

	PHYSICAL REVIEW LETTERS	ми ¹ 5, Момиен 2
ident Scatt	domagnetic Measurements of the Spin-Depen of Slow Neutrons with Atomic Nuclei	Systematic Pseudo
inovski,* P.	A. Abragam, G. L. Baechella, <u>H. Glättli</u> , A. Mali J. Pieswanz, and M. Pirot	P. Roubeau, A.
des Neviéatri	ae da Subile et de Récomme Hayaklinae. Centre d'Elea al 190 Gif-san-Vante, France (Received 21 May 1974)	Service de Picprinae :
ists)	The suthers (who are not nuclear physici	Th
of	nuld be grateful for suggestions of nuclei	woul
ectal	articular interest. Is O" of sufficient spe	part
ery	terest to be investigated in spite of its ve	inter
mea-	nall isotopic abundance? Is an <i>accurate</i>	sma
t to	irement of μ^* for the deuteron of interest	Sure
hat	pectalists of the three-body problem? W	spec
n? For	out magic nuclei plus or minus a nucleor	abou
ព្វាភគ	any isotopes differing by two neutrons, a	man
near.	re identical and magnetic moments very r	are
nts	the ratio of their pseudomagnetic moment	Is th
Råce-	orth investigating, etc.? We welcome su	worl
	ons.	tions

Frozen Spin Polarised Target for a cold neutron beam

Requirements:

- Measure NMR signals of Protons and Deuterons with same Q-meter circuit at different Field (B = 2.5 T and 0.34 T)
- No ³He on the beam path

Solution:

- Dilution refrigerator for frozen spin mode operation
- Target cell separate from DR mixing chamber
- Target samples solid at room temperature

P. Hautle, 3rd EU WS PT for Europe, Rech, Feb 4, 2006

Summary, Performance of the Cryostat

- Design & construction realised in ¹/₂ year
- 3 Month operation on cold neutron beam (July – August 2005)
- Base temperatures:

Mixing chamer : T = 70 mK Target cell : T = 80 mK

 Heat conductivity of ⁴He is responsible for the temperature gradient not the heat exchanger

P. Hautle, 3rd EU WS PT for Europe, Rech, Feb 4, 2006

