- Evolution Equations, OPE
- Conformal Expansion
- Hadronic Input in Factorization Theorems

$$
\text { AdS/CFT: } \quad \phi\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
$$

AdS/CFT, QCD, \& GSI

$\mathcal{A} d S / C \mathcal{F} \mathcal{T}$ Prediction for Meson $\mathcal{L F} W \mathcal{F}$

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x, \zeta)$ for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$: (a) ground state $L=0, k=1$; (b) first orbital exited state $L=1, k=1$; (c) first radial exited state $L=0, k=2$. The variable ζ is the holographic variable $z=\zeta=\left|b_{\perp}\right| \sqrt{x(1-x)}$.

$$
\widetilde{\psi}(x, \zeta)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\zeta \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(z \leq \Lambda_{\mathrm{QCD}}^{-1}\right)
$$

CAQCD
5-12-06

LF Wavefunctions and QCD Amplitudes from AdS/CFT 58

Stan Brodsky, SLAC

Hadronic Form Factor in Space and Time-Like Regions

SJB and GdT in preparation

- The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_{I} and Φ_{F} and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$
\begin{aligned}
F\left(Q^{2}\right)_{I \rightarrow F} & =R^{3+2 \sigma} \int_{0}^{\infty} \frac{d z}{z^{3+2 \sigma}} e^{(3+2 \sigma) A(z)} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \simeq R^{3+2 \sigma} \int_{0}^{z_{o}} \frac{d z}{z^{3+2 \sigma}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

- $J(Q, z)$ has the limiting value 1 at zero momentum transfer, $F(0)=1$, and has as boundary limit the external current, $A^{\mu}=\epsilon^{\mu} e^{i Q \cdot x} J(Q, z)$. Thus:

$$
\lim _{Q \rightarrow 0} J(Q, z)=\lim _{z \rightarrow 0} J(Q, z)=1
$$

- Solution to the AdS Wave equation with boundary conditions at $Q=0$ and $z \rightarrow 0$:

$$
J(Q, z)=z Q K_{1}(z Q)
$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

- Propagation of external perturbation suppressed inside AdS.
- At large enough $Q \sim r / R^{2}$, the interaction occurs in the large- r conformal region. Important contribution to the FF integral from the boundary near $z \sim 1 / Q$.

$$
\mathbf{J}(\mathbf{Q}, \mathbf{z}), \quad \mathbf{\Phi}(\mathbf{z})
$$

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

General result from AdS/CFT
where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Space-like pion form factor in holographic model for $\Lambda_{Q C D}=0.2 \mathrm{GeV}$.
$Q^{4} F_{1}^{n}\left(Q^{2}\right) \quad\left[\mathrm{GeV}^{4}\right] \quad$ Dirac Neutron Form Factor F_{1}^{n}

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the infinite wall approximation.

Dirac Proton Form Factor F_{1}^{p}

$$
Q^{4} F_{1}^{p}\left(Q^{2}\right) \quad\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{p}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the infinite wall approximation from Kirk (superimposed green points assuming $G_{E}^{p}=G_{M}^{p}$): P. N. Kirk et al., Phys. Rev. D 8 (1973) 63.

New Perspectives on QCD from AdS/CFT

- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- AdS/CFT predicts Light-front wavefunctions: Fundamental description of hadrons at amplitude level
- AdS/CFT: gluonium (gg) , meson ($\mathrm{q} \overline{\mathrm{q}}$), and baryon (qqq) spectra
- No ggg bound states -- No Odderon!
- Quark-interchange dominates scattering amplitudes !!
- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances, counting, rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide models of hadron structure: confinement at large distances, near conformal behavior at short distances
- Holographic Model: Initial "classical" approximation to QCD: Remarkable agreement with light hadron spectroscopy
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $\mathrm{H}^{\mathrm{LF}} \mathrm{QCD}$; variational methods

Consequences of $A d S / C F T$ for

Antiproton physics

- Analytic form for form factors, distribution amplitude
- Matrix elements and LFWFs for baryon scattering amplitudes: Quark Counting Rules!
- Orbital angular momentum in baryon wavefunction for Pauli form factor, SSAs
- Dominance of quark interchange at short distances
- Effective Regge trajectories

Measurement of hadron time-like form factors angular distríbutions

Separate FI, F2

Leading power in QCD
$F_{H}(s) \propto\left[\frac{1}{s}\right]^{n_{H}-1}$

Test QCD Counting Rules

Conformal Symmetry: AdS/CFT Hadron Helicity Conservation

$$
\sum_{\text {initital }} \lambda_{H}-\sum_{\text {total }} \lambda_{H}=0,
$$

July 5,2006

AdS/CFT, QCD, \& GSI
67

Proton timelike form factor.

Kaon timelike form factor.

New results from CLEO

$$
\begin{aligned}
Q^{2}\left|F_{K}\left(13.48 \mathrm{GeV}^{2}\right)\right| & =0.85 \pm 0.05 \text { (stat) } \pm 0.02 \text { (syst) } \mathrm{GeV}^{2} \\
Q^{4}\left|G_{M}^{p}\left(13.48 \mathrm{GeV}^{2}\right)\right| & =2.54 \pm 0.36 \text { (stat) } \pm 0.16 \text { (syst) } \mathrm{GeV}^{4}
\end{aligned}
$$

The proton magnetic form factor result agrees with that measured in the reverse reaction $p \bar{p} \rightarrow e^{+} e^{-}$at Fermilab. The kaon form factor measurement is the first ever direct measurement at $\left|Q^{2}\right|>4 \mathrm{GeV}^{2}$.

Timelike Proton Form Factor

- Define "Effective" form factor by

$$
\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 m_{p \bar{p}}^{2}}|F|^{2},|F|=\sqrt{\left|G_{M}\right|^{2}+\frac{2 m_{p}^{2}}{m_{p \bar{p}}^{2}}\left|G_{E}\right|^{2}}
$$

- Peak at threshold, sharp dips at 2.25 GeV , 3.0 GeV.
- Good fit to pQCD prediction for high m_{pp}.

$$
F(s) \propto \frac{\log ^{-2} \frac{s}{\Lambda^{2}}}{s^{2}}
$$

Trento July 5, 2006

AdS/CFT, QCD, \& GSI

- Two-photon exchange correction, elastic and inelastic nucleon channels, give significant; interference with one-photon exchange, destroys Rosenbluth method

Blunden, Melnitchouk; Afanasev, Chen,Carlson, Vanderhaegen, sjb

Single-spin polarization effects and the determination of timelike proton form factors

Super B III
June 15, 2006
Novel Tests of QCD at Super B 72

Key QCD Experiment at GSI

Single-spin polarization effects and the determination of timelike proton form factors

Super B III
June 15, 2006
Novel Tests of QCD at Super B
Stan Brodsky, SLAC

Single-spin polarization effects and the determination of timelike proton form factors

Key QCD Experiment at GSI

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p) \text { at large } p_{T}
$$

Test PQCD AdS/CFT conformal scaling:
twist $=$ dimension - spin $=12$

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p) \sim \frac{|F(t / s)|^{2}}{s^{10}}
$$

Test Quark Interchange Mechanism

$$
M(s, t) \sim \frac{F(t / s)}{s^{4}}
$$

$$
M \propto \frac{1}{s^{2} u^{2}}
$$

Single-spin asymmetry A_{N}
Exclusive Transversity $A_{N N}$

Study Fundamental Aspects of Nuclear Force

Test color transparency

$$
\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F(t / s)}{s^{9.7 \pm 0.5}}
$$

Figure 22. Test of fixed θ CM scaling for elastic $p p$ scattering. The data compilation is Landshoff and Polkinghorne.

But: Oscillations, Anomalous $A_{N}, A_{N N}$

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI

Stan Brodsky, SLAC

Lepage \& sjb
(b)

$$
\frac{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \pi^{+} \pi^{-}\right)}{\frac{d \sigma}{d t}\left(\gamma \gamma \rightarrow \mu^{+} \mu^{-}\right)} \sim \frac{4\left|F_{\pi}(s)\right|^{2}}{1-\cos ^{4} \theta_{\mathrm{c} . \mathrm{m} .}}
$$

Ratio: Crucial test of Kroll's handlbag model

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI 78

Stan Brodsky, SLAC

Two Photon Reactions

Hard Exclusive Processes:
Fixed angle

$$
\begin{aligned}
& \text { PQCD, AdS/CFT: } \\
& \Delta \sigma\left(\gamma \gamma \rightarrow \pi^{+} \pi^{-}, K^{+}, K^{-}\right) \sim 1 / W^{6} \\
& \left|\cos \left(\theta_{C M}\right)\right|<0.6
\end{aligned}
$$

Fig. 5. Cross section for (a) $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$, (b) $\gamma \gamma \rightarrow K^{+} K^{-}$in the c.m. angular region $\left|\cos \theta^{*}\right|<0.6$ together with a W^{-6} dependence line derived from the fit of $s\left|R_{M}\right|$. (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV . The errors indicated by short ticks are statistical only.

AdS/CFT, QCD, \& GSI
$\mathrm{PQCD}: \frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) \approx \frac{16 \pi \alpha^{2}}{s} \frac{\left|F_{M}(s)\right|^{2}}{\sin ^{4} \theta^{*}}$,

4. Angular dependence of the cross section, $\sigma_{0}^{-1} d \sigma / d\left|\cos \theta^{*}\right|$, for the $\pi^{+} \pi^{-}$(closed circles) and $K^{+} K^{-}$(open circles) processes. The curves are $1.227 \times \sin ^{-4} \theta^{*}$. The errors are statistical only.

Measurement of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$and $\gamma \gamma \rightarrow K^{+} K^{-}$processes at energies of $2.4-4.1 \mathrm{GeV}$

Key QCD Experiment at GSI

Measure all antiproton + proton exclusive channels

$$
\bar{p} p \rightarrow \gamma \gamma
$$

PQCD: No handbag dominance for real photons
$J=0$ fixed pole from

$$
\text { local } q \bar{q} \rightarrow \gamma \gamma \text { interactions }
$$

$$
\bar{p} p \rightarrow \gamma \pi^{0}
$$

$$
\bar{p} p \rightarrow K^{+} K^{-}
$$

Remarkable prediction of AdS/CFT:
 Dominance of quark interchange

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$

Quarks travel freely within cavity as long as separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$

LFWFs obey conformal symmetry producing quark counting rules.

Anguler Distribution $\quad-t / 5=\frac{1}{2}\left(1-\cos \theta_{0}\right)$

$$
\frac{d \sigma}{d t}=\frac{1}{s^{n_{T O T}-2}} F(t / S)
$$

determined by scattering mechanism

Quarh Intercionse

analogous to spin excharge in otom-ator Sceltering

Large N_{C} : Quark Interchange Domonet

$$
m \sim \frac{1}{n} \frac{1}{t^{2}}
$$

t Hoopt limet, AdS/CFT

Blankenbecler, Gunion, sjb

MIT Bag Model predicts dominance of quark interchange: deTar

Kyoto University
I2-5-05
Insights for QCD
from $A d S / C F T$

Key QCD Experiment at GSI

$$
\begin{aligned}
& \bar{p} p \rightarrow K^{+} K^{-} \\
& M\left(\bar{p} p \rightarrow K^{+} K^{-}\right) \propto \frac{1}{t s^{2}} \xrightarrow[p]{d \sigma} \text { crossing of } K^{+} p \rightarrow K^{+} p \\
& \text { d } \propto \frac{1}{s^{6} t^{2}}
\end{aligned}
$$

$\frac{d \sigma}{d t}(p p \rightarrow p p)=C \frac{\boldsymbol{F}_{p}^{2}(t) \boldsymbol{F}_{p}^{2}(u)}{s^{2}}$

The biggest failure of the interchange mechanism is in the spin correlation. For all angles we predict from Table I

$$
\begin{equation*}
A_{n n}=\frac{1}{3} \frac{1-\left(\frac{3}{31}\right)^{2} \chi^{2}}{1+\frac{1}{3}\left(\frac{3}{31}\right)^{2} \chi^{2}}, \tag{3.11}
\end{equation*}
$$

where

$$
\chi=\frac{f(\theta)-f(\pi-\theta)}{f(\theta)+f(\pi-\theta)} .
$$

Thus $A_{n n}$ is predicted to be within 2% of $\frac{1}{3}$ even when $\chi=1$ [$\chi=0$ for the form in Eq. (3.6)]. The data clearly indicate that $A_{n n}$ is not a constant near $\frac{1}{3}$.

Our expectation, then, is that there is an additional amplitude which strongly interferes with the quark-interchange contributions at Argonne energies; most plausibly, the quark-interchange contribution is dominant at asymptotic t and u, and the interfering amplitude is most important at low t and u. As we shall discuss below, the behavior of $A_{1 l}$ and $A_{s s}$ in the interference region can play an important role in sorting out the possible subasymptotic contributions.

These results for the quark-interchange model have also been obtained by Farrar, Gottlieb, Sivers, and Thomas, ${ }^{12}$ who also consider the possibility that nonperturbative effects (quark-quark scattering via instantons) can explain the data.

Test of Quark Interchange Mechanism in QCD

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{\left({ }^{(}\right)}$G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{\text {(d) }}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm}, \\
& K^{ \pm} p \rightarrow p K^{ \pm}, \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm}, \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm}, \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm}, \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0}, \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$

Quark Interchange: Dominant Dynamics at
 large t , u

Relative Rates Correct
The cross section and upper limits (90% confidence level) measured by this experiment are indicated by the filled circles and arrowheads. Values from this experiment and from previous measurements represent an average over the angular region of $-0.05<\cos \theta_{\text {c.m. }}<0.10$. The other measurements were obtained from the following references: $\pi^{+} p$ and $K^{+} p$ elastic, Ref. 5; $\pi^{-} p \rightarrow p \pi^{-}$, Ref. 6; $p p \rightarrow p p$, Ref. 7: Allaby, open circle; Akerlof, cross. Values for the cross sections [(Reaction), cross section in $\left.\mathrm{nb} /(\mathrm{GeV} / \mathrm{c})^{2}\right]$ are as follows: (1), 4.6 ± 0.3; (2), 1.7 ± 0.2; (3), 3.4 ± 1.4; (4) , 0.9 ± 0.9; (5), 3.4 ± 0.7; (6), $1.3 \pm 0.6 ;(7), 2.0 \pm 0.6 ;(8),<0.12 ;$ (9), <0.1; (10), <0.06; (11), <0.05; (12), <0.15; (13), 48 ± 5; (14), <2.1.

Key QCD Experiment at GSI

P. V. Pobylitsa, V. Polyakov and M. Strikman,
"Soft pion theorems for hard near-threshold pion production,"
Phys. Rev. Lett. 87, 022001 (2001)

Small $p \pi$ invariant mass; low relative velocity

Soft-pion theorem relates
near-threshold pion production
to the nucleon distribution amplitude.

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow(\pi \bar{p}) p)=\frac{F\left(\theta_{c m}\right)}{s^{10}}
$$

No extra fall-off Same scaling as

$$
\frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p)=\frac{F\left(\theta_{c m}\right)}{s^{10}}
$$

The remarkable anomaties of

 proton-proton scattering- Double spin correlations
- Single spin correlations
- Color transparency

Spin Correlations in Elastic $p-p$ Scattering

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI 92

Stan Brodsky, SLAC

Strangeness Charm

AdS/CFT, QCD, \& GSI

Trento July 5, 2006

What causes the Krisch Effect?

Largest spin-spin correlation in hadron physics!

An outstanding problem confronting QCD

Carlson, Lipkin, SJB:

Complete analysis of spin correlations

Interference of QIM and
Landshoff "Pinch" (triple scattering) contributions

de Teramond, SJB:

Peaks in $R_{N N}$ associated with $p \Delta$, strangeness, charm thresholds

Predict significant strangeness production $\sigma(p p \rightarrow s X) \sim 1 \mathrm{mb}$ just above threshold

Predict significant charm production $\sigma(p p \rightarrow c X) \sim 1 \mu b$ just above threshold

Trento
July 5, 2006

Spin, Coherence at heavy quark thresholds

OCD
Schwinger - Sommerfeld
Enhancement

Hebecker, Kuhn, sib

$$
P \stackrel{\rightharpoonup}{P} \rightarrow Q \bar{Q} X
$$

Strong distrition at threshold Preen ~ 0

$$
\sqrt{5}_{\text {Th }}=3+2 \cong 5 \mathrm{GeV} \quad P P \rightarrow C \overline{C L}
$$

8 quarks in s-wave odd parity!
$\therefore \quad J=L=S=1 \quad f(p p$ $B=2$ resonance near threshold?

$A_{N N}=I$ fo $J=1=S=1$ peps out,
expect increase of ANN at $\begin{aligned} & \sqrt{5}=3,5,12 \text { Ger } \\ & \theta_{C_{n}}=90^{\circ}\end{aligned}$

Trento
July 5, 2006
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

Quark Interchange +8 -Quark Resonance
$\mid u u d u u d c \bar{c}>$ Strange and Charm Octoquark!

$$
\begin{aligned}
& M=3 \mathrm{GeV}, M=5 \mathrm{GeV} . \\
& J=L=S=1, B=2 \\
& A_{N N}=\frac{d \sigma(\uparrow \uparrow)-d \sigma(\uparrow \downarrow)}{d \sigma(\uparrow \uparrow)+d \sigma(\uparrow \downarrow)}
\end{aligned}
$$

Stan Brodsky, SLAC
AdS/CFT, QCD, \& GSI

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm production at threshold!!?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Key physics at GSI: second charm threshold

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p} p J / \psi \\
& \bar{p} p \rightarrow \bar{p} \wedge_{c} D
\end{aligned}
$$

Key QCD Experiment at GSI

$A_{N N}$ for $\bar{p} p \rightarrow \bar{p} p$

Key QCD Experiment at GSI

Total open charm cross section at threshold

$$
\sigma(\overline{p p} \rightarrow c X) \simeq 1 \mu b
$$

needed to explain Krisch $A_{N N}$

$$
\begin{aligned}
& \bar{p} p \rightarrow \bar{p}+J / \psi+p \\
& \bar{p} p \rightarrow \bar{p}+\eta_{c}+p \\
& \bar{p} p \rightarrow \bar{\Lambda}_{c}(\overline{c u d}) D^{0}(\bar{c} u) p
\end{aligned}
$$

Octoquark: $\mid \overline{u u d} c \bar{c} u u d>$

Trento July 5, 2006

AdS/CFT, QCD, \& GSI 100

Stan Brodsky, SLAC

Color Transparency Ratio

$\square 0$

J. L. S. Aclander et al.,
"Nuclear transparency in $\theta_{C M}=90^{\circ}$
quasielastic $A(p, 2 p)$ reactions,"
Phys. Rev. C 70, 015208 (2004), [arXiv:nuclex/0405025].

Color Transparency fails when $A_{n n}$ is large

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI

Stan Brodsky, SLAC

Key QCD Experiment at GSI

$$
\begin{gathered}
\text { Test Color Transparency } \\
\frac{d \sigma}{d t}(\bar{p} A \rightarrow \bar{p} p(A-1)) \rightarrow Z \times \frac{d \sigma}{d t}(\bar{p} p \rightarrow \bar{p} p)
\end{gathered}
$$

No absorption of small color dipole at high p_{T}

Key test of local gauge theory
Traditional Glauber Theory: $\sigma_{A} \sim Z^{1 / 3} \sigma_{p}$
A.H. Mueller, SJB

Deuteron Photodisintegration \& Dimensional Counting Rules

PQCD and AdS/CFT:
$s^{n_{\text {tot }}-2} \frac{d \sigma}{d t}(A+B \rightarrow C+D)=$ $\mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)$
$s^{11 \frac{d \sigma}{d t}}(\gamma d \rightarrow n p)=F\left(\theta_{C M}\right)$
$n_{t o t}-2=$
$(1+6+3+3)-2=11$

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI 105

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma \mathrm{d} \rightarrow \mathrm{np}$

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{F(t / s)}{s^{n} \text { tot }-2} \\
& n_{t o t}=1+6+3+3=13
\end{aligned}
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry
Hidden color: $\quad \frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$ at high p_{T}

QCD Prediction for Deuteron Form

Factor

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]^{5} \sum_{m, n} d_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}^{d}-\gamma_{m}^{d}}\left[1+O\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}{ }^{2}\left(Q^{2} / 4\right)} .
$$

Same large momentum transfer behavior as pion form factor
$f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-(2 / 5) C_{F} / \beta}$

FIG. 2. (a) Comparison of the asymptotic QCD pr diction $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5) C_{F} / \beta}$ with fin data of Ref. 10 for the reduced deuteron form factor where $F_{N}\left(Q^{2}\right)=\left[1+Q^{2} /\left(0.71 \mathrm{GeV}^{2}\right)\right]^{-2}$. The normali tion is fixed at the $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Compa son of the prediction $\left[1+\left(Q^{2} / m_{0}{ }^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left[\ln \left(Q^{2}\right)\right.$ $\left.\Lambda^{2}\right)^{-1-(2 / 5)} C_{F} / \beta$ with the above data. The value $m_{0}{ }^{2}$ $=0.28 \mathrm{GeV}^{2}$ is used (Ref. 8).

Trento
July 5, 2006

- 15% Hidden Color in the Deuteron

Hidden Color in QCD

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is $\ln \mathrm{p}>$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict $\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$ at high Q^{2}

$$
\text { Ratio }=2 / 5 \text { for asymptotic wf }
$$

Structure of
 Deuteron in
 QCD

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI IIO

The evolution equation for six-quark systems in which the constituents have the light-cone longitudenat momentum fractions $x_{i}(i=1,2, \ldots, 6)$ can be obtained from a generalization of the proton (threequark) case. ${ }^{2}$ A nontrivial extension is the calculation of the color factor, C_{d}, of six-quark systems ${ }^{5}$ (see below). Since in leading order only pairwise interactions, with transverse momentum Q, occur between quarks, the evolution equation for the six-quark system becomes $\left\{[d y]=\delta\left(1-\sum_{i=1}^{6} y_{i}\right) \prod_{i=1}^{6} d y_{i}\right.$ $C_{F}=\left(n_{c}{ }^{2}-1\right) / 2 n_{c}=\frac{4}{3}, \beta=11-\frac{2}{3} n_{f}$, and n_{f} is the effective number of flavors $\}$

$$
\prod_{k=1}^{6} x_{k}\left[\frac{\partial}{\partial \xi}+\frac{3 C_{F}}{\beta}\right] \tilde{\Phi}\left(x_{i}, Q\right)=-\frac{C_{d}}{\beta} \int_{0}^{1}[d y] V\left(x_{i}, y_{i}\right) \tilde{\Phi}\left(y_{i}, Q\right)
$$

$$
\xi\left(Q^{2}\right)=\frac{\beta}{4 \pi} \int_{Q_{0}{ }^{2}}^{Q^{2}} \frac{d k^{2}}{k^{2}} \alpha_{s}\left(k^{2}\right) \sim \ln \left(\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(Q_{0}{ }^{2} / \Lambda^{2}\right)}\right) .
$$

$$
V\left(x_{i}, y_{i}\right)=2 \prod_{k=1}^{6} x_{k} \sum_{i \neq j}^{6} \theta\left(y_{i}-x_{i}\right) \prod_{l \neq i, j}^{6} \delta\left(x_{l}-y_{i}\right) \frac{y_{j}}{x_{j}}\left(\frac{\delta_{k_{i} \bar{h}_{j}}}{x_{i}+x_{j}}+\frac{\Delta}{y_{i}-x_{i}}\right)
$$

where $\delta_{h_{i} \bar{h}_{j}}=1(0)$ when the felicities of the constituents $\{i, j\}$ are antiparallel (parallel). The infrared singularity at $x_{i}=y_{i}$ is cancelled by the factor $\Delta \tilde{\Phi}\left(y_{i}, Q\right)=\tilde{\Phi}\left(y_{i}, Q\right)-\tilde{\Phi}\left(x_{i}, Q\right)$ since the deuteron is a color singlet.

Hidden Color of Deuteron

Deuteron six-quark state has five color - singlet configurations, only one of which is $\mathrm{n}-\mathrm{p}$.

Asymptotic Solution has Expansion

$$
\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\Delta \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}
$$

Look for strong transition to Delta-Delta

P.Rossi et al, P.R.L. 94, 012301 (2005)

Fit of do/dt data for the central angles and $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ with

$$
A^{-11}
$$

For all but two of the fits

$$
x^{2} \leq 1.34
$$

- Better χ^{2} at 55° and 75° if different data sets are renormalized to each other
-No data at $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ at forward and backward angles
-Clear s ${ }^{-11}$ behaviour for last 3 points at 35°

Data consistent with CCR

Trento
July 5, 2006

AdS/C]

Quantum Chromodynamic Predictions for the Deuteron Form Factor

$$
\begin{align*}
& F_{d}\left(Q^{2}\right)=\int_{0}^{1}[d x][d y] \varphi_{d}^{\dagger}(y, Q) \\
& \times T_{H}{ }^{6 a+\gamma^{*} \rightarrow 6 a}(x, y, Q) \varphi_{d}(x, Q), \tag{1}
\end{align*}
$$

where the hard-scattering amplitude

$$
\begin{align*}
T_{H}^{6 a+\gamma^{*} \rightarrow 6 q}= & {\left[\alpha_{s}\left(Q^{2}\right) / Q^{2}\right]^{5} t(x, y) } \\
& \times\left[1+O\left(\alpha_{s}\left(Q^{2}\right)\right)\right] \tag{2}
\end{align*}
$$

gives the probability amplitude for scattering six quarks collinear with the initial to the final deuteron momentum and

$$
\begin{equation*}
\varphi_{d}\left(x_{i}, Q\right) \propto \int^{k_{\perp i}<Q}\left[d^{2} k_{\perp}\right] \psi_{q q q q q q}\left(x_{i}, \overrightarrow{\mathrm{k}}_{\perp i}\right) \tag{3}
\end{equation*}
$$

$=$

Ji, Lepage, sjb

FIG. 1. The general structure of the deuteron form factor at large Q^{2}.

Key QCD Experiment at GSI

Test QCD scaling in hard exclusive nuclear amplitudes

Manifestations of Hidden Color in Deuteron Wavefunction

$$
\bar{p} d \rightarrow \pi^{-} p
$$

$$
\bar{p} d \rightarrow \bar{p} d
$$

Conformal Scaling, AdS/CFT

$$
\frac{d \sigma}{d t}\left(\bar{p} d \rightarrow \pi^{-} p\right)=\frac{F\left(\theta_{c m}\right)}{s^{12}}
$$

Key QCD Experiment at GSI

Manifestations of Hidden Color in Deuteron Wavefunction

$$
\begin{array}{l|l|}
& \\
\text { Compare } \\
\text { at high } t . & \Delta^{++} \Delta^{-}+\bar{p} \\
& d \bar{p} \rightarrow p n+\bar{p} \\
\hline
\end{array}
$$

Ratio predicted to approach 2:5

QCD at The Amplitude Level

- Light-Front Fock Expansions
- LFWFs boost invariant
- Direct connection to form factors, structure functions, distribution amplitudes, GPDs
- Higher Twist Correlations
- Orbital Angular Momentum
- Validated in QED, Bethe-Salpeter
- AdS/CFT Holographic Model

A Unified Description of Hadron Structure

AdS/CFT, QCD, \& GSI iı8

LFWFS give a fundamental description of hadron observables

- LFWFS underly form factors, structure functions generalized parton distributions, scattering amplitudes
- Parton number not conserved: $\mathrm{n}=\mathrm{n}^{\prime} \& \mathrm{n}=\mathrm{n}^{\prime}+2$ at nonzero skewness
- GPDs are not densities or probability distributions
- Nonperturbative QCD: Lattice, DLCQ, Bethe-Salpeter, AdS/CFT

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Deep Inelastic Lepton Proton Scattering

Imaginary Part of Forward Virtual Compton Amplitude $q\left(x, Q^{2}\right)=\sum_{n} \int^{k_{\perp}^{2} \leq Q^{2} \perp} d^{2} k_{\perp}\left|\Psi_{n}\left(x, k_{\perp}\right)\right|^{2}$ $x=x_{q}$

All spin, flavor distributions

Light-Front Wave Functions $\psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$

Weak Exclusive Decay
$\langle D| J^{+}(0)|B\rangle$

Exact Formula

Annihilation amplitude needed for Lorentz Invariance

GPDs \& Deeply Virtual Exclusive Processes

"handbag" mechanism

Deeply Virtual Compton Scattering (DVCS)

x - longitudinal quark
momentum fraction

$$
2 \xi-\text { longitudinal }
$$ momentum transfer

$\sqrt{-t}-$ Fourier conjugate
to transverse impact
parameter

$$
H(x, \xi, t), E(x, \xi, t), \ldots
$$

$$
\xi=\frac{x_{B}}{2-x_{B}}
$$

AdS/CFT, QCD, \& GSI 123

Stan Brodsky, SLAC

$$
\gamma^{*} p \rightarrow \gamma p^{\prime}, \gamma^{*} p \rightarrow \pi^{+} n^{\prime}
$$

- Remarkable sensitivity to spin, flavor, dynamics
- Measure Real and Imaginary parts from BetheHeitler interference; phase determined by Regge theory (Kuti-Weiskopf)

Close, Gunion, sjb

- J=o fixed pole: test QCD contact interaction!
- Sum Rules connecting to form factors, Lz
- Evolution Equations (ERBL), PQCD constraints
- Convolutions of Light-front wavefunctions

$$
\left\langle p^{\prime} \lambda^{\prime}\right| J^{\mu}(z) J^{v}(0)|p \lambda\rangle
$$

$$
\gamma^{*} p \rightarrow \gamma p^{\prime}
$$

Given LFWFs, compute all GPDs!

ERBL Evolution

AdS/CFT, QCD, \& GSI

Deeply
Virtual
Compton Scattering

$$
\mathrm{n}=\mathrm{n}^{\prime}+2
$$

Required for Lorentz Invariance

Light-cone wavefunction representation of deeply virtual Compton scattering *

Stanley J. Brodsky ${ }^{\text {a }}$, Markus Diehl ${ }^{\text {a, } 1}$, Dae Sung Hwang ${ }^{\text {b }}$

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

Diehl,Hwang, sjb

$$
\begin{aligned}
\frac{1}{\sqrt{1-\zeta}} & \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} & \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow \uparrow}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{lll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the struck quark, } \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the spectators } i=2, \ldots, n .
\end{array}
$$

Example of LFWF representation of GPDs ($\left.\mathrm{n}+\mathrm{I}=>\mathrm{n}^{-\mathrm{I}}\right)$

Diehl,Hwang, sjb

$$
\begin{aligned}
& \frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n+1 \rightarrow n-1)}(x, \zeta, t) \\
&=(\sqrt{1-\zeta})^{3-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n+1} \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n+1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n+1} \vec{k}_{\perp j}\right) \\
& \times 16 \pi^{3} \delta\left(x_{n+1}+x_{1}-\zeta\right) \delta^{(2)}\left(\vec{k}_{\perp n+1}+\vec{k}_{\perp 1}-\vec{\Delta}_{\perp}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n-1)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n+1)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \delta_{\lambda_{1}-\lambda_{n+1}},
\end{aligned}
$$

where $i=2, \ldots, n$ label the $n-1$ spectator partons which appear in the final-state hadron wavefunction with

$$
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
$$

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \quad \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)

$\int_{d} d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{1}(t)$ Dirac f.f.
$\int_{1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f.
$\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

Verified using LFWFs
Diehl,Hwang, sjb

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

Trento
July 5, 2006

AdS/CFT, QCD, \& GSI 129
$\mathrm{J}=\mathrm{o}$ Fixed pole in real and virtual Compton scattering

- Effective two-photon contact term

Damashek, Gilman; Close, Gunion, sjb

- Seagull for scalar quarks
- Real phase
- $\mathrm{M}=\mathrm{s}^{\circ} \mathrm{F}(\mathrm{t})$
- Independent of Q^{2} at fixed t
- <I/x> Moment: Related to Feynman-Hellman Theorem
- Fundamental test of local gauge theory

Test $\mathrm{J}=\mathrm{o}$ Fixed Pole: $\mathrm{s}^{2} \mathrm{~d} \sigma / \mathrm{dt}(\gamma \mathrm{p} \rightarrow \gamma \mathrm{p}) \simeq \mathrm{F}_{0}^{2}(\mathrm{t})$

Compton-scattering cross sections at constant t and at constant θ^{*}. The straight lines are fits to the data. The fits shown here have no energy cuts.

$\mathrm{J}=\mathrm{o}$ fixed pole: Predict n=2

Cornell

Key QCD Experiment at GSI

- Test DVCS in Timelike Regime

$$
\bar{p} p \longrightarrow \gamma^{*} \gamma
$$

- J=o Fixed pole q^{2} independent
- Analytic Continuation of GPDs
- Light-Front Wavefunctions
- charge asymmetry from interference

$$
\bar{p} p \rightarrow \gamma^{*} \rightarrow \ell^{+} \ell^{-} \rightarrow \ell^{+} \ell^{-} \gamma \quad \bar{p} p \rightarrow \bar{p} p \gamma \rightarrow \gamma^{*} \gamma \rightarrow \ell^{+} \ell^{-} \gamma
$$

AdS/QCD

- Only one scale $\Lambda_{Q C D}$ determines hadronic spectrum (slightly different for mesons and baryons).
- Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.
- String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS boundary.
- Only dimension $3, \frac{9}{2}$ and 4 states $\bar{q} q, q q q$, and $g g$ appear in the duality at the classical level!
- Non-zero orbital angular momentum and higher Fock-states require introduction of quantum fluctuations.
- Simple description of space and time-like structure of hadronic form factors.
- Dominance of quark-interchange in hard exclusive processes emerges naturally from the classical duality of the holographic model. Modified by gluonic quantum fluctuations.
- Covariant version of the bag model with confinement and conformal symmetry.

Essential to test QCD

- J-PARC
- GSI antiprotons
- 12 GeV Jlab
- BaBar/Belle: ISR, two-gamma, timelike DVCS
- RHIC/LHC Nuclear Collisions; LHCb
- electron-proton, electron-nucleus collisions

Novel Tests of QCD at GSI

Polarized antiproton Beam Secondary Beams

- Characteristic momentum scale of QCD: 300 MeV
- Many Tests of AdS/CFT predictions possible
- Exclusive channels: Conformal scaling laws, quark-interchange
- $\overline{\mathrm{p}} \mathrm{p}$ scattering: fundamental aspects of nuclear force
- Color transparency: Coherent color effects
- Nuclear Effects, Hidden Color, Anti-Shadowing
- Anomalous heavy quark phenomena
- Spin Effects: $\mathrm{A}_{\mathrm{N}}, \mathrm{A}_{\mathrm{NN}}$

