Polarised Nucleon Targets for Europe, 3rd meeting, Rech 2006

Prague NMR activities

H. Štěpánková, J. Englich, J. Kohout, M. Pfeffer, J. Štěpánek J. Černá, V. Chlan, K. Kouřil, V. Procházka E. Bunyatova^{*}

Faculty of Mathematics and Physics, Charles University Prague, Czech Republic * Joint Institute for Nuclear Research Dubna, Russia

NMR in alcohols with TEMPO, liquid state
 (analysis of ¹H, ¹³C relaxations in ethanol +TEMPO solutions)

On the way to lower temperatures (solid state)

Interactions between electron and nuclear spins:

are known to achieve high polarization of the nuclear spin system in processes of dynamic nuclear polarization
give rise to effective relaxation mechanisms for excited nuclear spins

Stable nitroxyl radicals:

- spin labels for ESR experiments
- paramagnetic probe in NMR

Ethanol: interesting from the point of view of

- molecular structure and dynamics,
- forming and properties of intermolecular hydrogen bonds in polar liquids (water, simple alcohols)

NMR spectra and spin-lattice relaxations T_1 in the liquid state - first experimental results reported previously NMR BRUKER AVANCE 500 pulse spectrometer $B_{external} = 11.7 T$ (500 MHz for ¹H, 125 MHz for ¹³C)

six samples with 0 -1.5 wt% of TEMPO in CH_3CH_2OH temperature range 160-290 K

> NMR of ethanol: ¹H spectra: 3 signals ¹³C spectra: 2 signals

Spectra ¹H at 210K – all samples

Spectra ¹H – sample #2/2 (0.05wt%) at various temperatures

Spectra ¹³C at 210K – all samples

Spectra ¹³C – sample #4/2 (1.5wt%) at various temperatures

Relaxation rate $R_1 = 1/T_1$

Strong dependence of proton and carbon relaxation rates on temperature, maximal OH-proton relaxation rate at ~200K

0.05 wt% of TEMPO

Relaxation rate $R_1 = 1/T_1$

Strong and linear dependence of proton and carbon relaxation rates of ethanol on TEMPO concentration

210 K

Relaxation enhancement $k_1 \equiv dR_1/d(concentration)$

The most pronounced effect of doping is seen for OH protons – a role of hydrogen bonds between OH group of ethanol and the oxygen of TEMPO

Mechanisms of nuclear relaxation enhancement

Fluctuating magnetic interactions between nuclear (ethanol) and electron (TEMPO) spins:

- Dipolar interaction modified by motion translational diffusion rotational diffusion (of complex)

- Contact interaction

Particular models; approximations.

Concentration, temperature, field dependences. (NMRD... dispersion of nuclear magnetic relaxation rates)

Translational diffusion

Force free (FF) model for motion (excluded volume). Long electron spin correlation time.

 $k_{1} = \frac{32\pi}{405} \frac{\hbar^{2} \gamma_{S}^{2} \gamma_{I}^{2} N_{a} S(S+1)}{1000 d D} (7J(\omega_{S}) + 3J(\omega_{I})),$ where the spectral density function is given by $J(\omega)$: $J(z) = \frac{1 + 5z/8 + z^{2}/8}{1 + z + z^{2}/2 + z^{3}/6 + 4z^{4}/81 + z^{5}/81 + z^{6}/648}; \quad z_{n} = \sqrt{2\omega_{n} \tau_{D}}$

translational diffusion correlation time $\tau_D = d^2/D$ $D = D_{ethanol} + D_{TEMPO}$, $D_i = k_B T/6 \pi a_i \eta$ D_i ... translation - diffusion coefficients d ... distance of the closest approach a_i ... size of the i - molecule (its dynamic radius) η ... viscosity of the liquid (τ_D is proportional to η/T)

Relaxation enhancement $k_1 = dR_1/d(concentration)$

We made a fit of k_1 (translation diffusion) for protons except the 1H(OH) and ulletfor carbon nuclei, using common free parameters.

- Reasonable agreement for relaxations of ${}^{13}C$, ${}^{1}H(CH_2)$ and ${}^{1}H(CH_3)$ in the region of temperatures above ~ 210K.
- The optimized values of the free parameters ullet

•

d = 0.40 nm, $\zeta \equiv a_{ethanol} a_{TEMPO} / (a_{ethanol} + a_{TEMPO}) = 0.12 \text{ nm}$. The diffusion-controlled regime could be dominant for the relaxation enhancement of carbon nuclei and protons in ethanol except the OH group.

Translational diffusion

Rotational diffusion

$$k_{1} = \frac{2}{15} \frac{\hbar^{2} \gamma_{S}^{2} \gamma_{I}^{2} n S(S+1)}{b_{r}^{6}[I]} (7J(\omega_{S}) + 3J(\omega_{I})),$$

where the spectral density function $J(\omega)$ is :

$$J(\omega) = \frac{\tau_R}{1 + \omega^2 \tau_R^2};$$

rotational diffusion correlation time $\tau_R = \frac{4\pi\eta a^3}{3kT}$

$$b_r$$
... distance between the *I* and *S* spins
[*I*]... molar concentration of the *I* spins
(τ_R is proportional to η/T)

Rotational and translation diffusion

Anisotropic motion? Internal motions?

Outlook:

Relaxation models Dependence on frequency Chemical shifts interpretation Other alcohols/radicals Non polar solvents Adding water Changing viscosity Deuterated solvents Technical questions

Laboratory views

May/June 2005 New NMR laboratories in a new pavilion

 200 MHz NMR spectrometer (homemade): new hardware
 components and
 software

 5 T cryomagnet, cryoshimms (homogeneity ~10⁻⁵)
 57 mm bore

 5 T cryomagnet, cryoshimms (homogeneity ~10⁻⁵)
 57 mm bore

 Helium gas continuous flow cryostat Janis, 2 - 400K

 Nitrogen liquid cryostat (77 K) Vakuum Praha

 NMR tunable probe for protons designed, made and tested

 NMR tunable probe for protons designed, made and tested

 NMR tunable probe for protons designed, made and tested

 Installation of a new cryomagnet 9.4 T (400 MHz) cryoshimms (homogeneity ~10⁻⁵)
 52 mm bore

Test of the new facilities: ¹H NMR spectra in ethanol

Outlook:

- Technical questions
- Cooling regime:
- complicated thermal properties of ethanol polymorphic forms
 - *T_{melt}*=159 K crystal I (monoclinic)
 - supercooled liquid \rightarrow
 - \rightarrow T_g=97 K glassy liquid (extremely rapid chilling);
 - supercooled liquid \rightarrow
 - \rightarrow T'_{melt}=127.5 K metastable crystal II (cubic,

'plastic',molecules rotate) \rightarrow

- \rightarrow Tg=97 K glassy crystal II (molecules frozen at random orientation)
- Relaxation models, structural and motional dependent, embedded TEMPO
- Deuterated ethanols

Outlook:

