QUARKONIA: Notes on Spectroscopy and String Breaking

Wolfram Weise Tllünchen
(with: Johannes Eiglsperger, Norbert Kaiser)
Potentials: Confinement plus Gluon Exchange and beyond

- Charmonium: Fine- and Hyperfine-Structure
- Induced Interaction and Effective Field Theory
- String Breaking:
\rightarrow Guidance from Lattice QCD
\rightarrow A schematic model

Charmonium Spectroscopy

- "Is there anything NEW to be learned ?"
- Physics close to and in the $D \bar{D}$ continuum

Lattice QCD

- Charmonium spectrum below $D \bar{D}$ threshold from lattice QCD
with 3 light sea quarks, MILC configurations, improved (Fermilab) action

M. di Pierro et al., hep-lat/0310042

Lattice QCD

Gluonic Flux Tube and Confining Potential

 between heavy quark and antiquark$$
\mathbf{V}(\mathbf{r})=-\frac{4}{3} \frac{\alpha_{\mathbf{s}}}{\mathbf{r}}+\sigma \mathbf{r}
$$

G.S. Bali, Phys. Reports 343 (200I)।

Confinement plus Gluon Exchange to order α_{s}^{2}

Non-perturbative Induced t-Channel Interaction

Strategies

- Modern approach: Effective Field Theory

Non-Relativistic QCD:

Separation of scales provided by mass of heavy quark
Expansion in \mathbf{v} (velocity) and $\alpha_{\mathbf{s}}$

- Potential approach:

Bethe-Salpeter equation \rightarrow non-relativistic reduction to order $\mathbf{m}_{\mathrm{c}}^{-2}$
\rightarrow Schrödinger equation:

$$
\left[-\frac{\vec{\nabla}^{2}}{\mathbf{m}_{\mathbf{c}}}+\mathbf{U}\right] \psi=\left(2 \mathbf{m}_{\mathbf{c}}+\mathbf{E}\right) \psi
$$

$$
\mathbf{U}=\sigma \mathbf{r}-\frac{4}{3} \frac{\alpha_{\mathbf{s}}}{\mathbf{r}}
$$

$+\mathbf{V}_{\text {spin }} \overrightarrow{\mathbf{s}}_{\mathbf{1}} \cdot \overrightarrow{\mathbf{s}}_{\mathbf{2}}+\mathbf{V}_{\text {tensor }}\left(\mathbf{3} \overrightarrow{\mathbf{s}}_{\mathbf{1}} \cdot \hat{\mathbf{r}} \overrightarrow{\mathbf{s}}_{\mathbf{2}} \cdot \hat{\mathbf{r}}-\overrightarrow{\mathbf{s}}_{\mathbf{1}} \cdot \overrightarrow{\mathbf{s}}_{2}\right)+\mathrm{V}_{\mathrm{so}} \overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{S}}+\ldots$

Potential Models

- Early potential models of Charmonium based on

Confinement + One-Gluon Exchange

(Cornell, Richardson et al., Buchmüller et al. potentials and variants thereof) used: $\quad \sigma \simeq 1 \mathrm{GeV} / \mathrm{fm} \quad \alpha_{\mathrm{s}} \simeq 0.4$
... together with LARGE c-quark mass:

$$
\mathrm{m}_{\mathrm{c}} \simeq 1.5-1.8 \mathrm{GeV}
$$

- whereas:

$$
\mathbf{m}_{\mathbf{c}}\left(\mu=\mathbf{m}_{\mathbf{c}}\right)=(\mathbf{1 2 2 4} \pm \mathbf{1 7} \pm \mathbf{5 4}) \mathrm{MeV}
$$

from inclusive semileptonic B decays
(Hoang and Manohar, PLB 633 (2006) 526)

- Problems with spin-spin \& spin-orbit splittings

Potential to order $\alpha_{\mathbf{s}}^{2}$

(S.N. Gupta, S.F. Radford,W.W. Repko, Phys. Rev. D26 (1982) 3305)

$$
\begin{gathered}
\mathbf{U}=\mathbf{V}_{\mathbf{c o n f}}+ \\
-\frac{4 \alpha_{s}}{3 r}\left[1-\frac{3 \alpha_{s}}{2 \pi}+\frac{\alpha_{s}}{6 \pi}\left(33-2 n_{f}\right)\left[\ln (\mu r)+\gamma_{E}\right]\right]+\frac{4 \alpha_{s}}{3 m^{2} r}\left[1-\frac{3 \alpha_{s}}{2 \pi}+\frac{\alpha_{s}}{6 \pi}\left(33-2 n_{f}\right)\left[\ln (\mu r)+\gamma_{E}\right]\right] \nabla^{2} \\
+\frac{8 \pi \alpha_{s}}{3 m^{2}}\left[\left(1-\frac{3 \alpha_{s}}{2 \pi}\right) \delta(\vec{r})-\frac{\alpha_{s}}{24 \pi^{2}}\left(33-2 n_{f}\right) \nabla^{2}\left(\frac{\ln (\mu r)+\gamma_{E}}{r}\right)\right]-\frac{14 \alpha_{s}^{2}}{9 m r^{2}} \\
+\frac{32 \pi \alpha_{s}}{9 m^{2}} \overrightarrow{\mathrm{~s}}_{1} \cdot \overrightarrow{\mathrm{~s}}_{2}\left[\left(1-\frac{\alpha_{s}}{12 \pi}(26+9 \ln 2)\right) \delta(\overrightarrow{\mathrm{r}})-\frac{\alpha_{s}}{24 \pi^{2}}\left(33-2 n_{f}\right) \nabla^{2}\left(\frac{\ln (\mu r)+\gamma_{E}}{r}\right)+\frac{21 \alpha_{s}}{16 \pi^{2}} \nabla^{2}\left(\frac{\ln (m r)+\gamma_{E}}{r}\right]\right] \\
+\frac{4 \alpha_{s}}{m^{2}} \frac{\overrightarrow{\mathrm{~s}}_{1} \cdot \hat{r} \overrightarrow{\mathrm{~s}}_{2} \cdot \hat{r}-\frac{1}{3} \overrightarrow{\mathrm{~s}}_{1} \cdot \overrightarrow{\mathrm{~s}}_{2}}{r^{3}}\left[1+\frac{4 \alpha_{s}}{3 \pi}+\frac{\alpha_{s}}{6 \pi}\left(33-2 n_{f}\right)\left[\ln (\mu r)+\gamma_{E}-\frac{4}{3}\right]-\frac{3 \alpha_{s}}{\pi}\left[\ln (m r)+\gamma_{E}-\frac{4}{3}\right]\right. \\
+\frac{2 \alpha_{s}}{m^{2}} \frac{\overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{~S}}}{r^{3}}\left[1-\frac{11 \alpha_{s}}{18 \pi}+\frac{\alpha_{s}}{6 \pi}\left(33-2 n_{f}\right)\left[\ln (\mu r)+\gamma_{E}-1\right]-\frac{2 \alpha_{s}}{\pi}\left[\ln (m r)+\gamma_{E}-1\right]\right]
\end{gathered}
$$

Potential to order α_{s}^{2} Results

(S.N. Gupta, S.F. Radford,W.W. Repko, Phys. Rev. D26 (1982) 3305)

| State | | Mass (GeV) |
| :--- | :---: | :---: | exp.

State	Mass (GeV)	exp.
$1^{3} P_{2}\left(\chi_{2}\right)$	3.561	3.556
$1^{3} P_{1}\left(\chi_{1}\right)$	3.515	3.511
$1^{3} P_{0}\left(\chi_{0}\right)$	3.416	3.415
$1^{1} P_{1}$	3.531	3.526

- Excellent agreement found with:

$$
\begin{gathered}
\sigma \simeq 0.9 \mathrm{GeV} / \mathrm{fm} \quad \mathrm{~m}_{\mathrm{c}}=1.2 \mathrm{GeV} \\
\alpha_{\mathrm{s}}=0.39 \quad(\text { large })
\end{gathered}
$$

Introducing the
 INDUCED INTERACTION

- Bethe-Salpeter equation:
... summing LADDERS:

- Crossing: ... summing BUBBLES: induced non-perturbative interaction

- Effective Field Theory: absorbs induced interaction in contact terms

INDUCED INTERACTION (contd.)

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{ind}}=\frac{\mathrm{G}^{2}}{\overrightarrow{\mathrm{q}}^{2}+\mathrm{M}^{2}}\left(1-\frac{\overrightarrow{\mathrm{q}}^{2}}{8 \mathrm{~m}_{\mathrm{c}}^{2}}\right) \text { (central) } \quad+\text { spin-orbit } \\
& -\frac{\mathbf{G}^{2}}{4 \mathbf{m}_{\mathbf{c}}^{2}\left(\overrightarrow{\mathbf{q}}^{2}+\mathbf{M}^{2}\right)}\left[\vec{\sigma}_{\mathbf{1}} \cdot \overrightarrow{\mathbf{q}} \vec{\sigma}_{\mathbf{2}} \cdot \overrightarrow{\mathbf{q}}-\left(\vec{\sigma}_{\mathbf{1}} \times \overrightarrow{\mathbf{q}}\right) \cdot\left(\vec{\sigma}_{\mathbf{2}} \times \overrightarrow{\mathbf{q}}\right)\right] \\
& \text { (spin-longitudinal) (spin-transverse) }
\end{aligned}
$$

- Coupling strength: related to asymptotic normalization $\mathbf{N}_{\mathbf{0}}$ of bound-state wave function

$$
\alpha_{\mathrm{ind}} \equiv \frac{\mathbf{G}^{2}}{4 \pi}=\frac{\mathbf{M}^{2}}{\mathbf{m}_{\mathbf{c}}^{3}} \mathbf{N}_{\mathbf{0}}^{2} \sim \mathcal{O}(1)
$$

- Spin-dependent interaction:

$$
\begin{array}{rlrl}
\mathbf{U}_{\mathrm{ind}}(\overrightarrow{\mathbf{r}}) & =\frac{\mathbf{G}^{2}}{48 \pi \mathbf{m}_{\mathbf{c}}^{2}}\left(-\mathbf{M}^{2} \frac{\mathrm{e}^{-\mathrm{Mr}}}{\mathrm{r}}+4 \pi \delta^{3}(\overrightarrow{\mathbf{r}})\right) \vec{\sigma}_{1} \cdot \vec{\sigma}_{1} & & \text { spin-spin } \\
& +\frac{\mathbf{G}^{2}}{24 \pi} \frac{\mathbf{M}^{2}}{\mathbf{m}_{\mathbf{c}}^{2}}\left(1+\frac{3}{\mathbf{M r}}+\frac{3}{\mathbf{M}^{2} \mathbf{r}^{2}}\right) \frac{\mathrm{e}^{-\mathrm{Mr}}}{\mathbf{r}} \mathrm{~S}_{12}(\hat{\mathbf{r}}) & & \text { tensor } \\
& +\frac{3 \mathbf{G}^{2}}{8 \pi \mathbf{m}_{\mathbf{c}}^{2}}\left(\mathrm{M}+\frac{1}{\mathbf{r}}\right) \frac{\mathbf{e}^{-\mathrm{Mr}}}{\mathbf{r}^{2}} \overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{S}} & \text { spin-orbit }
\end{array}
$$

Charmonium Spectroscopy with INDUCED interaction

(J. Eiglsperger, N. Kaiser, W.W.)

- confining potential + one- \& two-gluon exchange + induced interaction

II.
 QUANTUM MECHANICS of STRING BREAKING

- Guidance from Lattice QCD
- Schematic Two-State Scenario

Outlooks

CONFINEMENT

... the classic (but incomplete) picture:

LATTICE - QCD: POTENTIAL between (infinitely) Heavy Quarks

(Action) Density of Color Fields

$|\leftarrow \mathbf{r} \rightarrow|$

... at $\mathbf{r} \boldsymbol{>}$ I fm the STRING BREAKS

STRING BREAKING in QCD

Lattice QCD Results

(G. Bali et al.: Phys. Rev. D 7 I (2005) II45I3)

MASS - RADIUS relations:
 Charmonium States

$$
\mathrm{M}=2 \mathrm{~m}_{\mathrm{c}}+1.67 \mathrm{GeV} / \mathrm{fm} \cdot\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}
$$

MASS - RADIUS relations: Bottomonium States

- Masses vs. root-mean-square radii

$$
\mathrm{M}=2 \mathrm{~m}_{\mathrm{b}}+1.5 \mathrm{GeV} / \mathrm{fm} \cdot\left\langle\mathbf{r}^{2}\right\rangle^{1 / 2}
$$

QM of String Breaking:

 Schematic Two-State Model

$$
\left(\mathbf{H}_{\alpha \beta}\right)=\left(\begin{array}{cc}
\mathbf{2} \mathbf{m}_{\mathbf{Q}}+\mathbf{c} \mathbf{R} & \mathbf{W}_{\alpha \beta} \\
\mathbf{W}_{\beta \alpha} & \mathbf{2} \mathbf{m}_{\mathbf{B}}
\end{array}\right)
$$

mixing:

$$
\begin{aligned}
& |\mathbf{1}\rangle=\cos \theta|\alpha\rangle+\sin \theta|\beta\rangle \\
& |\mathbf{2}\rangle=-\sin \theta|\alpha\rangle+\cos \theta|\beta\rangle \\
& \mathbf{E}_{\mathbf{1}, \mathbf{2}}=\frac{\mathbf{1}}{\mathbf{2}}\left[\mathbf{H}_{\alpha \alpha}+\mathbf{H}_{\beta \beta} \pm \sqrt{\left(\mathbf{H}_{\alpha \alpha}-\mathbf{H}_{\beta \beta}\right)^{2}+\mathbf{4}\left|\mathbf{W}_{\alpha \beta}\right|^{2}}\right]
\end{aligned}
$$

- example bottomonium:
mixing / string breaking matrix element $\left|\mathbf{W}_{\alpha \beta}\right| \simeq \mathbf{3 0 M e V}$

OUTLOOKS

- X,Y, Z states are likely to be mixed configurations of four-quark, hybrid, ... states:

$$
|X\rangle=\mathbf{a}_{\mathbf{1}}|\mathbf{c} \overline{\mathbf{c}}\rangle+\mathbf{a}_{\mathbf{2}}|[\mathbf{c} \overline{\mathbf{q}}][\overline{\mathbf{c}} \mathbf{q}]\rangle+\mathbf{a}_{3}|[\mathbf{c} \mathbf{q}][\overline{\mathbf{c}} \overline{\mathbf{q}}]\rangle+\mathbf{a}_{\mathbf{4}}\left|\mathbf{c} \overline{\mathbf{c}} \mathbf{g}^{*}\right\rangle+\ldots
$$

- Experiment: high-precision measurements of decays
- Theory: coupled - channels approach combined with Lattice QCD and effective field theory methods
- Charmonium states above threshold: complex potential

$$
\mathbf{U}_{\mathrm{eff}}=\mathbf{U}_{\mathbf{0}}+\mathbf{W}^{\dagger} \frac{\mathbf{1}}{\mathbf{E}-\mathbf{H}_{\mathbf{0}}+\mathbf{i} \varepsilon} \mathbf{W}
$$

