Towards the hadron spectrum using spatially-extended operators in lattice QCD

Colin Morningstar

Carnegie Mellon University
ECJ Workshop on Observables in $\bar{p} p$ interactions
and their relevance to QCD
Trento, I taly
July 3, 2006

Lattice Hadron Physics Collaboration

- charge from Nathan Isgur to use Monte Carlo method to extract spectrum of baryon resonances (Hall B at J Lab)
- formed Lattice Hadron Physics Collaboration (LHPC) in 2000
- acquired funding through DOE SciDAC to build computing cluster at J Lab, Fermilab, Brookhaven, develop software
- LHPC has several broad goals
- compute QCD spectrum (baryons, mesons,...)
- hadron structure (form factors, structure functions, ...)
- hadron-hadron interactions
- current members of spectroscopy effort:
- Robert Edwards, George Fleming, Jimmy Juge, Adam Lichtl, CM, Nilmani Mathur, David Richards, Ikuro Sato, Steve Wallace

LHPC spectroscopy efforts

- extracting spectrum of resonances is big challenge!!
a need sets of extended operators (correlator matrices)
- multi-hadron operators needed too
- deduce resonances from finite-box energies
- anisotropic lattices $\left(a_{t}<a_{s}\right)$
- inclusion of light-quark loops at realistically light quark mass
- long-term project
- efforts divide into two categories
- operator technology
- Monte Carlo updating technology (light quark loops)
- this talk is an interim status report
- focus on baryons

Outline

- how to extract excited-state energies from Monte Carlo computations
- unstable states (resonances)
- operator construction
- spatially-extended operators
- symmetry channels
- field smearing
- operator pruning
- milestone reached: extraction of nine or more levels in a symmetry channel!!
- outlook and conclusion

Excited states, resonances in lattice Monte Carlo

Energies from correlation functions

- stationary-state energies extracted from temporal correlations of the fields (in imaginary time formalism)
- evolution in Heisenberg picture $\phi(t)=e^{H t} \phi(0) e^{-H t}$ ($H=$ Hamiltonian)
- spectral representation of a simple correlation function
- assume transfer matrix, ignore temporal boundary conditions, focus only on one time ordering

$$
\begin{aligned}
\langle 0| \phi(t) \phi(0)|0\rangle & =\sum_{n}\langle 0| e^{H t} \phi(0) e^{-H t}|n\rangle\langle n| \phi(0)|0\rangle \quad \text { discrete energy eigenstates } \\
& \left.=\sum_{n}^{n}|\langle n| \phi(0)| 0\right\rangle\left.\right|^{2} e^{-\left(E_{n}-E_{0}\right) t}=\sum_{n} A_{n} e^{-\left(E_{n}-E_{0}\right) t}
\end{aligned}
$$

- extract A_{1} and $E_{1}-E_{0}$ as $t \rightarrow \infty$ (assuming $\langle 0| \phi(0)|0\rangle=0$ and $\langle 1| \phi(0)|0\rangle \neq 0$)

Effective mass

- the "effective mass" is given by $m_{\text {eff }}(t)=\ln \left(\frac{C(t)}{C(t+1)}\right)$
- notice that (take $E_{0}=0$)

$$
\lim _{t \rightarrow \infty} m_{\text {eff }}(t)=\ln \left(\frac{A_{1} e^{-E_{1} t}+A_{2} e^{-E_{2} t}+\cdots}{A_{1} e^{-E_{1}(t+1)}+\cdots}\right) \rightarrow \ln e^{E_{1}}=E_{1}
$$

- effective mass tends to actual mass (energy) asymptotically
- effective mass plot is convenient visual tool to see signal extraction
- seen as a plateau
- plateau sets in quickly for good operator
- excited-state contamination before plateau

Principal correlators

- extracting excited-state energies described in
- C. Michael, NPB 259, 58 (1985)
- Luscher and Wolff, NPB 339, 222 (1990)
- exploits the variational method
- for $N \times N$ correlator matrix $C_{\alpha \beta}(t)=\langle 0| O_{\alpha}(t) O_{\beta}^{+}(0)|0\rangle$ define N principal correlators $\lambda_{\alpha}\left(t, t_{0}\right)$ as eigenvalues of

$$
C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}
$$

where t_{0} (the time defining the "metric") is small

- can show $\lim _{t \rightarrow \infty} \lambda_{\alpha}\left(t, t_{0}\right)=e^{-\left(t-t_{0}\right) E_{\alpha}}\left(1+e^{-\Delta \Lambda E_{\alpha}}\right)$
- N principal effective masses $\Omega_{\alpha}(t)=\ln \left(\frac{\lambda_{\alpha}\left(t, t_{0}\right)}{\lambda_{\alpha}\left(t+1, t_{0}\right)}\right)$ now tend (plateau) to N lowest-lying stationary-state energies

Principal effective masses

- perform single-exponential fit to each principal correlator to extract spectrum
a use sum of two-exponentials to minimize sensitivity to $t_{\text {min }}$
- principal effective masses can cross, approach asymptotic behavior from below
- final results independent of t_{0}, choosing larger values of reference time can introduce larger errors

Yang-Mills SU(3) Glueball Spectrum

- glueball mass spectrum
- improve scalar states
- mass ratios predicted, overall scale is not
- mass gap with $\$ 1$ million bounty (Clay mathematics institute)
- glueball structure
- constituent gluons vs flux loops?
C. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999)

$r_{0}^{-1}=410(20) \mathrm{MeV}$, states labeled by $J^{P C}$

Unstable particles (resonances)

- our computations done in a periodic box
- momenta quantized
- discrete energy spectrum of stationary states \rightarrow single hadron, 2 hadron, ...

- scattering phase shifts \rightarrow resonance masses, widths (in principle) deduced from finite-box spectrum
- B. DeWitt, PR 103, 1565 (1956) (sphere)
a M. Luscher, NPB364, 237 (1991) (cube)
- modest goal: "ferret" out resonances from scattering states
- must differentiate resonances from multi-hadron states
- avoided level crossings, different volume dependences
- know masses of decay products \rightarrow placement and pattern of multi- particle states known
- resonances show up as extra states with little volume dependence

Resonance in a toy model (I)

- O(4) non-linear o model (Zimmerman et al, NPB(PS) 30, 879 (1993))

$$
S=-2 \kappa \sum_{x} \sum_{\mu=1}^{4} \Phi_{a}(x) \Phi_{a}(x+\hat{\mu})+J \sum_{x} \Phi^{4}(x), \quad \quad \sum_{a=1}^{4} \Phi_{a}^{2}(x)=1
$$

Figire 3. Snattering phate ahift 5_{0} in the indignin 0 Hamaly

Resonance in a toy model (II)

- coupled scalar fields: (Rummukainen and Gottlieb, NPB450, 397 (1995))

$$
S=\frac{1}{2} \int d^{4} x\left(\left(\partial_{\mu} \phi\right)^{2}+m_{\pi}^{2} \phi^{2}+\lambda \phi^{4}+\left(\partial_{\mu} \rho\right)^{2}+m_{\pi}^{2} \rho^{2}+\lambda_{\rho} \rho^{4}+g \rho \phi^{2}\right)
$$

$$
g=0_{\hat{\mathrm{E}}} 008
$$

Operator construction

Operator design issues

- must facilitate spin identification
- shun the usual method of operator construction which relies on cumbersome continuum space-time constructions
- focus on constructing operators which transform irreducibly under the symmetries of the lattice
- one eye on maximizing overlaps with states of interest
- other eye on minimizing number of quark-propagator sources
- use building blocks useful for baryons, mesons, multi-hadron operators
- must project onto definite spin polarizations or will observe many degeneracies

Three stage approach

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_{h}

$$
G_{1 g}, G_{1 u}, G_{2 g}, G_{2 u}, H_{g}, H_{u}
$$

- (1) basic building blocks: smeared, covariant-displaced quark fields

$$
\left(\widetilde{D}_{j}^{(p)} \widetilde{\psi}(x)\right)_{A a \alpha} \quad p \text { - link displacement }(j=0, \pm 1, \pm 2, \pm 3)
$$

- (2) construct elemental operators (translationally invariant)

$$
B^{F}(x)=\phi_{A B C}^{F} \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(x)\right)_{A a \alpha}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(x)\right)_{B b \beta}\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(x)\right)_{C C \gamma}
$$

- flavor structure from isospin, color structure from gauge invariance
- (3) group-theoretical projections onto irreps of O_{h}

$$
B_{i}^{\Lambda \lambda F}(t)=\frac{d_{\Lambda}}{g_{O D}^{D}} \sum_{R \in O_{h}^{D}} D_{\lambda \lambda}^{(\Lambda)}(R)^{*} U_{R} B_{i}^{F}(t) U_{R}^{+}
$$

- Grassmann package in Maple to do these calculations
- details in PRD72, 094506 (2005)

Three-quark elemental operators

- three-quark operator

$$
\Phi^{A B C}{ }_{, i j k}(t)=\sum_{\tilde{x}} \varepsilon_{a b c}\left(\tilde{D}_{i}^{(p)} \tilde{\psi}(\vec{x}, t)\right)_{a}^{A}\left(\tilde{D}_{j}^{(p)} \tilde{\psi}(\vec{x}, t)\right)_{b \beta}^{B} \quad\left(\tilde{D}_{k}^{(p)} \tilde{\psi}(\vec{x}, t)\right)_{c}^{C}
$$

- covariant displacements

$$
\begin{aligned}
& \tilde{D}_{j}^{(p)}\left(x, x^{\prime}\right)=\tilde{U}_{j}(x) \tilde{U}_{j}(x+\hat{j}) \cdots \tilde{U}_{j}(x+(p-1) \hat{j}) \delta_{x^{\prime}, x+p \hat{j}} \quad(j= \pm 1, \pm 2, \pm 3) \\
& \tilde{D}_{0}^{(p)}\left(x, x^{\prime}\right)=\delta_{\chi^{\prime}, x}
\end{aligned}
$$

Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate hybrid mesons operator (in progress)

Enumerating the three-quark operators

- lots of operators (too many!)

	Δ^{++}, Ω^{-}	Σ^{+}, Ξ^{0}	N^{+}	Λ^{0}
Single-site	20	40	20	24
Singly-displaced	240	624	384	528
Doubly-displaced-I	192	572	384	576
Doubly-displaced-L	768	2304	1536	2304
Triply-displaced-T	768	2304	1536	2304
Triply-displaced-O	512	1536	1024	1536

Spin identification and other remarks

- spin identification possible by pattern matching

J	$n_{G_{1}}^{J}$	$n_{G_{2}}^{J}$	n_{H}^{J}
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

total numbers of operators assuming two different displacement lengths

Irrep	Δ, Ω	N	Σ, Ξ	Λ
$G_{1 g}$	221	443	664	656
$G_{1 u}$	221	443	664	656
$G_{2 g}$	188	376	564	556
$G_{2 u}$	188	376	564	556
H_{g}	418	809	1227	1209
H_{u}	418	809	1227	1209

- total numbers of operators is huge \rightarrow uncharted territory
- ultimately must face two-hadron scattering states

Single-site operators

- choose Dirac-Pauli convention for γ-matrices
- 20 independent single-site Δ^{++}elemental operators:

$$
\Delta_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}, \quad(\alpha \leq \beta \leq \gamma)
$$

- 20 independent single-site N^{+}elemental operators:

$$
N_{\alpha \beta \gamma}=\varepsilon^{a b c}\left(\tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{d}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{u}_{c \gamma}\right), \quad(\alpha \leq \beta, \alpha<\gamma)
$$

- 40 independent single-site Σ^{+}elemental operators:

$$
\Sigma_{\alpha \beta \gamma}=\varepsilon_{a b c} \tilde{u}_{a \alpha} \tilde{u}_{b \beta} \tilde{\mathrm{~s}}_{c \gamma} \quad(\alpha \leq \beta)
$$

- 24 independent single-site Λ^{0} elemental operators:

$$
\Lambda_{\alpha \beta \gamma}=\varepsilon_{a b c}\left(\tilde{u}_{a \alpha} \tilde{d}_{b \beta} \tilde{s}_{c \gamma}-\tilde{d}_{a \alpha} \tilde{u}_{b \beta} \tilde{s}_{c \gamma}\right) \quad(\alpha<\beta)
$$

$\Delta++$ single-site operators

Irrep	Row	DP Operators
$G_{1 g}$	1	$\Delta_{144}-\Delta_{234}$
$G_{1 g}$	2	$-\Delta_{134}+\Delta_{233}$
G_{14}	1	$\Delta_{124}-\Delta_{223}$
G_{14}	2	$-\Delta_{114}+\Delta_{123}$
H_{g}	1	Δ_{222}
H_{g}	2	$-\sqrt{3} \Delta_{122}$
H_{g}	3	$\sqrt{3} \Delta_{112}$
H_{g}	4	$-\Delta_{111}$
H_{g}	1	$\sqrt{3} \Delta_{244}$
H_{g}	2	$-\Delta_{144}-2 \Delta_{234}$
H_{g}	3	$2 \Delta_{134}+\Delta_{233}$
H_{g}	4	$-\sqrt{3} \Delta_{133}$

Irrep	Row	DP Operators
H_{u}	1	$\sqrt{3} \Delta_{224}$
H_{u}	2	$-2 \Delta_{124}-\Delta_{223}$
H_{u}	3	$\Delta_{114}+2 \Delta_{123}$
H_{u}	4	$-\sqrt{3} \Delta_{113}$
H_{u}	1	Δ_{444}
H_{u}	2	$-\sqrt{3} \Delta_{344}$
H_{u}	3	$\sqrt{3} \Delta_{334}$
H_{u}	4	$-\Delta_{333}$

Single-site N+ operators

Irrep Row	DP Operators	Irrep Row	DP Operators
$\begin{array}{ll} G_{1_{g}} & 1 \\ G_{1 g} & 2 \end{array}$	$\begin{gathered} N_{122} \\ -N_{112} \end{gathered}$	$\begin{array}{\|ll} \hline H_{g} & 1 \\ H_{g} & 2 \end{array}$	$\begin{gathered} \sqrt{3} N_{244} \\ -N_{144}-N_{234}-N_{243} \end{gathered}$
$\begin{array}{\|ll} G_{1_{g}} & 1 \\ G_{1_{g}} & 2 \\ \hline \end{array}$	$\begin{gathered} N_{144}-N_{243} \\ -N_{134}+N_{233} \end{gathered}$	$\begin{array}{ll} H_{g} & 3 \\ H_{g} & 4 \\ \hline \end{array}$	$\begin{gathered} N_{134}+N_{143}+N_{233} \\ -\sqrt{3} N_{133} \end{gathered}$
$\begin{array}{\|ll} \hline G_{1_{g}} & 1 \\ G_{1_{g}} & 2 \\ \hline \end{array}$	$\begin{aligned} & N_{144}-2 N_{234}+N_{243} \\ & N_{134}-2 N_{143}+N_{233} \end{aligned}$	$\begin{array}{ll} \hline H_{u} & 1 \\ H_{u} & 2 \end{array}$	$\begin{gathered} \sqrt{3} N_{224} \\ -2 N_{124}+N_{142}-N_{223} \end{gathered}$
$\begin{array}{ll} G_{1 u} & 1 \\ G_{1 u} & 2 \end{array}$	$\begin{gathered} N_{142} \\ -N_{132} \end{gathered}$	$\begin{array}{ll} H_{u} & 3 \\ H_{u} & 4 \end{array}$	$\begin{gathered} N_{114}+2 N_{123}-N_{132} \\ -\sqrt{3} N_{113} \end{gathered}$
$\begin{array}{ll} G_{1 u} & 1 \\ G_{1 u} & 2 \\ \hline \end{array}$	$\begin{gathered} N_{344} \\ -N_{334} \end{gathered}$		
$\begin{array}{ll} \begin{array}{ll} G_{1 u} & 1 \\ G_{1 u} & 2 \end{array} \end{array}$	$\begin{gathered} 2 N_{124}-N_{142}-2 N_{223} \\ -2 N_{114}+2 N_{123}-N_{132} \end{gathered}$		

Quark-field and link-variable smearing issues

Run parameters

- run parameters for all results presented here
- $12^{3} \times 48$ anisotropic lattice
- Wilson gauge, Wilson fermion actions
- lattice spacings $a_{s} \sim 0.1 \mathrm{fm}, a_{s} / a_{t} \sim 3.0$
- quark masses such that $m_{\pi} \sim 700 \mathrm{MeV}$
- quenched
- correlator matrices averaged over irrep rows
a use of opposite-parity time-reversed propagators to double statistics
- number of configurations used
- 50 for operator smearing tests 200 for operator prunings

Quark- and gauge-field smearing

- smeared quark and gluon fields fields \rightarrow dramatically reduced coupling with short wavelength modes
- link-variable smearing (stout links PRD69, 054501 (2004))
- define $C_{\mu}(x)=\sum_{ \pm(\nu \neq \mu)} \rho_{\mu \nu} U_{\nu}(x) U_{\mu}(x+\hat{v}) U_{\nu}^{+}(x+\hat{\mu})$
a spatially isotropic $\rho_{j k}^{ \pm}=\rho, \quad \rho_{4 k}=\rho_{k 4}=0$

- exponentiate traceless Hermitian matrix

$$
\Omega_{\mu}=C_{\mu} U_{\mu}^{+} \quad Q_{\mu}=\frac{i}{2}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)-\frac{i}{2 N} \operatorname{Tr}\left(\Omega_{\mu}^{+}-\Omega_{\mu}\right)
$$

- iterate

$$
\begin{gathered}
U^{(n+1)}= \\
{ }^{(n)} \stackrel{=}{\equiv} \widetilde{U}_{\mu}
\end{gathered}
$$

- quark-field smearing (covariant Laplacian uses smeared gauge field) $\tilde{\psi}(x)=\left(1+\frac{\sigma_{s}^{2}}{4 n_{\sigma}} \tilde{\Delta}^{2}\right)^{n_{\sigma}} \psi(x)$
- parameters to tune: $\sigma_{s}, n_{\sigma}, \rho, n_{\rho}$

Quark-field smearing tuning

- focus on three particular operators for smearing tests
- a single-site operator $O_{S S}$ in the $G_{1 g}$ irrep
- a singly-displaced operator $O_{S D}$ with a particular choice of Dirac indices and 3-link displacement length
- a triply-displaced-T operator $O_{T D T}$ with a particular choice of the Dirac indices (3-link displacement lengths)
- define effective mass as usual $M_{i}(t)=\ln \left(\frac{C_{i i}(t)}{C_{i i}\left(t+a_{t}\right)}\right)$
- use $M_{i}\left(t=4 a_{t}\right)$ to compare different quark-field smearings
- smeared links $\rho n_{\rho}=2.5, n_{\rho}=16$ since displaced operators noisy

Link-variable smearing tuning

- first, used the effective mass $E(t=0)$ associated with the static quark-antiquark potential at spatial separation $R=5 a_{\text {s }} \sim 0.5 \mathrm{fm}$
- found that link-smearing did not appreciably alter values of baryon effective masses, but had dramatic effect on variance
- compared relative jackknife error $\eta_{i}\left(t=4 a_{t}\right)$ of $M_{i}\left(t=4 a_{t}\right)$ for different link-smearing parameters $\left(\sigma_{s}=4.0, n_{\sigma}=32\right)$
- lesson learned: preferred parameters from static potential produce smallest errors in baryon effective masses

$$
n_{\rho}=1,2,4,8,16,32
$$

I mportance of smearing

${ }^{-}$Nucleon G1g channel ${ }^{\circ}$ effective masses of the 3 selected operators
${ }^{\bullet}$ noise reduction from link variable smearing, especially for displaced operators
${ }^{\bullet}$ quark-field smearing reduces couplings to high-lying states

$$
\begin{aligned}
& \sigma_{s}=4.0, \quad n_{\sigma}=32 \\
& n_{\rho} \rho=2.5, \quad n_{\rho}=16
\end{aligned}
$$

${ }^{\circ}$ effect on excited states shows $\sigma_{s}=3.0$ better

Smearing and excited states

- previous tests involved lowest state only
- important to tune smearing for excited states as well
- lowest 4 principal effective masses for 10×10 matrix of DDI $G_{1 g}$ operators shown
- same link smearing

$$
\rho n_{\rho}=2.5, n_{\rho}=16
$$

- quark-field smearings

$$
\begin{aligned}
\sigma_{s}= & 2.0 \text { (blue), } 3.0(\mathrm{ce}), \\
& 4.0 \text { (black) } \quad n_{\sigma}=32
\end{aligned}
$$

- $\rho n_{\rho}=5.0, n_{\rho}=32$ with $\sigma_{s}=4.0$ did not reduce errors
- preferred: $n_{\sigma}=32, \sigma_{s}=3.0$

Smearing summary

- From our quenched study of the $G_{1 g}$ nucleon channel on small lattices $12^{3} \times 48$ for $a_{\mathrm{s}} \sim 0.1 \mathrm{fm}$ and $a_{\mathrm{s}} / a_{t} \sim 3.0$ and $m_{\pi} \sim 700 \mathrm{MeV}$, the preferred smearing parameters are

$$
\rho n_{\rho}=2.5, n_{\rho}=16 \quad n_{\sigma}=32, \sigma_{s}=3.0
$$

- factors still to consider:
- evidence for same smearing for other irreps
- expect same smearing for other isospin channels
- dependence on lattice spacing
- dependence on quark mass

Operator pruning issues

Operator plethora

- Number of N^{+}operators given below (1 displacement length)
- total of 179 operators in $G_{1 g}$ channel

	$G_{1 g}$	$G_{2 g}$	H_{g}
Single-site	3	0	1
Singly-displaced	24	8	32
Doubly-displaced-I	24	8	32
Doubly-displaced-L	64	64	128
Triply-displaced-T	64	64	128

- since 179×179 matrix too large to be practical, operator pruning is clearly necessary
- will focus on $G_{1 g}$ channel first

Operator plethora (G1g Nucleon)

G1g nucleon operators

G2g nucleon operators

Hu nucleon operators

Pruning: step one

- look at effective masses of diagonal elements of correlation matrix and discard noisy operators
- examples shown below ($\rho n_{\rho}=2.5, n_{\rho}=16, n_{\sigma}=32, \sigma_{s}=4.0$ used $)$
- alll 179 effiective masses

Pruning: step one (continued)

- retain 64 operators out of the 179
- SS: 0, 1, 2
- SD: $3,5,6,8,10,12,14,17,19,20,22,24,25$
- DDI: 27, 29, 30, 31, 33, 36, 38, 41, 43, 44, 45, 48
- DDL: 52, 54, 56, 57, 58, 59, 60, 61, 62, 72, 74, 76, $78,85,88,94,97,98,105,110$
■ TDT: 116, 118, 119, 124, 125, 126, 132, 134, 136, 138 149, 158, 162, 163, 169, 174

Noise removal via singular values

- examine renormalized matrix at early time $t=1$

$$
\hat{C}_{i j}(1)=C_{i j}(1) / \sqrt{C_{i i}(1) C_{i j}(1)}
$$

- sort operators in order of increasing noise
- include operators in this order, checking singular values
- skip operators which introduce small singular values
- presence of small singular values indicates operator set not "independent enough" \rightarrow noise can creep in

Further pruning via variational method

- look at eigenvectors of $C\left(t_{0}\right)^{-1 / 2} C(t) C\left(t_{0}\right)^{-1 / 2}$ for $t=3$
- coefficients squared shown
- retain 12 dominant operators

Milestone: principal effective masses

- G1g nucleons (16x16 matrix) using 200 configurations
- world record: 9 levels extracted (even more possible!)

G1u Nucleon channel

G2g nucleon channel

G2u nucleon channel

Hg nucleon channel

Hu nucleon channel

Future work

- three-quark operator pruning to be completed
- all irreps, all isospin channels
- different displacement lenaths
- include mesons (in progress)
- include multi-hadron operators
a stochastic all-to-all propagators with dilution, low eigenvectors
- will also facilitate disconnected diagrams
- goal: operator technology ready to go when unquenched simulations near realistically-light quark masses become possible
- LHPC recently was awarded 1/6 of QCDOC to generate configurations on large lattices with dynamical quarks such that pion mass around 300 MeV

Summary

- progress report on ongoing efforts of LHPC to extract hadron spectrum with large sets of extended operators
- need for correlation matrices of good operators
- spin identification must be addressed
- multi-hadron operators will become important
- exploration of 3-quark baryon operators nearly done
- study of meson operators beginning
- major milestone reached: can extract 9 or more states!!
- ultimately, MC updating with realistically light quark masses needed
- very challenging calculations
- will keep hammering at it!

