Quarks and Gluons in $p\bar{p}$ Annihilations

P. Kroll

Fachbereich Physik, Universität Wuppertal

Trento, July 2006

Outline:

- Factorization schemes
- Handbag factorization in the time-like region
- $B\bar{B}$ distribution amplitudes
- **Results for** $\gamma\gamma \leftrightarrow B\bar{B}$
- The crossed process wide-angle Compton scattering
- $p\bar{p} \rightarrow \gamma M$
- Gluons in exclusive charmonium decays
- Short and long range dynamics
- P-wave decays and the color-octet mechanism
- Summary

Handbag factorization in excl. reactions

wide angles: large s, -t, -u deeply virtual: large Q^2 only one active parton (others are spectators, collinear fact.)

other topologies - expected to be suppressed two active partons three active partons

(hard gluons required)

valence quark appr.

ERBL factorization

wide angles: large s, -t, -u

all valence quarks participate in hard process

GPD blob decays into two DAs asymptotically dominant handbag formally a power correction

e.g. proton: AS: $\Phi \propto x_1 x_2 x_3$ $\langle x_i \rangle = 1/3$ end-point dominated (CZ) $\langle x_i \rangle \simeq 0.1$ AS forms: results strongly suppressed by several orders of magnitude CZ forms: $\simeq 10^{-1}$; e.g. Compton, $p\bar{p} \leftrightarrow \gamma\gamma$) (for pions closer to experiment) Difficulty: gluon virtualities $\propto x_i y_j t$ tiny! use of pert. theory inconsistent

(limit $x_i y_j t \to 0$ handbag)

onset of ERBL region probably above $-t(-u) > 100 \,\text{GeV}^2$ **Modified pert. approach (Sterman et al)** keep k_{\perp} of quarks, accompanied by gluon radiation (Sudakov) $\Rightarrow \propto x_i y_j t - k_{\perp}^2$ soft regions suppressed but results are small

Dimensional counting

$$d\sigma/dt(\gamma p \to \gamma p, \theta fixed) \sim s^{-(7\cdots 8)} \qquad s^{-6}$$

$$F_2^p(t) \sim t^{-2} \qquad t^{-3}$$

$$\sigma(\gamma\gamma \to p\bar{p}) \sim s^{-7.2} \qquad s^{-5}$$

$$\sigma(\gamma\gamma \to \pi^+\pi^-) \sim s^{-3.68} \qquad s^{-3}$$

$$\sigma(\gamma\gamma \to K^+K^-) \sim s^{-3.58} \qquad s^{-3}$$

$$d\sigma/dt(p\bar{p} \to p\bar{p}, \theta fixed) \sim ??$$
 s^{-10}

$$\frac{d\sigma}{dt}(\gamma\gamma\leftrightarrow p\,\overline{p}\,) = \frac{4\pi\alpha_{\rm elm}^2}{s^2\sin^2\theta} \left\{ \left| R_A^p(s) - R_P^p(s) \right|^2 + \cos^2\theta \left| R_V^p(s) \right|^2 + \frac{s}{4m^2} \left| R_P^p(s) \right|^2 \right\}$$

can be generalized to BB

Diehl-K-Vogt, hep-ph/0206288

$B\bar{B}$ distribution amplitudes

$$P^{+} \int \frac{dx^{-}}{2\pi} e^{P^{+}(2z-1)x^{-}/2} \langle B(p)\bar{B}(p')|\bar{q}(\frac{\bar{x}}{2})\gamma^{+}q(-\frac{\bar{x}}{2})|0\rangle$$
$$= \Phi_{V}^{q}(x,\zeta,s)\bar{u}(p)\gamma^{+}v(p') + \Phi_{S}^{q}(x,\zeta,s)\frac{P^{+}}{2m}\bar{u}(p)v(p')$$

and two more TDAs for $\gamma^+\gamma_5$

sum rules

$$F_i^q = \int_0^1 dz \Phi_i^q(z,\zeta,s) \qquad i = V, A, P \qquad (2\zeta - 1)F_S^q = \int_0^1 dz \Phi_S^q(z,\zeta,s)$$

Form factors

$$\begin{split} G^p_M(s) &= \sum_q e_q F^q_V(s) \qquad F^p_2(s) = \sum_q e_q F^q_S(s) \\ R^p_i(s) &= \sum e^2_q F^q_i(s) \qquad \mathbf{i} = \mathbf{V}, \mathbf{A}, \mathbf{P} \end{split}$$

$$\gamma\gamma \to p\overline{p}$$

$$\begin{split} s^2 R^p_{\text{eff}} &= 2.9 \text{GeV}^4 (\frac{s}{10.4})^{-1.1} \\ s^2 R^p_V &= 8.2 \text{GeV}^4 (\frac{s}{10.4})^{-1.1} \\ s^2 |G^p_M| &\simeq 3 \text{GeV}^4 \end{split}$$

$$R_{\rm eff}^p = \sqrt{|R_A^p + R_P^p|^2 + \frac{s}{4m^2}|R_P^p|^2}$$

for point-like fermions: $\begin{aligned} |R_V^p| &= |R_A^p| \qquad R_P^p = 0: \\ \frac{d\sigma}{dt} \propto \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \qquad \text{(red)} \end{aligned}$

Diehl-K-Vogt, hep-ph/0206288 K-Schäfer, hep-ph/0505258

shopping list for $p\bar{p} \to \gamma\gamma$

- measure cross section at high energies
- extract form factors R_V^p , $R_{
 m eff}^p$
- factorization form factors independent of t?
- helicity correlation of proton and antiproton allows to determine R^p_A and R^p_P separately
- together with form factors $G_M^{p(n)}$ and $F_2^{p(n)}$ one may attempt an analysis of the $p\bar{p}$ DAs

The Compton cross section

 $\frac{d\sigma}{dt} = \frac{d\hat{\sigma}}{dt} \left\{ \frac{1}{2} \frac{(s-u)^2}{s^2+u^2} \left[R_V^2(t) + \frac{-t}{4m^2} R_T^2(t) \right] + \frac{1}{2} \frac{(s+u)^2}{s^2+u^2} R_A^2(t) \right\} + \mathcal{O}(\alpha_s)$ $\frac{d\hat{\sigma}}{dt}(s,t) \quad \text{Klein-Nishina cross section} \quad \text{data: JLab E99-114}$ Compton form factors known from analysis of nucleon FFs $s \leftrightarrow t \text{ crossing} \qquad \text{Diehl et al, hep-ph/0408173}$

Time-like reactions

$\gamma \gamma \rightarrow p \bar{p}$ BELLE, CLEO, LEP $\rightarrow \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \pi^+ \pi^-, K^+ K^-, K_S \bar{K}_S$

flavor symmetry and valence quark dominance $R_d^p(s) = \rho R_u^p(s)$ ($\rho = 1/2$ from simple quark counting)

 $W=\sqrt{s}$ cross section integrated over $|\cos\theta|<0.6$ bands obtained with $\rho=0.25-0.6$

Diehl, K., Vogt, hep-ph/0206288

$$p\bar{p} \to \gamma \pi^0$$

 $\begin{array}{l} \boldsymbol{\gamma} & \text{subprocess: } q\bar{q} \text{ helicity flip only} \\ H_{+0,+-} = \sqrt{\frac{s}{2}}u \big[C_2 - C_3\big] \\ H_{+0,-+} = -\sqrt{\frac{s}{2}}t \big[C_2 + C_3\big] \\ R_i^{\pi^0} \simeq R_i^{\gamma} \text{ (universality of TDAs)} \end{array}$

CGLN inv. fcts: $C_{2(3)}(t, u) = +(-) C_{2(3)}(u, t)$ ansatz: $C_3 = 0$ $C_2 = \frac{a}{tu}$ handbag singularities

$$\frac{d\sigma}{d\cos\theta} = \frac{\alpha_{\rm elm}}{4s^6} \frac{|a|^2}{\sin^4\theta} \left[|s^2 R_{\rm eff}^{\pi^0}|^2 + \cos^2\theta \, |s^2 R_V^{\pi^0}|^2 \right]$$

one-gluon exchange: same structure but a too small

power corrections? Belitsky: resummation of an infinite number of fermionic loops inserted in gluon propagator large enhancement factor

data: FNAL E760 dashed lines: $|\cos \theta| \le 0.6$ (I) $\propto \sin^{-2} \theta$ (r) solid lines: $|\cos \theta| \le 0.5$ (I) $\propto \sin^{-4} \theta$ (r) PANDA: higher energies? improved accuracy? $C_2 \ll C_3 : \frac{d\sigma}{d\cos\theta}(90^\circ) = 0$

K-Schäfer, hep-ph/0505258

PK 22/13

Extension to other photon-meson channels

 $p\bar{p} \rightarrow \gamma\eta, \gamma\eta', \gamma V_L$ straightforward

role of two-gluon Fock component of η' may be explored if it plays a minor role:

$$\frac{d\sigma(p\bar{p}\to\gamma\eta)}{d\sigma(p\bar{p}\to\gamma\eta')} = \cot(\phi)$$

 γV_T channel more complicated (new type of TDA)

PK 22/14

Gluons in excl. charmonium decays

- dominant mechanism: $c\bar{c} \rightarrow ng^* \rightarrow m(q\bar{q})$ Duncan-Mueller, BL, CZ n minimal number of gluons allowed by color conservation and charge conjugation: J/Ψ : n = 3; η_c, χ_{cJ} : n = 2factorization in formal limit $m_c \rightarrow \infty$
- $c\bar{c}$ annihilate at distances $\lesssim 1/m_c$ typical gluon virtuality $1-2\,{
 m GeV}^2$ pQCD may be applicable
- dominance of $c\bar{c}$ annihilation reflected in narrow width of charmonium decays into light hadrons (appr. decay into 3 real gluons)

$$\Gamma(J/\Psi \to \text{l.h.}) = \frac{10}{81} \frac{\pi^2 - 9}{\pi e_c^2} \frac{\alpha_s^3}{\alpha_{\text{em}}^2} \Gamma(J/\Psi \to e^+ e^-) = 205 \text{KeV} \left(\frac{\alpha_s}{0.3}\right)^3$$

exp: $\simeq 70 \,\mathrm{KeV}$ (order of magnitude estimate)

since c\u00ec annihilations are required a handbag not possible:
 I.t. contribution + higher twist + higher Fock state + power corrections

leading-twist versus higher-twist mechanism

no systematic discussion of charmonium decays - only a few remarks to highlight various issues

• leading-twist formation of I. h.: time-like g^* (γ^*) create light $q\bar{q}$ pairs with opposite helicities (vector nature of QCD (QED)) $\implies \lambda_q + \lambda_{\bar{q}} = 0$ collinear partons form light hadrons and transfer their helicities to the hadrons $\implies \sum \lambda_{had} = 0$ violation of hadronic helicity conservation signals presence of higher-twist and/or power corrections as well as orbital angular momentum

• Such processes have been observed exp. (often with sizeable br. ratios) occur for P, V channels if $(-)^{J_c}P_c \neq (-)^{J_1+J_2}P_1P_2$ for $J/\psi(\Psi') \rightarrow PV$: $M \propto \varepsilon(p_1, p_2, \epsilon_V, \epsilon_c)$ ($\epsilon(\lambda = 0) = ap_1 + bp_2$ Vs are transv. polarized) $\eta_c, \chi_{c0} \rightarrow B\bar{B}$ angular mom. and parity conservation require $|\sum \lambda_{had}| = 1$ • G parity and/or isospin violating decays

either QED or QCD $\propto m_u - m_d$ (probably small)

for *C*-even charmonia (e.g. $\eta_c, \chi_{c1} \to \rho \pi, \rho \eta$) not observed probably mediated by $c\bar{c} \to 2\gamma^* \to h_1 h_2 \quad \mathcal{O}(\alpha_{em}^4)$

many such decays observed for J/ψ (e.g. $\rightarrow \pi^+\pi^-$ (G parity), $\omega\pi^0$ (isospin)) typically suppressed by $10^{-2} - 10^{-1}$ as compared to allowed decays electromag. decay $c\bar{c} \rightarrow \gamma^* \rightarrow h_1h_2$

for strange mesons similar suppression by virtue of U-spin invariance

PK 22/17

	PP	PV	VV
η_c	_	()	ϵ
J/ψ	(√)	ϵ	(√)
h_c	_	\checkmark	ϵ
χ_{c0}	\checkmark	_	\checkmark
χ_{c1}	_	(√)	ϵ
χ_{c2}	\checkmark	(ϵ)	\checkmark

- -: forbidden by angular momentum and parity conservation
- ϵ : forbidden to leading-twist accuracy (viol. of helicity s.r.)
- $\sqrt{}$: allowed to leading-twist accuracy
- (): either G-parity or isospin invariance violated for non-strange mesons

short-range versus long-range decay mechanisms

suppose

a decay mechanism dominates that

- respects QCD factorization
- $c\bar{c}$ pair annihilates by a short distance mechanism (photons and/or gluons)

probes charmonium wave function at origin (decay constant)

$$\kappa_{12} = \frac{\mathcal{B}(\psi' \to h_1 h_2)}{\mathcal{B}(J/\Psi \to h_1 h_2)} \frac{\mathcal{B}(J/\Psi \to e^+ e^-)}{\mathcal{B}(\Psi' \to e^+ e^-)} \rho_{\text{p.s.corr}} \simeq 1$$

14% rule

channel	$10^4 \mathcal{B}(J/\psi)$	$10^4 \mathcal{B}(\Psi')$	κ
$p\overline{p}$	21.4 ± 1.0	2.73 ± 0.40	0.93 ± 0.15
$\Sigma^0 \overline{\Sigma}{}^0$	12.7 ± 1.7	0.94 ± 0.48	0.49 ± 0.26
$\Lambda\overline{\Lambda}$	13.5 ± 1.4	2.11 ± 0.35	1.11 ± 0.24
$\Xi^{-}\overline{\Xi}^{+}$	9.0 ± 2.0	0.83 ± 0.30	0.54 ± 0.35
$\varrho\pi$	127 ± 9	< 0.83 (< 0.28*)	$ < 0.054 \ (< 0.018)$
$\omega\pi^0$	4.2 ± 0.6	0.38 ± 0.20 *	0.7 ± 0.4
$arrho\eta$	1.93 ± 0.23		
$\omega\eta$	15.8 ± 1.6	< 0.33*	< 0.17
$\phi\eta$	6.5 ± 0.7		
$\varrho\eta'(958)$	1.05 ± 0.18		
$\omega \eta'(958)$	1.67 ± 0.25		
$\phi \eta'(958)$	3.3 ± 0.4		
$K^{*}(892)^{\mp}K^{\pm}$	50 ± 4	< 0.54(< 0.30*)	< 0.089 (< 0.049)
$\bar{K}^{*}(892)^{0}K^{0}+\text{c.c.}$	42 ± 4	0.81 ± 0.29 *	0.15 ± 0.05
$\pi^+\pi^-$	1.47 ± 0.23	0.8 ± 0.5	4.3 ± 2.7
K^+K^-	2.37 ± 0.31	1.0 ± 0.7	3.2 ± 2.3
$K^0_S K^0_L$	1.46 ± 0.26	0.52 ± 0.07 *	2.7 ± 0.6
$\pi^{\pm}b_1(1235)^{\mp}$	30 ± 5	3.2 ± 0.8	0.79 ± 0.24
$K^{\pm}K_{1}(1270)^{\mp}$	< 30	10.0 ± 2.8	> 1.7
$\omega f_2(1270)$	43 ± 6	$2.1 \pm 0.6^{*}$	0.34 ± 0.11
$\rho a_2(1320)$	109 ± 22	$2.6 \pm 0.9^{*}$	0.17 ± 0.07
$ar{\phi} f_2'(1525)$	12.3 ± 2.1	$0.44\pm0.16^{\textbf{*}}$	0.22 ± 0.09

data from PDF (* BES)

lowest Fock state versus higher Fock state decay mechanism

lowest Fock state usually dominates

higher Fock state contributions suppressed by inverse powers of hard scale

consider decays of P-wave charmonia χ_{cJ} : dimensional counting $\Psi_P(0) = 0 \Rightarrow \partial \Psi_P / \partial r(0)$ $\Gamma \propto \partial \Psi_P / \partial r(0) \Psi_1(0) \Psi_2(0) m_c^{-n}$

derivative of two-particle wf has same dimension as three-particle wf valence Fock state $c\bar{c}_1 ({}^3P_J)$ color singlet $c\bar{c}g$ Fock state $c\bar{c}_8g ({}^3S_1)$ color octet

both contribute to same order in $1/m_c$

$$M(\chi_{cJ} \to h_1 h_2) = a_1 \alpha_s^2 + a_8 \alpha_s^{5/2}$$

 $(\alpha_s \simeq 0.3 - 0.4 : \sqrt{\alpha_s} \text{ no real suppression})$

cannot be ignored, consequences not fully explored, lack of accurate data Bolz-K-Schuler, hep-ph9704378

Summary

- There are many applications of the handbag approach to space- and time-like wide-angle exclusive processes; seems to work reasonably well for momentum transfers of the order of 10 GeV²
- predictions for WACS soft form factors known from recent GPD analysis
- rich phenomenology of time-like processes $\gamma\gamma \to B\overline{B}, M\overline{M}, \ p\overline{p} \to \gamma\gamma, \gamma M$
- FAIR: handbag approach can be probed over a larger range of energy and perhaps with higher precicion polarization of p and \bar{p} is helpful
- Exclusive charmonium decays interesting interplay of perturbative and non-perturbative QCD systematic investigation of exclusive charmonium decays still lacking

$$\gamma\gamma \to M\overline{M}$$

$$\frac{d\sigma}{dt}(\gamma\gamma \to \pi^+\pi^-) = \frac{8\pi\alpha_{\rm elm}^2}{s^2\sin^4\theta}|R_{2\pi}(s)|^2$$
$$R_{2\pi}^q = \frac{1}{2}\int_0^1 dz(2z-1)\Phi_{2\pi}^q(z,1/2,s); \quad R_{2\pi} = \sum_q e_q^2 R_{2\pi}^q; \quad F_\pi^q = \int_0^1 dz\Phi_{2\pi}^q$$

 $q\overline{q}$ intermediate state: isospin 0,1 only For pions isospin 1 excluded \Rightarrow

$$\frac{d\sigma}{dt}(\gamma\gamma \to \pi^0\pi^0) = \frac{d\sigma}{dt}(\gamma\gamma \to \pi^+\pi^-)$$

robust prediction, differs drastically from ERBL result, not yet measured should also hold for the $\rho\rho$ channel; measureable at BELLE? In flavor symmetry limit:

$$\frac{d\sigma}{dt}(\gamma\gamma \to K_S\overline{K}_S) = \frac{2}{25}\frac{d\sigma}{dt}(\gamma\gamma \to K^+K^-)$$

Diehl-K-Vogt, hep-ph/0112274

 $\gamma\gamma \to MM$

 $|s|F_{\pi}| = 0.93 \pm 0.12 \text{GeV}^2$

photoproduction of mesons

$s \leftrightarrow t$ crossing

$$\overline{C}_2 = \frac{a}{su}, \qquad \overline{C}_3 = 0,$$

in fair agreement with old Cornell data on $d\sigma/dt$ New data from Jlab?

 $A_{LL}^{\pi^0} \simeq A_{LL}^{\text{Compton}}$

$$\frac{d\sigma(\gamma n \to \pi^- p)}{d\sigma(\gamma p \to \pi^+ n)} \simeq \left[\frac{e_d u + e_u s}{e_u u + e_d s}\right]^2$$

dominance of \overline{C}_3 fails badly