Effective Field Theories for Charmonium

Antonio Vairo

University of Milano and INFN

Motivation

- The system is characterized by two expansion parameters: α_s and v.
 (i) hierarchy of scales (⇒ factorizaton/effective field theories)
 (ii) some of the scales are perturbative.
- For these same reasons, charmonium (and quarkonium) are systems where low energy QCD may be studied in a systematic way (e.g. non-perturbative matrix elements, QCD vacuum, confinement, exotica, ...)

Summary

- 1. Effective Field Theories: NRQCD, pNRQCD
- 2. Spectroscopy
- 2.1 Charm mass
- 2.2 Higher resonances: pNRQCD potentials
- 2.3 New Spectroscopy
- 3. Annihilations
- 3.1 Inclusive decays
- 3.2 Electromagnetic decays
- 4. Production
- 4.1 Polarization
- 5. Prospects of $p\bar{p}$ at Fermilab
- 6. Conclusion

1. EFTs

Quarkonium Scales

Apart from α_s , another small parameter shows up near threshold:

$$E \approx 2m + \frac{p^2}{m} + \dots$$
 with $v = \frac{p}{m} \ll 1$

• The perturbative expansion breaks down when $\alpha_{\rm s} \sim v$:

$$\frac{1}{E} + \frac{1}{E} + \frac{1}$$

• The system is non-relativistic : $p \sim mv$ and $E = \frac{p^2}{m} + V \sim mv^2$.

Quarkonium Scales

The mass scale is perturbative: $m_b \simeq 5 \; {\rm GeV}, m_c \simeq 1.5 \; {\rm GeV}$

The system is non-relativistic: $\Delta_n E \sim mv^2, \Delta_{\rm fs} E \sim mv^4$ $v_b^2 \simeq 0.1, v_c^2 \simeq 0.3$

Non-relativistic bound states are characterized by at least three energy scales $m\gg mv\gg mv^2 \quad v\ll 1$

Normalized with respect to $\chi_b(1P)$ and $\chi_c(1P)$

Quarkonium Scales

Scales get entangled.

Effective Field Theories for Quarkonium

Whenever a system H, described by \mathcal{L}_{QCD} , is characterized by 2 scales $\Lambda \gg \lambda$, observables may be calculated by expanding one scale with respect to the other.

An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

Charmonium Scales

 $m_c \approx 1.5 \text{ GeV} \gg \Lambda_{\rm QCD}$

 $m_c v pprox 0.8 \ {
m GeV} > \Lambda_{
m QCD} \quad {
m for} \ J/\psi, \eta_c$

 $m_c v \sim \Lambda_{
m QCD}$ for all higher resonances

As a consequence:

- annihilation, production, hard scale processes happen at a perturbative scale;
- the bound state is perturbative (i.e. Coulombic) perhaps only for the J/ψ , η_c ;
- for all other charmonium resonances the bound state is non-perturbative. It will be described by matrix elements, (confining) potentials to be determined on the lattice.

NRQCD

NRQCD is the EFT that follows from QCD when $\Lambda=m$

- The matching is perturbative.
- The Lagrangian is organized as an expansion in 1/m and $\alpha_s(m)$:

$$\mathcal{L}_{\mathrm{NRQCD}} = \sum_{n} c(\alpha_{\mathrm{s}}(m/\mu)) \times O_{n}(\mu, \lambda)/m^{n}$$

Suitable to describe annihilation and production of quarkonium.

pNRQCD

pNRQCD is the EFT for heavy quarkonium that follows from NRQCD when $\Lambda = rac{1}{r} \sim mv$

• The Lagrangian is organized as an expansion in 1/m, r, and $\alpha_s(m)$:

$$\mathcal{L}_{\text{pNRQCD}} = \sum_{k} \sum_{n} \frac{1}{m^{k}} \times c_{k}(\alpha_{s}(m/\mu)) \times V(r\mu', r\mu) \times O_{n}(\mu', \lambda) r^{n}$$

1. Spectroscopy

Low lying $c\bar{c}$

Low lying $c\bar{c}$ states are assumed to realize the hierarchy: $m \gg 1/r \sim mv \gg \Lambda_{QCD}$ At $mv \gg \mu \gg mv^2$ the EFT is weakly coupled pNRQCD; its degrees of freedom are

- Q- \bar{Q} (singlet and octet): $E \sim \Lambda_{\rm QCD}$, mv^2 ; $p \leq mv$
- Gluons: $E \sim p \sim \Lambda_{
 m QCD}$, mv^2

Low lying $c\bar{c}$

Low lying $c\bar{c}$ states are assumed to realize the hierarchy: $m \gg 1/r \sim mv \gg \Lambda_{QCD}$ At $mv \gg \mu \gg mv^2$ the EFT is weakly coupled pNRQCD; its degrees of freedom are

- Q- \bar{Q} (singlet and octet): $E \sim \Lambda_{\rm QCD}$, mv^2 ; $p \lesssim mv$
- Gluons: $E \sim p \sim \Lambda_{
 m QCD}$, mv^2

The J/ψ mass at $\mathcal{O}(m\alpha_{\rm s}^5)$ is

$$E_{J/\psi} = \langle J/\psi | H_s(\mu) | J/\psi \rangle - i \frac{g^2}{3N_c} \int_0^\infty dt \, \langle 1S | \mathbf{r} e^{it(E_{J/\psi}^{(0)} - H_o)} \mathbf{r} | 1S \rangle \, \langle \mathbf{E}(t) \, \mathbf{E}(0) \rangle(\mu)$$

Brambilla Pineda Soto Vairo 99

Low lying $c\bar{c}$

Low lying $c\bar{c}$ states are assumed to realize the hierarchy: $m \gg 1/r \sim mv \gg \Lambda_{QCD}$ At $mv \gg \mu \gg mv^2$ the EFT is weakly coupled pNRQCD; its degrees of freedom are

- Q- \bar{Q} (singlet and octet): $E \sim \Lambda_{\rm QCD}$, mv^2 ; $p \lesssim mv$
- Gluons: $E \sim p \sim \Lambda_{
 m QCD}$, mv^2

The J/ψ mass at $\mathcal{O}(m\alpha_{
m s}^5)$ is

$$E_{J/\psi} = \langle J/\psi | H_s(\mu) | J/\psi \rangle - i \frac{g^2}{3N_c} \int_0^\infty dt \, \langle 1S | \mathbf{r} e^{it(E_{J/\psi}^{(0)} - H_o)} \mathbf{r} | 1S \rangle \, \langle \mathbf{E}(t) \, \mathbf{E}(0) \rangle(\mu)$$

Brambilla Pineda Soto Vairo 99

From which it follows

$$\bar{m_c}(m_c) = 1.24 \pm 0.020 \text{ GeV}$$

Brambilla Sumino Vairo 01

Higher resonances

Higher $c\bar{c}$ resonances are better studied on the lattice.

- QCD ($ma \ll 1$)
- NRQCD (coarse lattices, $ma \gg 1$, no $a \rightarrow 0$)
- pNRQCD (coarse lattices, no $a \rightarrow 0$)

pNRQCD for higher resonances

- All quarks with energy $\gg mv^2$ and momentum $\gg mv$ are integrated out.
- All gluonic excitations between heavy quarks are integrated out since they develop a gap of order Λ_{QCD} with the static $Q\bar{Q}$ energy.

⇒ The singlet quarkonium field S of energy mv^2 and momentum mv is the only the degree of freedom of pNRQCD (up to ultrasoft light quarks, e.g. pions).

pNRQCD for higher resonances

- All quarks with energy $\gg mv^2$ and momentum $\gg mv$ are integrated out.
- All gluonic excitations between heavy quarks are integrated out since they develop a gap of order Λ_{QCD} with the static $Q\bar{Q}$ energy.

$$\mathcal{L} = \operatorname{Tr}\left\{ \mathbf{S}^{\dagger} \left(i\partial_0 - \frac{\mathbf{p}^2}{m} - V_s \right) \mathbf{S} \right\}$$

 The idea is to calculate once for ever the potentials on the lattice and determine the spectrum by solving the Schrödinger equation.

Static potential

$$V_s^{(0)} = \lim_{T \to \infty} \frac{i}{T} \ln \langle W(r \times T) \rangle = \lim_{T \to \infty} \frac{i}{T} \ln \langle \Box \rangle$$

Bali Schilling Wachter 97

1/m potential

$$V_s^{(1)} = -\frac{1}{2} \int_0^\infty dt \, t \, \langle \, \square \, \rangle$$

Brambilla Pineda Soto Vairo 00

Koma, Koma and Wittig/QWG 06

Spin-dependent potentials

States near or above threshold

- In general, for states near or above threshold a systematic treatment does not exist so far. Most of the existing analyses rely on models (e.g. the Cornell coupled channel model).
- However one may still exploit an expansion in α_s and v. In some cases one may develop an EFT owing to special dynamical conditions.
 - A possible exotic (hybrid) is the Y(4260).
 - An example is the X(3872) intepreted as a $D^0 \bar{D}^{*0}$ or $\bar{D}^0 D^{*0}$ molecule. In this case, one may take advantage of the unnaturally (and accidentally) large $D^0 \bar{D}^{*0}$ scattering length. Braaten Kusunoki 03

2. Annihilations

NRQCD factorization

$$\Gamma(H \to \text{LH}) = \sum_{n} \frac{2 \operatorname{Im} f^{(n)}}{m^{d_n - 4}} \langle H | \psi^{\dagger} K^{(n)} \chi \chi^{\dagger} K'^{(n)} \psi | H \rangle$$

$$\Gamma(H \to \text{EM}) = \sum_{n} \frac{2 \operatorname{Im} f^{(n)}_{\text{em}}}{m^{d_n - 4}} \langle H | \psi^{\dagger} K^{(n)} \chi | \text{vac} \rangle \langle \text{vac} | \chi^{\dagger} K'^{(n)} \psi | H \rangle$$

NRQCD matrix elements

• By fitting charmonium *P*-wave decay data $\langle O_1(^1P_1) \rangle_{h_c(1P)} \approx 8.1 \times 10^{-2} \text{ GeV}^5$ and $\langle O_8(^1S_0) \rangle_{h_c(1P)} \approx 5.3 \times 10^{-3} \text{ GeV}^3$ in $\overline{\text{MS}}$ and at the factorization scale of 1.5 GeV.

Maltoni 00

In quenched lattice simulations

 $\langle O_1(^1P_1) \rangle_{h_c(1P)} \approx 8.0 \times 10^{-2} \text{ GeV}^5$, $\langle O_8(^1S_0) \rangle_{h_c(1P)} \approx 4.7 \times 10^{-3} \text{ GeV}^3$ and $\langle O_1(^1S_0) \rangle_{\eta_c(1S)} \approx 0.33 \text{ GeV}^3$

in $\overline{\mathrm{MS}}$ and at the factorization scale of 1.3 GeV.

• In lattice simulations with three light-quark flavors (extrapolation) $\langle O_1(^1S_0) \rangle_{\eta_b(1S)} \approx 4.1 \text{ GeV}^3$, $\langle O_1(^1P_1) \rangle_{h_b(1P)} \approx 3.3 \text{ GeV}^5$ and $\langle O_8(^1S_0) \rangle_{h_b(1P)} \approx 5.9 \times 10^{-3} \text{ GeV}^3$ in $\overline{\text{MS}}$ and at the factorization scale of 4.3 GeV.

Bodwin Sinclair Kim 01

Some further recent (quenched) determinations are in Bodwin Lee Sinclair 05

Bodwin Sinclair Kim 96

pNRQCD factorization

$$\langle H|\psi^{\dagger}K^{(n)}\chi\chi^{\dagger}K^{\prime\,(n)}\psi|H
angle = |R(0)|^{2} \times \int dt \, t^{n} \, \langle G(t)G(0)
angle$$

Brambilla Eiras Pineda Soto Vairo 02 03

P-wave decays at $\mathcal{O}(mv^5)$

NRQCD

$$\Gamma(\chi_J \to \text{LH}) = 9 \text{ Im } f_1 \frac{\left| R'(0) \right|^2}{\pi m^4} + \frac{2 \text{ Im } f_8}{m^2} \langle \chi | O_8({}^1S_0) | \chi \rangle$$

$$\Gamma(\chi_J \to \gamma\gamma) = 9 \text{ Im } f_{\gamma\gamma} \frac{\left| R'(0) \right|^2}{\pi m^4} \qquad J = 0, 2$$

* Bottomonium and charmonium P-wave decays depend on 6 non-perturbative parameters.

pNRQCD

$$\langle \chi | O_8(^1S_0) | \chi \rangle = \frac{\left| R'(0) \right|^2}{18\pi m^2} \mathcal{E}; \quad \mathcal{E} \equiv \int_0^\infty dt \, t^3 \, \langle \operatorname{Tr}(g\mathbf{E}(t) \, g\mathbf{E}(0)) \rangle$$

- * The quarkonium state dependence factorizes.
- * Bottomonium and charmonium P-wave decays depend on 4 non-perturbative parameters.

Bottomonium *P*-wave decays

Brambilla Eiras Pineda Soto Vairo 01, Vairo 02, CLEO/QWG 04

Charmonium P-wave decays

Ratio	PDG04	PDG00	LO	NLO
$rac{\Gamma(\chi_{c0} ightarrow \gamma \gamma)}{\Gamma(\chi_{c2} ightarrow \gamma \gamma)}$	5.1±1.1	13±10	3.75	pprox 5.43
$\frac{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c0} \to \gamma\gamma)}$	410±100	270±200	\approx 347	pprox 383
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c0} \to \gamma\gamma)}$	3600±700	3500±2500	pprox 1300	pprox 2781
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c2} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$	7.9±1.5	12.1±3.2	2.75	pprox 6.63
$\frac{\Gamma(\chi_{c0} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}{\Gamma(\chi_{c2} \to l.h.) - \Gamma(\chi_{c1} \to l.h.)}$	8.9±1.1	13.1±3.3	3.75	pprox 7.63

 $m_c = 1.5 \text{ GeV}$ $\alpha_{
m s}(2m_c) = 0.245$

mainly from E835 ($\chi_{c0}\,,$ total width and $\gamma\gamma\,)$ also from Belle ($\chi_{c0}\to\gamma\gamma\,)$ and CLEO, BES

QWG CERN report 04

$$\Gamma(\eta_c \to LH) / \Gamma(\eta_c \to \gamma \gamma)$$

• Large $\beta_0 \alpha_s$ contributions.

$$\frac{\Gamma(\eta_c \to LH)}{\Gamma(\eta_c \to \gamma \gamma)} \approx (1.1 \text{ (LO)} + 1.0 \text{ (NLO)}) \times 10^3 = 2.1 \times 10^3$$
$$\frac{\Gamma(\eta_c \to LH)}{\Gamma(\eta_c \to \gamma \gamma)} = (3.3 \pm 1.3) \times 10^3 \text{ (EXP)}$$

$$\Gamma(\eta_c \to LH) / \Gamma(\eta_c \to \gamma \gamma)$$

• Large $\beta_0 \alpha_s$ contributions.

$$\frac{\Gamma(\eta_c \to LH)}{\Gamma(\eta_c \to \gamma \gamma)} \approx (1.1 \text{ (LO)} + 1.0 \text{ (NLO)}) \times 10^3 = 2.1 \times 10^3$$
$$\frac{\Gamma(\eta_c \to LH)}{\Gamma(\eta_c \to \gamma \gamma)} = (3.3 \pm 1.3) \times 10^3 \text{ (EXP)}$$

$$\frac{\Gamma(\eta_c \to LH)}{\Gamma(\eta_c \to \gamma \gamma)} = (3.01 \pm 0.30 \pm 0.34) \times 10^3$$

Bodwin Chen 01

$$\Gamma(J/\psi \to e^+e^-)/\Gamma(\eta_c \to \gamma\gamma)$$

• Large logarithms.

Penin Pineda Smirnov Steinhauser 04

3. Production

Quarkonium Production

- There is no formal proof of the NRQCD factorization yet.
- The relevant 4-fermion operators are

 $\psi^{\dagger} K^{(n)} \chi a_{H}^{\dagger} a_{H} \chi^{\dagger} K^{\prime \, (n)} \psi$

Recently it has been proved that the cancellation of the IR divergences at NNLO requires the modification of the 4 fermion operators into

$$\psi^{\dagger} K^{(n)} \chi \phi_{l}^{\dagger}(0,\infty) a_{H}^{\dagger} a_{H} \phi_{l}(0,\infty) \chi^{\dagger} K^{\prime (n)} \psi$$

$$\phi_{l}(0,\infty) = \mathcal{P} \exp\left(-ig \int_{0}^{\infty} d\lambda \, l \cdot A(\lambda \, l)\right), \qquad l^{2} = 1$$

Nayak Qiu Sterman 05, Nayak/QWG 06

Charmonium Production at the Tevatron

Octet contributions dominate in production at high p_T .

 $p\bar{p} \to J/\psi + X$

 $p\bar{p} \to \psi(2S) + X$

Krämer 01, CDF 97

- For large p_T quarkonium production, gluon fragmentation via the color-octet mechanism dominates: $\langle O_8^{J/\psi}({}^3S_1) \rangle$.
- At large p_T the gluon is nearly on mass shell and so is transversely polarized.
- In color octet gluon fragmentation, most of the gluon's polarization is transferred to the J/ψ .
- Radiative corretions, color singlet production dilute this.
- In the case of the J/ψ feeddown is important: feeddown from χ_c states is about 30% of the J/ψ sample and dilutes the polarization.
- feeddown from $\psi(2S)$ is about 10% of the J/ψ sample and is largely transversely polarized.
- Spin-flippling terms are assumed suppressed. But This stricly depends on the power counting. If they are not, polarization may dilute at high p_T .

Krämer 01, Braaten et al 01, CDF 97

CDF/QWG 06

CDF/QWG 06

CDF/QWG 06

5. Prospects of pp at Fermilab

E760-E835 legacy

 $p\bar{p}$ to charmonium is good for

- precise determination of known resonances
 - * mass measurements at about 0.1 MeV level,
 - * total width measurements (ideal for narrow states);
- through the detection of:

EM final states (e.g. electrons and photons) few body final states.

Mussa/QWG 06

E760-E835 legacy

 $p \bar{p}$ to charmonium was limited by

- non hermicity of the detector;
- Iow energy photon threshold: 20 MeV;
- calorimeter granularity;
- multiple scattering for tracks below 1 GeV;
- physical occupancy of the jet target;
- 2x extra rate induced by e- \bar{p} interactions;
- no momentum measurement on hadrons (no magnet).

Mussa/QWG 06

The current generation of B factories will not have enough statistics to measure $p\bar{p}$ coupling to newly discovered states. Probably super B factories will be able to measure some in B decays (limited to J=0,1). Panda is scheduled to start after 2014, i.e. in the super B era.

The antiproton source at Fermilab (the antiproton ring should have originally supplied beam to BTeV) provides (after 2009 and before 2014: data taking from 2011) a potential tool to understand XYZ's. What is needed is:

- an improved detector and a target with respect to the old E835;
- B factories that tell where to look.

Gollwitzer Mussa/QWG 06

Conclusion

Charmonium physics provides a place where low-energy QCD and its rich structure may be studied in a controlled and systematic way, combining perturbative QCD, lattice calculations, and effective field theory analytical methods.

B factories have immensely boosted charmonium studies in the last years, which makes the contribution to charmonium physics that $p\bar{p}$ machines at Fermilab and GSI have provided and could/will provide in the future even more valuable.