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Abstract

A description is given of the K-matrix formalism. The formalism, which is
normally applied to two-body scattering processes, is generalized to production
of two-body channels with final-state interactions. A multi-channel treatment of
production of resonances has been worked out in the P-vector approach of Aitchi-
son. An alternative approach, derived from the P-vector, gives the production
amplitude as a product of the T-matrix for a two-body system and a vector @
specifying its production. This formulation, called @-vector approach here, has
also been worked out. Examples of practical importance are given.
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1 Introduction

The K-matrix formalism provides an elegant way of expressing the unitarity of the
S-matrix for the processes of the type ab — cd. It has been originally introduced by
Wigner[1] and Wigner and Eisenbud[2] for study of resonances in nuclear reactions.
The first use in particle physics goes back to an analysis of resonance production in
Kp scattering by Dalitz and Tuan [3]. A comprehensive review is found in [4]. In this
paper we give a concise description of the K-matrix formalism for ease of reference. Its
generalizations to arbitrary production processes are covered in some detail.

The reader is referred to the text book by Martin and Spearman [5] for some of the
material covered in this note. However, one must note that the definitions given in this
paper are different from those used by Martin and Spearman. Cahn and Landshoff [6]
and Au, Morgan and Pennington [7] have used the same definitions as those adopted
by us.

The unitary relationship involves a bilinear product, and one must exercise care with
constant factors, as there is essentially no freedom with the coefficients. The derivation
for the cross section from unitarity follows a well-defined prescription and, once defined,
one must again adhere to it rigorously.

This paper is intended to be useful for experimental physicists working on meson
spectroscopy. For this purpose a reasonably self-contained and elementary account has
been made of the K-matrix formalism appropriate for a study of overlapping and many
channel resonances.

2 S-Matrix and Unitarity

Consider a two-body scattering of the type ab — cd. The differential cross section is
given in terms of the invariant amplitude M and the ‘scattering amplitude’ f through

dO’ﬁ . 1 qf 2 ' )
dQ ~ (87)%s (a) |Myil* = | f7:(Q)] (1)
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where %’ and ‘f’ stand for the initial and final states; Q@ = (6, ¢) denotes the usual
spherical coordinate system; and s = m? is the square of the center—of-mass (CM)
energy. The g¢;(gy) is the breakup momentum in the initial(final) system. [The observed
cross section is in reality the average of the initial spin states and the sum over all final
spin states— this is suppressed here for simplicity.] The scattering amplitude can be
expanded in terms of the partial-wave amplitudes

F5(9) = = Y2(27 + 1)T(s)DL2(4,6,0) (2)

qi_]

where A = A, — Ay and g = A, — Ay in terms of the helicities of the particles involved
in the scattering ab — cd. Note that this ‘scattering amplitude’ is a factor of two
bigger than that with a more common definition (for example, see Section 5.1, Chung
[8]). One may in addition note that the argument of the D-function is frequently given
as (4,0, —¢) (see Jacob and Wick [9] and Martin and Spearman [5]). Integrating the
differential cross section over the angles, one finds, for the cross section in the partial
wave J,
4T

= (%) o+ T )
Note that 77 has no unit; the unit for the cross section is being carried by ¢?. It is
necessary to define more precisely the initial and the final states

i) = |ab, JMAg)s)
1f) = led, TMA) (4)

where M is the z-component of total spin J in a coordinate system fixed in the overall
CM frame and the notations {ab} and {cd} designate additional informations needed
to fully specify the initial and the final states. Because of conservation of angular
momentum, an initial state in |JM) remains the same in the scattering process. Note
the normalization (see Section 4.2, Chung [8])

(Fle) = &4 (3)

In the remainder of this section and in subsequent sections, it is be understood that
the ket states mentioned always refer to those of (4). In particular, explicit references
to the total angular momentum J will be suppressed. Note that, with this convention,
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one has eliminated the necessity of specifying continuum variables such as angles and
momenta.

In general, the amplitude that an initial state |z) will be found in the final state |f)
is
Spi = (fIS]) (6)

where S is called the scattering operator. One may remove the probability that the
initial and final states do not interact at all, by defining the transition operator T
through

S=1+2T ()

where I is the identity operator. The factors 2 and 7 have been introduced for conve-
nience. From conservation of probability, one deduces that the scattering operator S is
unitary, i.e.

SSt=515=1 (8)
From the unitarity of the S, one gets

T —T' =2 T'T = 2 TT! (9)
In terms of the inverse operators, (9) can be rewritten
(TH™ —T71 =21 (10)
One may further transform this expression into

(T +iD =T 41 (11)

One is now ready to introduce the K operator via
K*t'=T"144I (12)
From (11) one finds that the K operator is Hermitian, i.e.

K =K' (13)
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From time reversal invariance of S and T it follows, that the K operator must be
symmetric, i.e. the K-matrix may be chosen to be real and symmetric.

One can eliminate the inverse operators in (12) by multiplying by K and T from
left and right and vice versa, to obtain

T=K+iTK = K +iKT (14)

This shows that K and 7T operators commute, i.e.

[K,T]=0 (15)
and that, solving for T, one gets
T=K(I-iK)'=(I-1K)'K (16)
and
S=(I+iK)I—iK)"'=(I—iK) (I +iK) (17)

Note that the T-matrix is complex only through the ¢ that appears in this formula, i.e.
T~ has been explicitly broken up into its real and imaginary parts, see equation (12).

It is also useful to split 7" into its real and imaginary part. From (14) one finds,
noting that K is a real matrix,

ReT = (I+K*)'K=K(I+K?*™" (18)
ImT = (I+K*'K?*=K*I+K?!

Combining this result with (9), one finds that the unitarity takes on the simple form
ImT=T*T=TT" (19)

Or, from (12), one gets
ImTt =1 (20)

Consider now an isoscalar w7 scattering in S-wave below /s = 1GeV. This is a
single-channel problem and unitarity is rigorously maintained. From (8), one may set

S = e (21)
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where 6 is the familiar phase shift. The transition amplitude 7" is given, from (7),
T =e*siné (22)

Note that the factors 2 and 7 in (7) make the T attain the simple, familiar form. This
formula shows that the trajectory of 7' in the complex plane (Argand diagram) is a
circle of a unit diameter with its center at (0,2/2). This is the so-called unitarity circle
and the physically allowed T should remain at or within this circle. The S-wave cross
section is, from (3),

o= <—2> sin® § (23)
The K-matrix for this case is simply
K =tané (24)
A pole in K is therefore associated with § = 7/2.
Consider next a two-channel problem in which the S-matrix may be expressed as

2 x 2 matrices. Let S;; be symmetric; then it would take six parameters to represent
three complex variables: Si1, S12, and S33. The unitarity relationship

Sik Sy, = 6 (25)

imposes three independent equations. This shows that the S-matrix depends on just
three parameters. It can be shown readily that the matrix elements are

511 = ’I]B
522 = 77€2i62 (26)

S12 = 1y/1-—n? 6@12, S, = 6146

where §; is the phase shift for channel ¢+ and 7 is the inelasticity (n < 1). Note that
there exists only one inelasticity in the two-channel case.

Turning to the K-matrix representation of the T-matrix, let

K Kip
K = 27
( Ky K ) (21)
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where K15 = Ky; and K;; = real. Then, from (12), one finds

]_ Kll —ZD K12
T = . 28
1 —D—Z(Kll —|—K22) ( K21 K22 —1D ( )

where

D - K11K22 - K122 (29)

3 Lorentz-Invariant 7-Matrix

The transition amplitudes 7" as defined in (7) is not Lorentz invariant. The invariant
amplitude is defined through two-body wave functions for the initial and the final state,
and the process of the derivation involves proper normalizations for the two-particle
states (see Section 5.1, Chung [8]). The resulting invariant amplitude contains the
inverse square-root of the two-body phase space elements in the initial and the final
states. The Lorentz-invariant amplitude, denoted 7', is thus given by

Ty = {p}? T {ps}? (30)
In matrix notation, one may write
T ={p}? T {p}? (31)
and . .
S=1+2{p}: T {p}> (32)

where the phase-space ‘matrix’ is diagonal by definition, i.e.
pr 0
= 33
(%) (33

2 2
p1 = o and p2 = =1z (34)
m m

and

The g¢; is the breakup momentum in channel . (Here one considers a two-channel
problem for simplicity without loss of generality.) The unitarity demands that, from

(19) and (20), o

Im T =T*pT = TpT* (35)
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and

ImT'=—p (36)

It is in this form one encounters most frequently the unitary conditions of the transition
matrix in the literature.

The cross section in the Jth partial wave is given by, from (3),

ol = (16—”) (f’_f) (2J + 1)[Ti(s)? (37)

S Ps

Note that this formula embodies the familiar presence of the flux factor of the initial
system and the phase-space factor of the final system in the process ab — cd. In the
K-matrix formalism, one allows for p to become imaginary below a given threshold;
however, the cross section above has no meaning below a threshold, and one could then
modify the expression above by multiplying it with two step functions: 8(p?) and 6(p?).

One may recapitulate the expressions for the differential cross section and its partial-
wave expansion in terms of the invariant amplitudes TfJZ-(.s). For the purpose, one defines
the ‘invariant scattering amplitude’

Tr:(Q) = Y (27 + 1)T}(s)D]:(4,6,0) (38)

and the differential cross section is given by

o (3 (2) o (39

S Ps

The initial and final density of states are, with s = m?,

)
o ]

in terms of the particle masses involved in the scattering ab — cd. Note that these

—

—

phase-space factors are normalized such that

pi—1 as m?— o0 (41)
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The invariant amplitude Tﬁ(Q) is unitless, and has a partial-wave expansion (38). The
partial-wave amplitude Tsz(s) is related to the K-matrix via (45), and unitarity is
preserved if the K-matrix is taken to be real and symmetric. It should be noted that

the formula for the differential cross section (39) has no ‘arbitrary’ numerical factors.
The ‘conventional’ invariant amplitude, introduced in (1), is given by

/\/lﬁ = 167T' f’ﬁ(Q) (42)

One may consider again the isoscalar 77 scattering in S-wave below 1.0 GeV. In
terms of the phase-shift §, the invariant amplitude is given by, from (22),

~ 1 .
T ==€’siné (43)
p

and when substituted into (37) the cross section (23) results. These expressions are
very familiar, and they demonstrate clearly the interplay between the phase shifts, the
invariant amplitudes and the cross sections.

One can similarly define the invariant analogue of the K-matrix through

K ={p}> K {p} (44)
From (12) one sees that N
K'=T"414p (45)
which leads to
T=K+:KpT =K +:TpK (46)
and L
TpK = KpT (47)
Solving for T', one obtains
T=K(I-ipK)?*=UI-iKp) 'K (48)

and, from (17),

=)

S = (I+i{p} K{p}*)(I —i{p}? K{p}>)"
¥ K{p}?) (I +i{p}? K{p}?) (49)
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Note that K and p do not commute. The Lorentz-invariant 7-matrix is then given by

7 _ (El:i"’zﬁ _ Ko A> (50)
1 — p1p2D —i(p1 K11 + p2Ka2) Ko Ky —1091D

where

.

D\: k\llk\zz - K122 (51)

4 Momentum-Space Representation of S-Matrix

It is possible to express the S-matrix elements directly as ratios of certain functions
in momentum space. This technique is sometimes referred to as the Jost function
representation[10] of the S-matrix. We follow here the derivation as given by Kato[11].

For the sake of simplicity we deal here only with a 2 x 2 S-matrix. Practical and
important examples are the coupled channel problems dealing with the isoscalar S-wave
7w and KK states and the isovector S-wave 77 and KK states. Let g; and g, be the
momenta for the two channels under consideration. The transition matrix 7' should be
a hermitean analytic function, i.e. in the energy variable s [5]

T*(s) = T(s*) (52)

but, when expressed as a function of ¢;, one must have

~ ~

T*(q1,92) = T(—q3,—93) (53)

in order to preserve the unitary condition (36). It is convenient to introduce a new
notation A(gi,g2) = T '. Evidently, A(q1, g2) obeys the same relationship (53), so that
one may write, using (45),

A(—q1, —a3) = A(q1,92) + 2ip (54)

This is the fundamental equation, from which various special formulae can be derived
and the results analytically continued. Remember that there is only one variable s in
the problem, and analytic continuation implies that one is dealing with a study of
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structures in the complex s-plane. The unitarity condition imposes branch points, and
different paths through the cuts give rise to different Riemann sheets (see the section
on the Flatté formula for an example). The transformations ¢; - —g; wheret =1, 2 or
both, introduced in the following, are in fact those that generate four Riemann sheets
in the two-channel problem treated here.

In the physical region in which both ¢; and g, are real and positive, it is convenient
to rewrite the unitarity condition as follows:

A(—q1,—q2) = A(q1,92) + 21p (55)

Consider, for the moment, a physical region for s below Channel 2 but above Channel
1, i.e. g; is real but g, is purely imaginary. In this case there is only one open channel,
namely Channel 1. More generally one must imagine that each p; is accompanied by a
step function at its threshold . One then finds, from (54),

A(—q1,92) = A(g1,92) + 24! (56)

where the superscript [1]([2]) signifies that the diagonal element 22(11) is zero. By
analytic continuation this relationship should be true also in the physical region for s
above Channel 2. Now let ¢; — —g¢; in (55) and add the resulting equation to (56), to
obtain

Alq1, —q2) = A(g1,92) + 2ipl?! (57)

If we put T = ND~! or A= DN~! where D depends on g¢; while N does not, then
one gets, from (55),
D(—q1,—q2) = D(q1,2) + 2ipN (58)
and, from (56) and (57),
D(~q1,9:) = D(g1,a)+2ip"'N (59)
D(a1,~g2) = D(a, )+ 2ip"N
Note that . .
{p}? S {p} "2 = I+2pT = (D +2ipN)D™* (60)
so that one finds

det S = det {(D + 2ipN)D'} = det D(—qi, —q;)/det D(q1, g2) (61)
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and

S = det {(D+ Zip[l]N)D_l} = det D(—gq1,q2)/det D(q1,q2) (62)
Sy = det {(D+ 22',0[2]N)D_1} = det D(q1,—q2)/det D(q1,q2)

One may define a function d through

d(q1,92) = det D(q1, q2) (63)

which is hermitean analytic except for the branch points at g; and satisfies

d*(q1,92) = d(—4q1, —42) (64)
In terms of this function the elements of the S-matrix are given by
dl —
Sy = (—aq1,92)
d(q1,92)
d(Ch; _CJz)
S — 65
* d(q1,92) (65)
d(—q1, —¢2)
511899 — 82, = 1%
11+~22 12 d(qqu)

One notes that the singularity structure of the S-matrix is clearly delineated in this
approach: the poles of the S-matrix derive from the zeroes in d(q1, ¢2). In fact Morgan
and Pennington[12] used this form to explore the nature of the f,(975).

Martin et al.[13] point out that a requirement of the unitarity condition (25) in the
physical region is that the following inequality holds:

[d(—q1,92)| < [d(q1,92)] (66)

This leads to the following explicit expression for the off-diagonal S-matrix element:

iy/ld(gr, 92)? — [d(g1, —q2) 2
B [d(f.h;qz)]+

where [a]; = [—a]+. One has adopted here a definition such that —:Si, is real and
positive if d(gi, ¢2) is real. One can easily show that the unitarity conditions (25) are

(67)

12



5 RESONANCES IN K-MATRIX FORMALISM 12

satisfied in the physical region. It is instructive to express A = T—1 directly in terms

of d(q1,92). From (32), (65) and (67) one finds

2ip1[d(q1, —q2) — d(q1, 32)]
d(q1,92) + d(—q1, —92) — d(q1, —q2) — d(—q1, g2)
B 21p3[d(—q1, 92) — d(q1,92)]
Ao = d(q1,92) + d(—q1, —q2) — d(q1, —q2) — d(—q1, g2) (68)

2y/p1p2{ld(g1, 2)I” — (g1, — )|’}
[d(91, g2) + d(—q1, —q2) — d(q1, —q2) — d(—q1, 92) ]+

Note that the denominators are real and A;, is real and positive in the physical region.
It is seen that these satisfy the properties (55), (56) and (57).

All =

A12 =

The function d(g1, ¢2) can be derived from (48) and (49) in terms of K:

d(q1,92) = #(s)[1 — Z'(Plf{\n + sz\zz) — p1pP2 detk\] (69)

where ¢(s) and K are real functions of s. Equivalently, they are real functions of ¢? or
q2. Note that this formula satisfies the condition (64). Another simple example of the
function d(q1, g2) is given later in the section on the Flatté formula.

5 Resonances in K-matrix Formalism

Resonances should appear as a sum of poles in the K-matrix. In the approximation of
resonance domination for the amplitudes, one has therefore

K, = Y Jeim)gai(m) (70)
and
I/{\ij — Z gai(m)gaj(m) (71)

o (m2 —m?),/pip;

where the sum on a goes over the number of resonances with masses m,, and the
residue functions (expressed in units of energy) are given by

9ai(m) = mal'ai(m) (72)
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where gq:;(m) is real (but it could be negative) above the threshold for channel 7. The
width I'y(m) is

for each resonance «.

Consider now a resonance a coupling to » open two-body channels, i.e. the mass
me 1s above the threshold of all the two-body channels. The partial widths may be
given an expression

Fai(m) _ gii( ) _ ,YMI\O [Bl (q;Qa)]zpi (74)

My

and the residue function by

9oi(™) = Yair/ Mmal'd Bi(9, 9a)v/Pi (75)

The B(m)’s are ratios of the usual Blatt-Weisskopf barrier factors [14] in terms of the
breakup momentum in channel z and the resonance breakup momentum g, for the
orbital angular momentum [,

Fi(q)
Bl.(4,44 76
i(9,9a) = Fila) (76)
where, with the normalization Fj(1) = 1, one has
Fo(g) = 1
2z
F =
1(q) z+ 1
1322
F. = \|— 7
Z(q) \ (z _ 3)2 _I_ 92 ( )

27723
Fa(q) = \ 2(z — 15)2 +9(2z — 5)

1274624
22 — 45z 4 105)% + 252(2z — 21)?
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Here z = (g/qr)* and gr = 0.1973GeV/c corresponding to 1 fermi. The 4’s are real
constants (but they can be negative) and may be given the normalization

Z’Yii =1 (78)

In practice, it is probably better to avoid this normalization condition by using the

Goi = Yai\/Mal' (79)

as variables in the fit. The residue function is then given by

9oi(m) = 9o; BLi(9, 9a)\/Pi (80)

parameters

We define a K-matrix total width f‘a and the K-matrix partial widths f‘m- by
Pa =Y Tai = Ta(ma) = T2 Y42 pi(ma) (81)

From these one finds

]__‘ R
]_—\g — [0 %)
;Pi(ma)
i
2 _ o __cod 82
Vi T p: () (82)

ma]-_‘a'i
pi(ma)
Note that the K-matrix width do not need to be identical with the width which is
observed in an experimental mass distribution nor with the width of the 7T-matrix pole

in the complex energy plane. We will will refer the former as I'ops, the latter as I'poe In
the limit in which the masses of the decay particles can be neglected compared to m,,

0 _
Goi —

one has I'y(mgy) >~ T'Y. In terms of the 7’s and ¢%’s, the invariant K-matrix now has a
simpler form

— YaiYaiMal o Bhi(q, 9a)Bh; (9, 9a)

K = % e (83)
. ggigngii(qa Qa)Bij((b qa)
- Z m2 _ m2
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Here one allows for the possibility that v’s and ¢°’s can be negative.

It is possible to parametrize a non-resonant background in each K-matrix element
by adding a real unitless constant to the sum of pole terms (83), i.e.

—

Ki; — Kij + ¢ (84)

Note that unitarity is preserved in this process.

Consider now an isovector P-wave 77 scattering at or near the p mass. Then the
elastic scattering amplitude at the 77-mass m is given by

mol'(m)

2 _ 2
my —m

K = =tané (85)
where mg is the mass of the p and ¢ is the usual phase shift. The mass-dependent width
is given by
_an [P 1 2
I'(m) =T % [B (CI;QO)] (86)
where Ty is the K-matrix width and g (go) is the mm break-up momentum for the =7
mass m (mg). Neglecting the angular dependence of the amplitude, one obtains

T = e®sin§ = lm% — mznif‘;’nof(m)] [B'(g, 90))’ (i) (87)

The first bracket in (87) contains the usual Breit-Wigner form and the last bracket
expresses the two-body phase-space factor. In this simple case, the K-matrix width
and the observed width are identical. Note that the phase-space factor is absent in
the Lorentz-invariant amplitude T given by (30). The ¢ dependence of the amplitude
(in [B(q, g0)]?) reflects the fact that both the initial and the final 77 systems are in
P-wave. The normalization for the transition amplitude has been chosen such that
. ~  +
T =42 and T=7 at m=mg (88)

It is seen that the invariant amplitude 7' is not normalized to 1 but to p~*. It is for
this reason that the Argand diagram is usually plotted with 7" and not 7.
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ImT1,

25

2
T .
Figure 1:
° ’(‘)5 . - Argand-plot and definition of the pa-
’ Re T rameters § and 7 in case of a ratio of

K-matrix widths f‘z/f‘l = 0.25.

In the next example we investigate the influence of coupling of a resonance to a
second open channel at the T-matrix parameters (phase-shift § and inelasticity n) as
defined in figure 1. Consider a S-wave resonance at 1500 MeV decaying into 77 and
KK with a total width of 120 MeV. In the first example we haven choosen the K-
matrix widths to be 'y = 30 MeV and gz = 90 MeV,in the second one we choose
Tre = 90 MeV and I'xg = 30 MeV. The change of the coupling to the channnel KK
has no influence on the inelaticity 7 and on the line shape of |T'|%. The only visible
difference is the behaviour of the phase motion § (see figure 2). In the case of a strong
coupling to the KK channnel (f‘KR' = 90 MeV ) one cannot decide whether there is
a resonance or not by measuring the first channel only (here n), if the errors of the
phase-shift are large.

Consider again a n7 scattering at mass m. But suppose there exist two resonances
with masses m, and my coupling to the isoscalar D-wave channel. The prescription for
the K-matrix in this case is that

ala r
K = Melelm) | maly(m) (89)
m2 —m?2  my —m?

i.e. the resonances are summed in the K-matrix. The mass-dependent widths are
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given by

La(m) = 12 (%) ( 2) 18%0, 0 (90

m Qo

where a = a or a = b. q, is the 77 breakup momentum at m = m,,.

5 TaF
0.1
0.8
ol
—0.1 F 0.6
. . . . . . . . . . . .
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
m [MeV/c*1 m [MeV/c*1
6 n
3L 1
2L
0.8
i L
0.6
; | . . . . . . . . . .
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
m [MeV/c*1 m [MeV/c*1

Figure 2: Phase-shift § and inelasticity  for a m = 1500 MeV T = 120 MeV I = J = 0
resonance. ['zr = 30 MeV and 'z = 90 MeV (top) and vice versa (bottom).
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Im T
ImT

o

.8 |-

06 [

04 [
04 [

02
02 [

Figure 3: Left : transition amplitude derived from equation (89). Note that it shows one full

turn for each resonance. Right : transition amplitude according to (91). The parameters are
mg = 1.275 GeV,I' = 0.18 GeV, my, = 1.565 GeV,I'Y = 0.16 GeV; the big dots illustrate the
resonance positions.

If mg and my are far apart relative to the widths, then K is dominated either by the
first or the second resonance depending on whether m is near m, or my. The transition
amplitude is then given merely by the sum

P ) () ()] e

+ [mg_mzm fiibrb(m)] [(%) (qi)] B(q, b)) (o1)

In the limit in which the two states have the same mass, i.e. m. = m, = my, then
the transition amplitude becomes

me[la(m) + To(m)]

T= m2 —m? —im[I'g(m) + Ty(m)]

(92)

This shows that the result is a single Breit-Wigner form but its total width is now
the sum of the two individual widths. In case of two nearby resonances (91) is not
strictly valid. For a specific example Figure 3 shows the transition amplitude 7' from
the correct equation (89) and from the approximate (91). Note that (91) exceeds the
unitary circle.
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6 Production of Resonances in P- and (J-vector
approach

So far one has considered s-channel resonances, or ‘formation’ of resonances, observed
in the two-body scattering of the type ab — c¢d. The K-matrix formalism can be
generalized to cover the case of ‘production’ of resonances in more complex reactions.
The key assumption is that the two-body system in the final state is an isolated one
and that the two particles do not simultaneously interact with the rest of the final state
in the production process.

According to Aitchison [15], the production amplitude P should be transformed into
F' in the presence of two-body final state interactions, as follows:

F=(I—-iK)'"P=TK'P (93)
Or, taking the invariant form, it may be written
F=(I-iKp)'P=TK'P (94)

where P characterizes production of a resonance and F is the resulting invariant am-
plitude. Note the following relationships:

F = {p}% F and P= {p}% P (95)

Consider first a single-channel problem, e.g. the isoscalar 77 system in S-wave below

1 GeV. Then, the K is simply given by (24) and one finds
F=¢e®cosé P (96)

The final-state interaction brings in a factor e—this is the familiar Watson’s theorem
[16]. It is emphasized that P must have the same poles as those of the K-matrix;
otherwise F' would vanish at the pole position (6 = 7/2).

In general, P and F are both column vectors, n-dimensional for an n-channel prob-
lem. If the K-matrix is given as a sum of the poles as in (70), then the corresponding
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P-vector 1s

P = Z B giz ) (97)

m?

and

0
~ ai\ T
Pz':z B gai(m) (98)
< (ml —m?)\/pi
where 8% (expressed in units of energy), carries the production information of the
resonance a. The constant 82 is in general complex, but it can be set to be real under
certain assumptions—this point will be addressed at the end of this section.

The P-vectors should contain the same set of poles as those found in the K-matrix.
However, according to Aitchison, one may add a constant term (or a polynomial in
energy) to P

where the constant d; is in general complex.

+ 7= 7% was described by a production

In [17] the production process pp —
amplitude for the pm and f5(1270) 7 intermediate states. The data required introduction
of an additional constant amplitude which was interpreted as that for direct three-pion
production. This direct production amplitude can be described in our formalism with

the additional constant in the F'-vector.

It is often more convenient to rescale 8%’s

Ba = Bay/mal (100)

so that B8’s are unitless. Then the P-vectors read, from (79),

3 afaz a]-_‘OBl' a
PZ:Z/B,'Y m o az(qiq)

2 _ 2
mg, m

(101)

23

where, once again, ’s are real but 3’s could be complex. If the production process has
some known dependance on momentum or angular momentum, the production strength

B should be modified accordingly.

It is instructive to work out the above formula in the case of a single resonance in
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a single channel. Then one has

=~ Bmo]__‘o 1
p= Moo p
(2) _ 2 (qJ C_IO)
so that, with Kp given by (85),
-~ mo]__‘o 1
F(m) = B 102

This is exactly what one writes down for a Breit-Wigner form, except that one has
multiplied by an arbitrary constant 8 and the centrifugal damping factor B'(q,qo).
This provides a K-matrix justification of the traditional ‘isobar’ model. Note that the
numerator is a constant (independent of m).

The difference of the Breit-Wigner description and the parametrization via the uni-
tarity conserving K-matrix can be demonstrated in the case of two resonances in the
same single channel. The formula for the K-matrix is given by equation (89). For
example, we consider a production of two nearby resonances in the mn D-wave, with
a production strengh of 2:1. The K-matrix masses and widths are shown in the first
column in table 1. The |F(m)|?-distribution is fitted with two Breit-Wigner amplitudes
with free masses, widths and production strengths (non-unitarily added). In addition,
a phase for the second Breit-Wigner amplitude is left free in the fit. The result is
visualized in figure 4. Obviuosly, there are no striking differences between simulation
and fit. The parameters of the Breit-Wigner amplitudes are shown in the second col-
umn of table 1. Mass and width of the first Breit-Wigner amplitudes are shifted
to higher values, the parameters of the second resonance are lowered. So even though
the mass distributions are decribed accurately, the masses are reproduced only rather
poorly. This difference will be less pronounced in the case of two well separated res-
onances. This is demonstrated in the second example (see figure 5). The K-matrix
parameters are given in the third column of table 1 and the parameters of the Breit-
Wigner amplitudes, obtained by fitting the mass distribution, in the fourth column.
For well separated resonances in case of a single channel the Breit-Wigner description
is obviously an appropriate approximation.

Cahn and Landshoff [6] state that in some approximations the column vector

Q=K 'P and {p}%Q =( and Q=K 'P (103)
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Figure 4:

Two nearby resonances fitted with two
Breit-Wigner amplitudes. The shaded
area corresponds to the mass distribution
generated according to the K-matrix for-
malism [see (89)]. The solid line repre-
sents a fit to the distribution with two
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mmm)/ [ Gev/cl Breit-Wigner amplitudes [see (102)].

may be considered a constant in a given limited energy range. Then, one has
F=TQ and F=TQ (104)

i.e. the two-body final-state interaction may be expressed as a product of the 7T-matrix
and a constant column vector. The Q-vector is devoid of the threshold singularities
(i.e., no dependence on p) and does not contain pole terms. It therefore depends in
general on s = m? only. In a single-channel problem, e.g. the isoscalar 77 system in
S-wave below 1 GeV, we now obtain, instead of (96) derived for the P vector approach,

-~ 1 . ~
F="¢e%in6Q (105)
P

This amplitude contains the familiar scattering amplitude e* sin §.

The P- and @)-vector approaches, even though both being approximations for pro-
duction of multiparticle final states, correspond to different interpretations of the phys-
ical processes. For clarity we consider a specific reaction, e.g. pp — w7n and pp —
K K7 from which we want to extract information on (77) interactions. In the Q-vector
approach, the amplitude is given by F; = T1:Q1 4+ T12Q)2: the 77 system is produced
with an amplitude Q1(s). The two—pion interactions are then taken into account by the
scattering amplitude Ty;. Alternatively, a K and a K are produced with amplitudes
()2 which scatter via 7, into the outgoing pions. This picture has to be contrasted to
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Parameter | K-matrix | Breit-Wigner | K-matrix | Breit-Wigner
my| GeV/c?| 1.270 1.294 0.9 0.906
I'1[ GeVc?] 0.185 0.197 0.120 0.127
my| GeVic?| 1.520 1.497 1.560 1.554
['y[ GeVic?| 0.120 0.113 0.120 0.120

B4 100.0 114.1 100.0 97.0

B2 50.0 68.4 100.0 101.0
phase [rad| 0.0 -1.474 0.0 -0.382

Table 1: Table of generated and fitted parameters

that which one may have in mind in applying the P vector approach, F = (I —1K)™'P.
A particle is produced with an amplitude P, the term (I —7K)~! may be considered as
propagator for this particle which then decays.

As an example, one may take the Bowler method [19] for extracting resonance pa-
rameters in the presence of the ‘Deck’ effect. Bowler describes the diffractive production
of pr (or K*r and pK) with two amplitudes. He proposed to modify the bare Deck
amplitude by a factor €% cos § which we have seen in (96), i.e. the P-vector approach.
Since the Deck amplitude is non-resonant, this part contains no pole. He adds to this
Deck amplitude a pm scattering amplitude, € sin§, see (105),i.e. the Q-vector ap-
proach. Hence the Bowler method contains both P- and @-vector approaches in one
amplitude.

We now turn to a discussion of the contraints one may impose on the P- and Q-
vectors, following the argument as outlined by T. L. Trueman (private communication).
Consider for this purpose a production of hadrons in the reaction

vy — hadrons (106)

and let F; be the production amplitude, where the subscript = denotes a particular final
hadronic state in the reaction above, i.e.

Fi= (o). (107)
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Figure 5:

Two separated resonances fitted with two
Breit-Wigner amplitudes. The shaded
area corresponds to the mass distribution
generated according to the K-matrix for-
malism [see (89)]. The solid line repre-
T sents a fit to the distribution with two
m(nm)/ L Gev/c’l Breit-Wigner amplitudes [see (102)].
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The subscripts + and — here stand for the outgoing and the incoming waves. The ket
state |0) stands for the v+ initial state. It is to be understood that both |0) and |z)
refer to the ket states of a definite spin-parity state [see (4)].

The S-matrix of (32) can be used to connect the incoming and outgoing waves,
[6) =2 Sielk), (108)
k
from which it follows that

+<Z|.7>— = +<’L|S|.7>+ = Sij (109)

or, equivalently,

_<Z|.7>+ = +<Z|ST|J>+ :Sij (110)
Note that the elements of the S-matrix are defined in terms of a complete set of outgoing
waves.

Observe that, with the aid of the anti-unitary time-reversal operator A,

Fo= L, 060)
=, (ilA'4j0)"
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= (,{1AN(Al0)_) (111)
= —<i|0>+
where one has used the relation A'A = —I. It should be noted that the time reversal-

operator changes the incoming into outgoing wave and vice versa. Applying the closure
relationship, one gets

Fro= Z —<7;|k>+ +<k|0>+ (112)
= ZSJk +<k|0>+
= ZSJka

The last step above involves one crucial step. The ket state |0) contains two «’s and
therefore does not undergo strong interaction—as a consequence, one may write

10), =10)_ (113)

In another words, the incoming and outgoing waves do not give rise to ‘phase shifts.’
From (7), one finds readily that

ImF=T'F and ImF =T'pF (114)
which may be compared to (19) and (35).
The above relationship leads to an important result that the Q-vector in F =

TQ is real. This fact is readily seen from the following exercise (D. Morgan, private
communication). Since both 7' and 7! are symmetric matrices, one finds

20Im Q = T'F— (T ")F* (115)
= [T = (TMF+ (T (F - F)
= [T7 = (TH7F + (TN H(F - F7)
= 0

Here one has used both (10) and (114). Since @ = K~ 'P, one concludes that the

P-vector must be real as well.

It should be emphasized that the reality condition on the P- and ¢)-vectors requires
three ingredients: (1) the initial state is non-strongly interacting; (2) all available chan-
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nels are included in T (the closure relationship), i.e. the dimensionality of the T-matrix
should be maximal; and (3) the 7-matrix is unitary [see (10)].

Consider now an m-particle system produced in an arbitrary production process.
One wishes to apply final-state interaction to a given two-body channel out of the n-
body system. According to Cahn and Landshoff [6], the P- and @-vectors should be
free of the thresholds in that two-body subenergy under consideration. If one makes a
simplifying assumption that these vectors are, in addition, independent of the thresholds
of all the other possible combinations of subenergy, then they are real. This ‘reality
condition’ is violated, for example, if one of the particles in the two-body channel
under consideration happens to simultaneously interact (via rescattering) with another
particle in the n-body system. Finally, one must keep in mind that the reality condition
depends on the assumption that the initial system, which could include time-reversed
final particles, does not undergo strong interactions.

This ‘approximation’ has been used by Au, Morgan and Pennington [7], and also
in recent works by Morgan and Pennington [20], but in a limited mass range, m
< 1.1GeV/c?. The authors argue ([21]) that the isobar model ensures that the two—
body unitarity can be applied to the subsystem, and that the @ should remain real.
Donnachie and Clegg [22] have used the same assumption in their Breit-Wigner de-
scription for the p’ and w' analyses. However, Bowler, Game, Aitchison and Dainton
[23] used the P-vector given by

BikVik
2 _ .2
mp —m

Pi=D;+)
P

(116)

and allow the Deck term D; to have an arbitrary phase, while keeping the 8’s and 7’s
real. Note that this prescription necessarily makes the @-vector complex. Finally, it
should be pointed out that Longacre [18] has consistently used complex ’s to char-
acterize the production of resonances. This approach, however, has been criticized by
Morgan and Pennington[20].

To the extent that the reality assumption is just that—an approximation— one must
regard it as an experimental question and allow complex §’s—and explore if the data
could accomodate non-zero phases.
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7 Simple Examples

As a concrete example one may consider two resonances coupling to two different chan-
nels. Consider then two isoscalar JP¢ = 01+ resonances m, and m;, with both masses

around 1.0 GeV, coupling to 77 (channel 1) and K K (channel 2). The elements of the
K-matrix are, assuming factorization for the residues,

Kiu = 9204(m)Bi(9,9) + 75 Qe(m) By (g, a)
Ky = 732Qa(m)B(ll2(q7qa)+’Y§2Qb(m)B{J2(qub) (117)

K1z = Ka = Ya17a2a(m)BL1(9, 9)BLa(4, 9a) + 1617620(m) Bh (4, 9a) Bla (9, 4a)

where ro o
m,I', ~ m
Qb(m) = Ll

2 _ 27 _ 2
m, m my m

Qa(m) = (118)
We kept the index [ for further use of these relations. Note that I'C and I'} are constants
for scalar resonances coupling to two spinless particles. The normalizations are given

by

721 + 732 =1 (119)
Tt W = 1
The P-vector can be written
D /Ba’YalQa(m)Bgl(q7 Qa) —I_ /Bbfyblﬁb(m)Bl?l(qa (_Ib)
P = O 0 O 0 (120)
BaYa2la(m) B,a(4, 9a) + Bove2{ls(m) Byy(g, gs)

where §, and (3, are unitless constants specifying production of the resonances m, and
my.

The production amplitudes for two resonances in a two-channel problem are obtained
by substituting (117) to (120) into

F . }31 — ’ipz(k\zzﬁ1 - k\mpz)

_ pa(Kan s - 2) (121)
1 — p1p2D —1(p1 K11 + p2K32)
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P P, — ipl(k\nﬁz — k\mﬁl)
2 = = . = =
1 — p1p2D —1(p1 K11 + p2K32)

(122)

where D is as given in (51). See Longacre [18] examples of the use of the P-vector
approach.

For a two-channel problem, one obtains

. K11 —ip2D)Q1 + K12Q
B = (K11 — P2 . )Q/l\—l- 12% (123)
1 — p1p2D —1(p1 K11 + p2K32)
_ Ky —ip1 D)@, + K12Q
L (Ky —1p1D)Q2 + K126 (124)

1— plpzb\— Z'(P1k\11 + sz\n)

In the Q—Vector approach we may assume
Q=) ay & (125)
=k

In a linear approximation we will get

1 = Qi1+ a8

2 = Qo1+ Qg8 (126)

L)

and the amplitudes F; can be cast into the form

Fo= Ty (0411 + 0412m2) + T (0421 + Oézzmz)
F, = T21 (0611 + a12m2) + Tzz (0421 + Oézzmz) (127)
Au, Morgan and Pennington [7] used this method with the Q—Vector expanded as poly-

nomials in s — 4m% in their analysis of the 77 S-wave from double-Pomeron data, in
combination with a complicate K-matrix parametrization.
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8 Flatté Formula

As a next example we take the isovector S-wave scattering with the ag(980) coupling to
the nn (channel 1) and K K (channel 2) final states. Then the elements of the invariant
K-matrix are

— 2ol
Ky = 5705
— 2ol
Ky = H (128)
0
— — mol’
0

The ‘reduced’ widths are denoted by 72 and 42, which are both unitless and satisfy
O (129)
Then the T-matrix (50) is given as

~ r 2
T = o2 0 ( g 7172) (130)

m§ —m? —imolo(p1yf + p23) \ 172 73
If one sets
g; = ’yi\/mol_‘o (131)
so that
91 + g5 = molo (132)
then
( 9 919 )
2
-~ 9192 95
T=— (133)

mi —m? —i(p1g} + p2g3)
This is the Flatté formula.

The ao(980) appears as a ‘regular’ resonance in the 77 system (channel 1). The
comparable Breit-Wigner denominator, for m near m,, is

2 2

m, —m” —im.l'.
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in the resonance approximation. One finds, therefore,

* Tlpa(me)]
m? = mg+<’y_2> lL] m.T,

ga! p1(me)
r, = — mele (134)

mop1(me)V?
in terms of the mass m. and width I'.. Note that p;’s have been evaluated at m = m,
where T is expected to attain its maximum value. The above formulas give merely a
good starting point; in practice one must vary mg and I'y to fit the 75 spectrum. The
ratio (72/v1)? is an unknown (commonly fixed at the SU(3) value of 1.5), but the shape
of the square of the amplitudes depends only weakly on this value. Once the ratio is
fixed, then 72 and «2 are fixed through the normalization condition (129).

Assuming m. = 985 MeV, I'. = 80 MeV and (v,/v:1)* = 1.5 one can calculate from
(134) a K-matrix mass mq = 998.2 MeV and width I'g = 301.4 MeV. These values yield
the K-matrix partial widths I'z,, = 80 MeV and I'xz = 13.7 MeV. Figure 6 shows the

mass projection derived from (130) (|p1 (m)T11|2) by inserting the K-matrix parameters
(mo, ]__‘0)

0.75r

0.5¢

Figure 6:

Simulated mass distribution in the ag re-
gion using Flatté formula (130). The
dashed lines correspond to different ratios

0.25¢

| | ! ! ! — ~2/~2 :
03555 575 7060 1695 1050 .Of o _‘72/71.‘ The increase of FWHM
moss / MeV is associated with decreasing values of the
ratio a.

The FWHM of this spectrum is approximately 40 MeV. The dashed lines show fits
to that mass spectrum but with different fixed ratios (y2/71)* : increasing FWHM
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corresponds to ratios lower than 1.5 (1.25 and 1.), decreasing FWHM corresponds to
ratios higher than 1.5 (1.75, 2.). In fig. 7 the Argand-plot for p,Ty; and \/MTH is
shown for the ag. Fig. 8 on the left shows its phase—shift é; together with ¢;5. On the
right side of fig. 8 the elasticity 7; is displayed.

NO FILE: aOl.eps

Figure 7:

Argand plot plfll for the simulated ag.
The small loop corresponds to \/MTH.
The unitary circle is represented by the

dashed line.

It i1s illuminating to explore the pole structure in the Flatté formula, as were done
by Morgan and Pennington[12]. Let ¢; and ¢, be the breakup momenta for the 77 and
the KK channels. The sheet structure in the complex /s = m plane is defined by
the signs of (Img;, Imgs): by convention the sheets I through IV are fixed by (+, +),
(—,4), (—,—), and (4, —). Consider the energy plane m near 2mg. Then one may set
approximately p; = 1 and g2 < mg. Under this approximation one finds

2mk ¢ ~ 2m% + q5 (135)

If one sets g, = 7 €*®, then one has

2
Img; ~ (2 ) sin 2¢ (136)

mg

From this it follows that the sheets for this case may be defined through:
(Re g2,Im g3) = (4, +) for sheet I, (—, +) for sheet II, (4, —) for sheet III, and (—, —)
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for sheet IV.

32

The denominator of the Flatté formula (133) is now quadratic in ¢ and the two
complex roots g, and g, may given the expressions, following Morgan and Pennington,

Ga = —Oé—|—2/3
% = ta—uy

Solving for the roots, one obtains

9i = 4a(y+0)
9; = 4mg(y—p)
a® — By
mg

12

2mg +

mo

(137)

(138)

and Ty is given through (132). This shows that «, 8, and v are all positive and
furthermore v > B. Note that the Flatté formula necessarily entails two poles, in sheet

IT (for q,) and sheet III (for gp).

Two roots of gy give rise to two poles in m-plane as follows:

ot — 32
3%

a? — 42

mg

12

2mg +

Mg

my =~ 2mK+

and L L
ro~ 29 q 1, et

mg mg
The average mass and width of the two poles are related to mg and I'y via
me +my (v - B)

mo = 5 T omg

Ty =~ (ZmK) I:Fa‘I'Fb_I_Z(’y_/B)

mg 2

(139)

(140)

(141)



9 EXTRACTION OF RESONANCE PARAMETERS FROM THE T MATRIX 33

where one has used the equations (132) and (138). Note that, if v — £ is small compared
to the widths which are themselves small compared to the masses, then mg and I'y are
approximately equal to the average mass and width.

With the values of the previous example one obtains for the parameters a =
121.4 MeV, 8 = 78.6 MeV and v = 169.3 MeV . From eqn. 139 one calculates
mg ~ 1012 MeV and my >~ 970 MeV, from eqn. 140 I'; ~ 77 MeV and T’y ~ 165 MeV.

The Flatté formula provides a simple example of the Jost function representation
of the S-matrix[12]. Following Martin et al.[13], one may introduce a ‘real analytic’
function of g¢; and g, with square-root branch points at ¢; = 0 and g, = 0. This
function must be real on the real axis of s below the lowest threshold—one way to
guarantee this is to require that the function be real in the variables z; = ig; and
23 = 1qy. Note that the denomenator of the Flatté formula satisfies this condition:

d(q1,92) = my — m® —i(p1g} + p2g;) (142)

with m? expressed as a function of g;, as an example. The above formula can be derived
from (69) with the substitution

#(s) = m} —m? (143)

and by using (128) and (131). In the physical region, both ¢; and ¢, are real and
positive, so that the function (142) satisfies the ‘reality condition’

d*(q1,92) = d(—q1, —2) (144)
It is instructive to re-derive the Flatté formula (133) from the S-matrix elements given

by (65) and (67)—by simply inserting (142) into (32) and solving for T

9 Extraction of resonance parameters from the T
matrix

One should remember that resonance parameters normally quoted are determined from
the T matrix defined in the complex energy plane and not from the K matrix. The
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T matrix corresponding to a given K matrix is constructed using Equation (16). In
general different types of poles may occur, and a complete classification of Riemann
poles on all Riemann sheet is beyond the scope of this paper—we refer the reader to
the reference [4], for example. Suffice it to state — that in the special case of meson
resonances in two channels — resonances show up as poles in (I —2K)™ 'K on the second
and third Riemann sheet.

Using the T matrix formula (130) with K matrix parameters as given in the previous

example (i.e. mg = 998.2 MeV, I'; = 301.4 MeV and +2/4? = 1.5 ), the followin
ple ( : Y2/N , g

resonance poles E5"¢¢* = m_ — 4", /2 in the complex energy plane are found :
E™ = (969 —i61)MeV (145)
EMI = (1016 — i68)MeV (146)

Fits to the amplitude squared of our example (see also fig. 6) with different fixed
couplings 72/v? are tried. The corresponding pole positions in the complex energy
plane are shown in fig. 9. Note that states below the K K threshold have their pole on
the second sheet, states above this threshold on the third sheet.

As a second example 7y S—wave scattering in one single channel was considered. The
existence of two resonances is assumed and parametrized with a two pole K matrix.
The K matrix masses and widths are m; = 1300 MeV , m,; = 1400 MeV and f‘l =
80 MeV and I', = 200 MeV respectively. The scattering amplitude squared displayed
in fig. 10 shows a strong small dip in the region between the two K matrix poles. The
two poles of the corresponding 7' matrix are found in the unphysical energy plane at
EIT = (1320 —i14) MeV and EJf = (1378 —1126) MeV (see fig.11). The position of K-

and 7T-matrix poles are marked by lines in fig. 10.

10 Summary

We have presented a description of the K-matrix formalism. The K-matrix is derived
from the S-matrix, and hence unitarity in the two-body subsystem is strictly main-
tained. Relations between S, 7' and K matrices are given, and scrupulous attention
has been given to the precise form of these relations. The Lorentz invariant amplitudes
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T and K, derived from T and K are also given.

The K-matrix formalism is generalized to arbitrary production processes. Two
alternative approaches are presented. In the P vector approach of Aitchinson, the pro-
duction amplitude is given by F= (I —if{\)_lﬁ. This may be considered as production
of a resonance (a pole in 13) in the primary interaction, and propagation of the res-
onance before its decay into one of the allowed channels. The second approach was
suggested by Cahn and Landshoff. Here, the production amplitude is written in the
form F = TQ with Q being a polynomial in s. It corresponds to production (with a
spectral amplitude Q) of two particles which rescatter as a final-state interaction repre-
sented by T'. Practical examples are given to demonstrate the meaning and significance
of these formulae.

We would like to thank Drs. D. Morgan, R.S. Longacre, M.R. Pennington, and T.
L. Trueman for illuminating discussions. S.U. Chung acknowledges the generous help
he received in 1992 as an awardee from the Humboldt Foundation. E.Klempt would like
to appreciate the hospitality of the Physics Department at BNL during his summer visit.
This work was supported by the German Bundesministerium fur Technologie.
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Figure 8: The left box displays the phase—shift §; together with ¢15. The phases are identical
up to the KK threshold. Above the threshold ¢, falls quickly before rising again while 6,
continuous its movement up to 180°. In the right box the elasticity m; is shown. It drastically

drops at the KK threshold.
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Figure 9:

Pole positions of fits to a simulated ag am-
plitude squared, where different couplings
v2/v% are used. Sheet II and sheet III
are shown simultaneously, where the line
marks the K K threshold.

Figure 10:

The amplitude squared of a simula-
tion with two K matrix poles cou-
pling to the mn channel only. The
two inner lines mark the 7T-matrix
mass—pole positions, the outer lines
at 1300 MeV and 1400 MeV corre-
spond to the masses used in the K-
matrix.
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Figure 11:

T—-matrix pole positions in the un-
physical energy plane for the sim-
ulation using K—matrix parameters
my, = 1300 MeV, my = 1400 MeV,
T'; = 80 MeV and T, = 200 MeV.
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