Towards the hadron spectrum using spatially-extended operators in lattice QCD

Colin Morningstar

Carnegie Mellon University

ECT Workshop on Observables in $\overline{p}p$ interactions

and their relevance to QCD

Trento, Italy

July 3, 2006

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract spectrum of baryon resonances (Hall B at JLab)
- formed Lattice Hadron Physics Collaboration (LHPC) in 2000
- acquired funding through DOE SciDAC to build computing cluster at JLab, Fermilab, Brookhaven, develop software
- LHPC has several broad goals
 - compute QCD spectrum (baryons, mesons,...)
 - hadron structure (form factors, structure functions,...)
 - hadron-hadron interactions
- current members of spectroscopy effort:
 - Robert Edwards, George Fleming, Jimmy Juge, Adam Lichtl, CM, Nilmani Mathur, David Richards, Ikuro Sato, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
 - need sets of extended operators (correlator matrices)
 - multi-hadron operators needed too
 - deduce resonances from finite-box energies
 - \Box anisotropic lattices $(a_t < a_s)$
 - inclusion of light-quark loops at realistically light quark mass
- long-term project
- efforts divide into two categories
 - operator technology
 - Monte Carlo updating technology (light quark loops)
- this talk is an interim status report
 - focus on baryons

Outline

- how to extract excited-state energies from Monte Carlo computations
 - unstable states (resonances)
- operator construction
 - spatially-extended operators
 - symmetry channels
- field smearing
- operator pruning
- milestone reached: extraction of nine or more levels in a symmetry channel!!
- outlook and conclusion

Excited states, resonances in lattice Monte Carlo

Energies from correlation functions

- stationary-state energies extracted from temporal correlations of the fields (in imaginary time formalism)
- evolution in Heisenberg picture $\phi(t) = e^{Ht} \phi(0) e^{-Ht}$ (H = Hamiltonian)
- spectral representation of a simple correlation function
 - assume transfer matrix, ignore temporal boundary conditions, focus only on one time ordering

insert complete set of
$$\langle 0 | \phi(t)\phi(0) | 0 \rangle = \sum_{n} \langle 0 | e^{Ht}\phi(0) e^{-Ht} | n \rangle \langle n | \phi(0) | 0 \rangle$$
 insert complete set of discrete energy eigenstates
$$= \sum_{n} |\langle n | \phi(0) | 0 \rangle|^2 e^{-(E_n - E_0)t} = \sum_{n} A_n e^{-(E_n - E_0)t}$$

• extract A_1 and E_1-E_0 as $t\to\infty$ (assuming $\langle 0|\phi(0)\,|\,0\rangle=0$ and $\langle 1|\phi(0)\,|\,0\rangle\neq 0$)

Effective mass

the "effective mass" is given by $m_{\text{eff}}(t) = \ln \left(\frac{C(t)}{C(t+1)} \right)$

notice that (take $E_0 = 0$) $\lim_{t \to \infty} m_{\text{eff}}(t) = \ln \left(\frac{A_1 e^{-E_1 t} + A_2 e^{-E_2 t} + \cdots}{A_1 e^{-E_1 (t+1)} + \cdots} \right) \to \ln e^{E_1} = E_1$

effective mass tends to actual mass (energy) asymptotically

effective mass plot is convenient visual tool to see signal

extraction

- □ seen as a plateau
- plateau sets in quickly for good operator
- excited-state contamination before plateau

Principal correlators

- extracting excited-state energies described in
 - C. Michael, NPB 259, 58 (1985)
 - Luscher and Wolff, NPB 339, 222 (1990)
- exploits the variational method
- for $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_{\alpha}(t) O_{\beta}^{+}(0) | 0 \rangle$ define N principal correlators $\lambda_{\alpha}(t,t_{0})$ as eigenvalues of $C(t_{0})^{-1/2}C(t) C(t_{0})^{-1/2}$

where t_0 (the time defining the "metric") is small

- can show $\lim_{t\to\infty} \lambda_{\alpha}(t,t_0) = e^{-(t-t_0)E_{\alpha}} (1+e^{-t\Delta E_{\alpha}})$
- N principal effective masses $\Omega_{\alpha}(t) = \ln\left(\frac{\lambda_{\alpha}(t,t_0)}{\lambda_{\alpha}(t+1,t_0)}\right)$ now tend (plateau) to N lowest-lying stationary-state energies

Principal effective masses

- perform single-exponential fit to each principal correlator to extract spectrum
 - lacktriangle use sum of two-exponentials to minimize sensitivity to t_{\min}
- principal effective masses can cross, approach asymptotic behavior from below
- final results independent
 of t₀, choosing larger values
 of reference time can introduce
 larger errors

Yang-Mills SU(3) Glueball Spectrum

- glueball mass spectrum
 - improve scalar states
- mass ratios predicted, overall scale is not
- mass gap with \$1 million bounty (Clay mathematics institute)
- glueball structure
 - constituent gluons vs flux loops?

C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999)

 $r_0^{-1} = 410(20)$ MeV, states labeled by J^{PC}

Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - □ discrete energy spectrum of stationary states → single hadron, 2 hadron, ...

- scattering phase shifts > resonance masses, widths (in principle) deduced from finite-box spectrum
 - □ B. DeWitt, PR **103**, 1565 (1956) (sphere)
 - M. Luscher, NPB364, 237 (1991) (cube)
- modest goal: "ferret" out resonances from scattering states
 - must differentiate resonances from multi-hadron states
 - avoided level crossings, different volume dependences
 - know masses of decay products > placement and pattern of multi-particle states known
 - resonances show up as extra states with little volume dependence

Resonance in a toy model (I)

• O(4) non-linear σ model (Zimmerman et al, NPB(PS) 30, 879 (1993))

$$S = -2\kappa \sum_{x} \sum_{\mu=1}^{4} \Phi_{a}(x) \Phi_{a}(x + \hat{\mu}) + J \sum_{x} \Phi^{4}(x), \qquad \sum_{a=1}^{4} \Phi_{a}^{2}(x) = 1$$

Resonance in a toy model (II)

coupled scalar fields: (Rummukainen and Gottlieb, NPB450, 397 (1995))

$$S = \frac{1}{2} \int d^4x \left(\left(\partial_{\mu} \phi \right)^2 + m_{\pi}^2 \phi^2 + \lambda \phi^4 + \left(\partial_{\mu} \rho \right)^2 + m_{\pi}^2 \rho^2 + \lambda_{\rho} \rho^4 + g \rho \phi^2 \right)$$

Figure 2. The center of mass energy levels for sectors $\vec{F} = 0$ (top now) and $\vec{F} = 2\pi/L$ (bottom) for cases A, B and C (see table 1).

Operator construction

Operator design issues

- must facilitate spin identification
 - shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
 - focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators
- must project onto definite spin polarizations or will observe many degeneracies

Three stage approach

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

$$G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$$

- (1) basic building blocks: smeared, covariant-displaced quark fields $(\widetilde{D}_{i}^{(p)}\widetilde{\psi}(x))_{Aa\alpha}$ p-link displacement $(j = 0,\pm 1,\pm 2,\pm 3)$
- (2) construct elemental operators (translationally invariant)

$$B^{F}(x) = \phi_{ABC}^{F} \varepsilon_{abc} (\tilde{D}_{i}^{(p)} \tilde{\psi}(x))_{Aa\alpha} (\tilde{D}_{j}^{(p)} \tilde{\psi}(x))_{Bb\beta} (\tilde{D}_{k}^{(p)} \tilde{\psi}(x))_{Cc\gamma}$$

- flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_h

$$B_{i}^{\Lambda\lambda F}(t) = \frac{d_{\Lambda}}{g_{O_{i}^{D}}} \sum_{R \in O_{b}^{D}} D_{\lambda\lambda}^{(\Lambda)}(R)^{*} U_{R} B_{i}^{F}(t) U_{R}^{+}$$

- Grassmann package in Maple to do these calculations
- details in PRD72, 094506 (2005)

Three-quark elemental operators

three-quark operator

$$\Phi_{\alpha\beta\gamma,ijk}^{ABC}(t) = \sum_{\vec{x}} \varepsilon_{abc} (\tilde{D}_{i}^{(p)} \tilde{\psi}(\vec{x},t))_{a\alpha}^{A} (\tilde{D}_{j}^{(p)} \tilde{\psi}(\vec{x},t))_{bff}^{B} (\tilde{D}_{k}^{(p)} \tilde{\psi}(\vec{x},t))_{c\gamma}^{C}$$

covariant displacements

$$\tilde{D}_{j}^{(p)}(x,x') = \tilde{U}_{j}(x)\,\tilde{U}_{j}(x+\hat{j})\cdots\tilde{U}_{j}(x+(p-1)\hat{j})\,\delta_{x',x+p\hat{j}} \quad (j=\pm 1,\pm 2,\pm 3)$$

$$\tilde{D}_{0}^{(p)}(x,x') = \delta_{x',x}$$

Baryon	Operator
Δ^{++}	$\Phi^{uuu}_{\pmb{lphaeta\gamma},ijk}$
Σ^+	$\Phi^{uus}_{lphaeta\gamma,ijk}$
N^{+}	$\Phi^{uud}_{m{lphaeta\gamma},ijk} - \Phi^{duu}_{m{lphaeta\gamma},ijk}$
Ξ^0	$\Phi^{ssu}_{{\color{blue}lpha}{\color{blue}eta}{\color{blue}\gamma},ijk}$
Λ^0	$\Phi^{uds}_{{mlpha}{meta}{m\gamma},ijk} - \Phi^{dus}_{{mlpha}{meta}{m\gamma},ijk}$
Ω^-	$\Phi^{sss}_{\alphaoldsymbol{lpha}oldsymbol{\gamma},ijk}$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid mesons operator (in progress)

Enumerating the three-quark operators

lots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^+,Ξ^0	N^+	Λ^0
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

spin identification possible by pattern matching

\boldsymbol{J}	$n_{G_1}^J$	$n_{G_2}^J$	n_H^J
1/2	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{2} \\ \frac{5}{2} \\ \frac{7}{2} \\ \frac{9}{2} \\ \frac{11}{2} \\ \frac{13}{2} \\ \frac{15}{2} \\ \frac{17}{2} \\ \end{array} $	1	2	2 2 2 3
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ,Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_g	418	809	1227	1209
H_u	418	809	1227	1209

- total numbers of operators is huge -> uncharted territory
- ultimately must face two-hadron scattering states

Single-site operators

- choose Dirac-Pauli convention for γ-matrices
 - 20 independent single-site Δ⁺⁺ elemental operators:

$$\Delta_{\alpha\beta\gamma} = \epsilon_{abc} \, \tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma}, \qquad (\alpha \le \beta \le \gamma)$$

20 independent single-site N⁺ elemental operators:

$$N_{\alpha\beta\gamma} = \epsilon^{abc} \left(\tilde{u}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{d}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{u}_{c\gamma} \right), \quad (\alpha \le \beta, \, \alpha < \gamma)$$

• 40 independent single-site Σ^+ elemental operators:

$$\Sigma_{\alpha\beta\gamma} = \epsilon_{abc} \; \tilde{u}_{a\alpha} \tilde{u}_{b\beta} \, \tilde{s}_{c\gamma} \quad (\alpha \le \beta)$$

24 independent single-site A⁰ elemental operators:

$$\Lambda_{\alpha\beta\gamma} = \epsilon_{abc} \left(\tilde{u}_{a\alpha} \, \tilde{d}_{b\beta} \, \tilde{s}_{c\gamma} - \tilde{d}_{a\alpha} \, \tilde{u}_{b\beta} \, \tilde{s}_{c\gamma} \right) \quad (\alpha < \beta)$$

Δ ++ single-site operators

Irrep	Row	DP Operators
G_{1g}	1	$\Delta_{144}-\Delta_{234}$
G_{1g}	2	$-\Delta_{134}+\Delta_{233}$
G_{1u}	1	$\Delta_{124}-\Delta_{223}$
G_{1u}	2	$-\Delta_{114}+\Delta_{123}$
H_g	1	Δ_{222}
H_g	2	$-\sqrt{3}\Delta_{122}$
H_g	3	$\sqrt{3}\Delta_{112}$
H_g	4	$-\Delta_{111}$
H_g	1	$\sqrt{3}\Delta_{244}$
H_g	2	$-\Delta_{144} - 2\Delta_{234}$
H_g	3	$2\Delta_{134}+\Delta_{233}$
H_g	4	$-\sqrt{3}\Delta_{133}$

Irrep	Row	DP Operators
H_u	1	$\sqrt{3}\Delta_{224}$
H_u	2	$-2\Delta_{124} - \Delta_{223}$
H_u	3	$\Delta_{114} + 2\Delta_{123}$
H_u	4	$-\sqrt{3}\Delta_{113}$
H_u	1	Δ_{444}
H_u	2	$-\sqrt{3}\Delta_{344}$
H_u	3	$\sqrt{3}\Delta_{334}$
H_u	4	$-\Delta_{333}$

Single-site *N*+ operators

Irrep	Row	DP Operators
G_{1g}	1	N_{122}
G_{1g}	2	$-N_{112}$
G_{1g}	1	$N_{144} - N_{243}$
G_{1g}	2	$-N_{134}+N_{233}$
G_{1g}	1	$N_{144} - 2N_{234} + N_{243}$
G_{1g}	2	$N_{134} - 2N_{143} + N_{233}$
G_{1u}	1	N_{142}
G_{1u}	2	$-N_{132}$
G_{1u}	1	N_{344}
G_{1u}	2	$-N_{334}$
G_{1u}	1	$2N_{124} - N_{142} - 2N_{223}$
G_{1u}	2	$-2N_{114} + 2N_{123} - N_{132}$

$\overline{}$		
Irrep	Row	DP Operators
H_g	1	$\sqrt{3}N_{244}$
H_g	2	$-N_{144}-N_{234}-N_{243}$
H_g	3	$N_{134} + N_{143} + N_{233}$
H_g	4	$-\sqrt{3} N_{133}$
H_u	1	$\sqrt{3}N_{224}$
H_u	2	$-2N_{124}+N_{142}-N_{223}$
H_u	3	$N_{114} + 2N_{123} - N_{132}$
H_u	4	$-\sqrt{3} N_{113}$

Quark-field and link-variable smearing issues

Run parameters

- run parameters for all results presented here
 - \square 12³ × 48 anisotropic lattice
 - Wilson gauge, Wilson fermion actions
 - □ lattice spacings $a_s \sim 0.1$ fm, $a_s/a_t \sim 3.0$
 - \square quark masses such that $m_{\pi} \sim 700 \,\mathrm{MeV}$
 - quenched
 - correlator matrices averaged over irrep rows
 - use of opposite-parity time-reversed propagators to double statistics
 - number of configurations used
 - 50 for operator smearing tests
 - 200 for operator prunings

Quark- and gauge-field smearing

- smeared quark and gluon fields fields > dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))

define
$$C_{\mu}(x) = \sum_{\pm (\nu \neq \mu)} \rho_{\mu\nu} U_{\nu}(x) U_{\mu}(x+\hat{\nu}) U_{\nu}^{+}(x+\hat{\mu})$$

spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$

exponentiate traceless Hermitian matrix

$$\Omega_{\mu} = C_{\mu} U_{\mu}^{+} \qquad Q_{\mu} = \frac{i}{2} \left(\Omega_{\mu}^{+} - \Omega_{\mu} \right) - \frac{i}{2N} \operatorname{Tr} \left(\Omega_{\mu}^{+} - \Omega_{\mu} \right)$$

$$U_{\mu}^{(n+1)} = \exp \left(i Q_{\mu}^{(n)} \right) U_{\mu}^{(n)}$$

$$U_{\mu} \to U_{\mu}^{(1)} \to \cdots \to U_{\mu}^{(n)} \equiv \widetilde{U}_{\mu}$$

- quark-field smearing (covariant Laplacian uses smeared gauge field) $\tilde{\psi}(x) = \left(1 + \frac{\sigma_s^2}{4n_\sigma}\tilde{\Delta}^2\right)^{n_\sigma} \psi(x)$
- parameters to tune: $\sigma_s, n_\sigma, \rho, n_\rho$

Quark-field smearing tuning

- focus on three particular operators for smearing tests
 - lacksquare a single-site operator O_{SS} in the G_{1g} irrep
 - $lue{}$ a singly-displaced operator O_{SD} with a particular choice of Dirac indices and 3-link displacement length
 - a triply-displaced-T operator O_{TDT} with a particular choice of the Dirac indices (3-link displacement lengths)
- define effective mass as usual $M_i(t) = \ln \left(\frac{C_{ii}(t)}{C_{ii}(t+a_t)} \right)$
- use $M_i(t=4a_t)$ to compare different quark-field smearings
- smeared links $\rho n_{\rho} = 2.5$, $n_{\rho} = 16$ since displaced operators noisy

Link-variable smearing tuning

- first, used the effective mass E(t=0) associated with the static quark-antiquark potential at spatial separation $R = 5a_s \sim 0.5$ fm
- found that link-smearing did not appreciably alter values of baryon effective masses, but had dramatic effect on variance
- compared relative jackknife error $\eta_i(t=4a_t)$ of $M_i(t=4a_t)$ for different link-smearing parameters $(\sigma_s=4.0, n_\sigma=32)$
- lesson learned: preferred parameters from static potential produce smallest errors in baryon effective masses

$$n_{\rho} = 1, 2, 4, 8, 16, 32$$

Importance of smearing

- Nucleon G1g channel
- effective masses of the 3 selected operators
- noise reduction from link variable smearing, especially for displaced operators
- quark-field smearing reduces couplings to high-lying states

$$\sigma_s = 4.0, \quad n_{\sigma} = 32$$
 $n_{\rho} \rho = 2.5, \quad n_{\rho} = 16$

• effect on excited states shows $\sigma_s = 3.0$ better

Smearing and excited states

- previous tests involved lowest state only
- important to tune smearing for excited states as well
- lowest 4 principal effective masses for 10x10 matrix of DDI G_{1g} operators shown
 - same link smearing $\rho n_{\rho} = 2.5, n_{\rho} = 16$
 - quark-field smearings

$$\sigma_s = 2.0$$
 (blue), 3.0 (red),
4.0 (black) $n_{\sigma} = 32$

- preferred: $n_{\sigma} = 32, \sigma_{s} = 3.0$

Smearing summary

From our quenched study of the G_{lg} nucleon channel on small lattices $12^3 \times 48$ for $a_s \sim 0.1$ fm and $a_s/a_t \sim 3.0$ and $m_\pi \sim 700$ MeV, the preferred smearing parameters are

$$\rho n_{\rho} = 2.5, n_{\rho} = 16$$
 $n_{\sigma} = 32, \sigma_{s} = 3.0$

$$n_{\sigma} = 32, \sigma_s = 3.0$$

- factors still to consider:
 - evidence for same smearing for other irreps
 - expect same smearing for other isospin channels
 - dependence on lattice spacing
 - dependence on quark mass

Operator pruning issues

Operator plethora

- Number of N^+ operators given below (1 displacement length)
 - $lue{}$ total of 179 operators in G_{1g} channel

	G_{1g}	G_{2g}	H_g
Single-site	3	0	1
Singly-displaced	24	8	32
Doubly-displaced-I	24	8	32
Doubly-displaced-L	64	64	128
Triply-displaced-T	64	64	128

- since 179x179 matrix too large to be practical, operator pruning is clearly necessary
- will focus on G_{lg} channel first

Operator plethora (G1g Nucleon)

G1g nucleon operators

G2g nucleon operators

Hu nucleon operators

Pruning: step one

- look at effective masses of diagonal elements of correlation matrix and discard noisy operators
- examples shown below $(\rho n_{\rho} = 2.5, n_{\rho} = 16, n_{\sigma} = 32, \sigma_s = 4.0 \text{ used})$
- all 179 effective masses

Pruning: step one (continued)

- retain 64 operators out of the 179
 - □ SS: 0, 1, 2
 - □ SD: 3, 5, 6, 8, 10, 12, 14, 17, 19, 20, 22, 24, 25
 - □ DDI: 27, 29, 30, 31, 33, 36, 38, 41, 43, 44, 45, 48
 - DDL: 52, 54, 56, 57, 58, 59, 60, 61, 62, 72, 74, 76, 78, 85, 88, 94, 97, 98, 105, 110
 - □ TDT: 116, 118, 119, 124, 125, 126, 132, 134, 136, 138 149, 158, 162, 163, 169, 174

Noise removal via singular values

• examine renormalized matrix at early time t=1

$$\hat{C}_{ij}(1) = C_{ij}(1) / \sqrt{C_{ii}(1)C_{jj}(1)}$$

- sort operators in order of increasing noise
- include operators in this order, checking singular values.
 - skip operators which introduce small singular values
 - presence of small singular values indicates operator set not "independent enough" > noise can creep in

Further pruning via variational method

- look at eigenvectors of $C(t_0)^{-1/2}C(t)C(t_0)^{-1/2}$ for t=3
- coefficients squared shown
- retain 12 dominant operators

1st excited state

ground state

Milestone: principal effective masses

- G1g nucleons (16x16 matrix) using 200 configurations
- world record: 9 levels extracted (even more possible!)

G1u Nucleon channel

G2g nucleon channel

G2u nucleon channel

Hg nucleon channel

Hu nucleon channel

Future work

- three-quark operator pruning to be completed
 - all irreps, all isospin channels
 - different displacement <u>lengths</u>
- include mesons (in progress)
- include multi-hadron operators
 - stochastic all-to-all propagators with dilution, low eigenvectors
 - will also facilitate disconnected diagrams
- goal: operator technology ready to go when unquenched simulations near realistically-light quark masses become possible
- LHPC recently was awarded 1/6 of QCDOC to generate configurations on large lattices with dynamical quarks such that pion mass around 300 MeV

Summary

- progress report on ongoing efforts of LHPC to extract hadron spectrum with large sets of extended operators
 - need for correlation matrices of good operators
 - spin identification must be addressed
 - multi-hadron operators will become important
- exploration of 3-quark baryon operators nearly done
- study of meson operators beginning
- major milestone reached: can extract 9 or more states!!
- ultimately, MC updating with realistically light quark masses needed
- very challenging calculations
 - will keep hammering at it!

