Status of the Mainz Frozen Spin Target

3rd Meeting 'Polarized Nucleon Targets for Europe' in the 6th European Framework Program

Mauricio Martínez Fabregate Rech, February 3rd 2006

- Polarization of a nucleon
- The Frozen Spin Target
- Microwave System
- Magnet
- N.M.R.
- Cryostat
 - Separator-Evaporator
 - Temperature measurement
 - Needle valve
 - Control System
- Conclusions and Outlook
Polarization of nucleon

- Particles with \(S=1/2 \) in an external magnetic field, follow Boltzmann law in thermal equilibrium:

\[
P = \frac{N_+ - N_-}{N_+ + N_-} = \tanh\left(\frac{\mu B}{kT}\right)
\]

- Magnetic moment \(\mu_v = 660\mu_p \)

- \(T=1K, \ B=2.5T \quad P_e=92\%, \ P_p=0.25\% \)
- \(T=0.02K, \ B=10T \quad P_e=100\%, \ P_p=40\% \)

- **Dynamical Nuclear Polarization**: Microwave are applied to induce a simultaneous spin flip, and transfer polarization from electron to nucleon.

The Frozen Spin Target

- **Microwave System**
- **Cryostat**
- **Target**
 - BUTANOL
 - \(C_4H_{10} \)
 - \(80\% \)
 - \(20\% \)
- **Control System**
- **Pumping System**
- **Magnet**
- **NMR**

Mauricio Martínez Fabregat
Rech, February 3rd 2006
Microwave system

- Varactor tuning
- IMPATT diode
- Tunable frequency
 70GHz ± 200MHz
- Used in the GDH Sum Rule experiment 2003
- LabView control panel

Magnet

- Maximum field: 5 Tesla
- High Uniformity:
 \[
 \frac{\Delta B}{B} < 10^{-4}
 \]
- Liquid He bath at 4 K
- Radiation shield cooled by nitrogen
- Refilling time:
 - 12 days He
 - 5 days N
- LabView program
Magnet, uniformity test
(Heiko Rochholz Diplomarbeit in XI group)

NMR System

- Serial resonance circuit LC with a coil around the target material
- Change in polarization induce change in susceptibility of the coil
- Signal obtained by frequency scan over the resonance Larmor frequency
- Andrea Knezevic and Milorad Korolija from Ruddjer Boscovic Institut Zagreb and important collaboration from Bochum University.
Mauricio Martínez Fabregat
February 3rd 2006

Cryostat

- Temperatures of 50 mK. He3-He4 mixture. He3 line
- Cooling power of 100 mW
- Superconducting holding coil integrated
- Separator and Evaporator precooling stages. He4 line
- Target insert along the beam axis
- Fits in the geometry of the Crystal Ball detector

Separator T=3K
Evaporator T=1.8K
He3-He4 mixture T=50mK
Needle valves
Mixing chamber

Separator and Evaporator precooling stages. He4 line
He4 line
(Mohamed Mouahid Diplomarbeit)

Separator
• 2 Rotary pumps
• 18 Electro pneumatic valves
• 6 pressure sensors
• 2 Flow meters
• Temp = 3 K

Evaporator
• 1 Rotary pumps
• 9 Electro pneumatic valves
• 3 pressure sensors
• 1 Flow meters
• Temp 1.8 K

Separator and Evaporator
He3 line

- 39 Valves
- 1 Flow meter
- 4 Pressure sensors
- 4 Rotary Pumps
- 2 Cooling Traps
- 5 Roots Pumps
Cooling trap

- Series of 5 Roots pumps: 4000 m³/h, 2000 m³/h, 1000 m³/h, 500 m³/h and 250 m³/h
- Very low leak rate
- Pressure and temperature sensors
- Simatic program to control it
Temperature measurements

Type of sensors:
PT100, Allen Bradley, Speer and TVO (4 and 2 poles measurement)

Number of Sensors:
- Insert: 8 sensors, 1AVS
- Shields: 8 sensors, 1AVS
- Precooling: 8+20 sensors, 1AVS + 1Keithley Digital Voltmeter

AVS Resistor Bridge
- 8 Channels
- GPIB connection to PC
- Optical coupling
- Read/Write parameters with LabView

Heaters: Indium sealing, Mixer, Separator, Evaporator, Still

Motor for needle valves

- 6 Step motors
- Guide system
- Technosoft software
- LabView connection (Joachim Scholz)
Mauricio Martínez Fabregate
Rech, February 3rd 2006

Hardware Control System

- **Coil**
- **Freq. generator**
- **Freq. scan**
- **Amplifier circuit**

N.M.R.

- **GPIB**
- **RS232**

CPU master
- **He3 line**
- **M.W.**

- **Source**
- **Power meter**
- **Freq. sensor**
- **Motor attenuator**

Magnet

- **Thermo sensors**
- **AVS**

Needle valves

Motor

Valves, Pumps
- **D/I/O**
- **A/I/O**

Sensors

Balance

R

S

2

3

2

Hardware Control System Status

- **Coil**
- **Freq. generator**
- **Freq. scan**
- **Amplifier circuit**

N.M.R.

- **GPIB**
- **RS232**

CPU master
- **He3 line**
- **M.W.**

- **Source**
- **Power meter**
- **Freq. sensor**
- **Motor attenuator**

Magnet

- **Termosensors**
- **AVS**

Needle valves

Motor

Valves, Pumps
- **D/I/O**
- **A/I/O**

Sensors

Balance

R

S

2

3

2
Software Control System

LabView

Technosoft Motor

AGLink

Simatic Step7

N.M.R.

AVS

Main Program

M.W.

Magnet

He4

He3

Roots

CPU Master

Profibus

CPU Slave

LabView Main program
Summary & Outlook

Microwave system used in 2003.
Magnet working and tested by X1 group.
NMR under construction.
Roots Pumps working and tested.
He³ and He⁴ line (66 valves, 7 pumps, 13 pressure sensors, 4 flow meters) working, leak test missing.
AVS Thermo sensors software system done.
Cooling trap refilling system working, trap is being produced in Dubna.
Motor-needle valve connection missing, software done.
LabView-Simatic control system done, but more parts have to be implemented.
Cryostat will be mounted and tested in May-June.

Target Group:
Andreas Thomas
Eric Heid
Mauricio Martínez Fabregate
Garik Palagashvilk
Oleksandr Kostivov
Milorad Korolija
Andrea Knezevic
Patricia Aguär Bartolomé
Francis Pheron
Joachim, Mohamed,
Vicenta, Noelia, Dave,
Steven, Chris...

GRACIAS!

+ Bonn + Bochum + COMPASS
Magnet

- Liquid He bath at 4 K
- Radiation shield cooled by nitrogen
- Maximum field: 5 Tesla
- High Uniformity: $\frac{\Delta B}{B} < 10^{-4}$
Summary & Outlook

- Microwave working and tested since 2003
- Magnet
- AVS
- LabView-Simatic control System
- Needle valve motor
 - N.M.R.

Roots Pumps
- 66 valves, 7 pumps,
- 13 pressure sensors,
- 4 flowmeters

Cooling trap

Leak test
- Mount and test Cryostat

N.M.R.

Mauricio Martínez Fabregate
Rech, February 3rd 2006
He3 line

- 1 tank of 3He gas
- 1 tank of 4He gas
- 39 Valves
- 1 Flow meter
- 4 Pressure sensors
- 4 Rotary Pumps
- 2 Cooling Traps
- 5 Roots Pumps

Summary & Outlook

- Microwave
- Magnet
- AVS
- LabView-Simatic control System
- Needle valve motor
- N.M.R.

- Roots Pumps
- 66 valves, 7 pumps,
- 13 pressure sensors,
- 4 flowmeters

- Cooling trap
- Leak test
- Mount and test Cryostat