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Abstract

A short description is given of the K-matrix formalism. The formalism, which
is normally applied to two-body scattering processes, is generalized to production
of two-body channels with final-state interactions.

A multi-channel treatment of production of J¥¢ = 0%+ and J¥¢ = 2*7 reso-
nances has been worked out in the P-vector approach of Aitchison. An alternative
approach, derived from the P-vector, gives the production amplitude as a product
of the T-matrix for a two-body system and a vector @ specifying its production.
This formulation, dubbed the @)-vector approach in this note, has also been worked
out for several examples of practical importance.

Two separate ‘derivations’ of the Flatté formula are given in the K-matrix for-
malism, and a possible generalization of his formula is also pointed out. In addition,
a derivation of David Bugg’s formula for two resonances into two channels is given.
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1 Introduction

The K-matrix formalism provides an elegant way of expressing the unitarity of the S-
matrix for the processes of the type ab — cd. A concise description is given here for ease
of reference, and its generalizations to arbitrary production processes are covered in some
detail.

The reader is referred to the text book by Martin and Spearman[l] for some of the
material covered in this note. However, one must note that the definitions given in this note
are different from those used by Martin and Spearman. Cahn and Landshoff[2] and Au,
Morgan and Pennington[3] have used the same definitions as those adopted in this note.

The unitary relationship involves a bilinear product, and one must exercise care with
constant factors, as there is essentially no freedom with the coefficients. The derivation for
the cross section from unitarity follows a well-defined prescription and, once defined, one
must again adhere to it rigorously. The reader may note that a scrupulous attention has
been given to these in this note.

2 S-Matrix and Unitarity

Consider a two-body scattering of the type ab — cd. The differential cross section is given
in terms of the invariant amplitude M and the ‘scattering amplitude’ f through

dofi _ 1 af 2 , 2
ot = s () st = st )

where %’ and ‘f’ stand for the initial and final states; Q@ = (6, ¢) denotes the usual spherical
coordinate system; and s = m? is the square of the CM energy. The g¢;(gs) is the breakup
momentum in the initial(final) system. [The observed cross section is in reality the average
of the initial spin states and the sum over all final spin states— this is suppressed here for
simplicity.] The scattering amplitude can be expanded in terms of the partial-wave ampli-
tudes

F(9) = 32(20 + TA(s)D3:(6,6,0) (2

i

where A = A, — Ay and g = A — Ay in terms of the helicities of the particles involved in
the scattering ab — cd. Note that this ‘scattering amplitude’ is a factor of two bigger than
that with a more common definition (for example, see Section 5.1, Chung[4]). One may in
addition note that the argument of the D-function is frequently given as (¢, 8, —¢) (see Jacob
and Wick[5] and Martin and Spearman[1]). Integrating the differential cross section over the
angles, one finds, for the cross section in the partial wave J,

J _ 4_7r J s)|2
= (%) e+ izl 3)
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Note that 77 has no unit; the unit for the cross section is being carried by ¢2. It is necessary
to define more precisely the initial and the final states

§) = |ab, J M)
|f) = led, JMAAq) (4)

where M is the z-component of total spin J in a coordinate system fixed in the overall CM
frame and the notations {ab} and {cd} designate additional informations needed to fully
specify the initial and the final states. Because of conservation of angular momentum, an
initial state in |JM) remains the same in the scattering process. Note the normalization (see
Section 4.2, Chung[4])

(fl2) = & (5)
In the remainder of this section and in subsequent sections, it is be understood that the ket
states mentioned always refer to those of (4). In particular, explicit references to the total

angular momentum J will be suppressed. Note that, with this convention, one has eliminated
the necessity of specifying continuum variables such as angles and momenta.

In general, the amplitude that an initial state |¢) will be found in the final state |f) is
Spi = (fISh) (6)

where S is called the scattering operator. One may remove the probability that the initial
and final states do not interact at all, by defining the transition operator 7' through

S=I1+%T (7)

where I is the identity operator. The factors 2 and 7 have been introduced for convenience.
[One sometimes defines 7' via S = I 4 1T, without the factor 2 as was done by Jacob and
Wick[5] or Martin and Spearman[l]— this is also responsible for the difference seen in (2).]
From conservation of probability, one deduces that the scattering operator S is unitary, i.e.

SSt=815=1 (8)
From the unitarity of the S, one gets
T—-T'=2 T'T =2 TT! (9)
Or, in terms of the inverse operators, these can be rewritten
(TH™ —T7' = 2i1 (10)
One may further transform this expression into

(T +iDV =T +4l (11)

One is now ready to introduce the K operator via

K =T+ (12)



From (11) one finds that the K operator is Hermitian, i.e.
K=Kt (13)

It can be shown from time-reversal invariance that the K operator is real, i.e. the K-matrix
may be chosen to be real and symmetric. However, it is shown in the next section that
this matrix becomes complex when it is analytically continued below a given threshold—the
K-matrix nevertheless remains Hermitian, thus preserving unitarity of the S.

One can eliminate the inverse operators in (12) by multiplying by K and T from left and
right and vice versa, to obtain

T=K+:TK=K+1KT (14)
This shows that K and T operators commute, i.e.
K, T]=0 (15)
and that, solving for T, one gets
T=K(I—-iK)"'=(I—-iK)'K (16)

Note that the T-matrix is complex only through the 7 that appears in this formula, i.e. T
has been explicitly broken up into its real and imaginary parts [see(12)].

Consider now an isoscalar 7w scattering in S-wave below /s = 1GeV. This is a single-
channel problem and unitarity is rigorously maintained. From (8), one may set

S = e (17)
where 6 is the familiar phase shift. The transition amplitude 7" is given, from (7),
T = esiné (18)

Note that the factors 2 and ¢ in (7) make the 7" attain the simple, familiar form. This formula
shows that the trajectory of T in the complex plane (Argand diagram) is a circle of a unit
diameter with its center at (0,2/2). This is the so-called unitarity circle and the physically
allowed T should remain at or within this circle. The S-wave cross section is, from (3),

o= (4—7;) sin? § (19)

The K-matrix for this case is simply
K =tané (20)

A pole in K is therefore associated with § = 7/2.



Consider next a two-channel problem in which both the K and 7" may be expressed as
2 X 2 matrices. Let

K1 K
K = 21
< Ky Ko ) (21)
where K15 = Ky and K;; = real. Then, from (12) one finds
]_ K11 - 'LD K12
T = _ : 22
1 —D — (K1 + K2) < Ky Ky —1D (22)
where
D - K11K22 - K122 (23)
It is sometimes more convenient to parameterize the inverse of the K-matrix directly, as
follows:
_ U —Ura
K'=U= 24
< —Uyn  Un ) (24)

where U1y = Uy; and U;; = real. The T-matrix is now simpler,

U11 —1 U12
T U21 U22 —1

B U11Uas — U122 -1- i(Ull + U22)

(25)

3 Lorentz-Invariant 7-Matrix

The transition amplitudes 7' as defined in (7) is not Lorentz invariant. The invariant
amplitude is defined through two-body wave functions for the initial and the final state, and
the process of the derivation involves proper normalizations for the two-particle states (see
Section 5.1, Chung[4]). The resulting invariant amplitude contains the inverse square-root of
the two-body phase space elements in the initial and the final states. The Lorentz-invariant
amplitude, denoted T, is thus given by

Ti; = {p;}2 Ty {p;}* (26)

The indices 7 and j stand for the final and initial states; the complex conjugation for p; is
thus required for analytic continuation into the region below the z-th threshold. In matrix
notation, one may write

T ={p'}: T {p}* (27)
and
S=1+2%{p'}: T {p}> (28)

where the phase-space ‘matrix’ is diagonal by definition, i.e.

(%) (29)



and 9 5
p1 = o and p2 = =12 (30)
m m
The g¢; is the breakup momentum in channel ¢. (Here one considers a two-channel problem

for simplicity.)

The cross section in the Jth partial wave is given by, from (3),
16 ~
ol = (TW) <f;_f> (2 + 1) T (s)I? (31)

Note that this formula embodies the familiar presence of the flux factor of the initial system
and the phase-space factor of the final system in the process ab — cd. In the K-matrix
formalism, one allows for p to become imaginary below a given threshold; however, the cross
section above has no meaning below a threshold, and one could then modify the expression
above by mutliplying it with two step functions: 6(p?) and 6(p%).

One may recapitulate the expressions for the differential cross section and its partial-
wave expansion in terms of the invariant amplitudes TfJi(s). For the purpose, one defines the
‘invariant scattering amplitude’

Tr(Q) = Y (2J + 1)T}(s)D12(4,6,0) (32)

and the differential cross section is given by

= () (&) ot .

2
)

- (e e
- (] - (5] "

in terms of the particle masses involved in the scattering ab — cd. Note that these phase-

The initial and final density of states are, with s = m

—

PF =

e
—

space factors are normalized such that
pi—1 as m?— oo (35)

The invariant amplitude Tﬁ(Q) is unitless, and has a partial-wave expansion (32). The
partial-wave amplitude Tsz-(s) is related to the K-matrix via (39), and unitarity is preserved

if the K -matrix is taken to be real and symmetric. It should be noted that the formula for
the differential cross section (33) has no ‘arbitrary’ numerical factors. The ‘conventional’
invariant amplitude, introduced in (1), is given by

./\/lﬁ = 167[' Tﬁ(Q) (36)
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One may consider again the isoscalar 77 scattering in S-wave below 1.0 GeV. In terms
of the phase-shift §, the invariant amplitude is given by, from (18),

T = 1e:a"‘s sin (37)
P

and when substituted into (31) the cross section (19) results. These expressions are very
familiar, and they demonstrate clearly the interplay between the phase shifts, the invariant
amplitudes and the cross sections.

One can similarly define the invariant analogue of the K-matrix through
K ={p'}? K {p}* (38)
If K-matrix is taken to be real and symmetric, then K is Hermitian and unitarity is preserved,
even when an element of p becomes imaginary below the threshold. From (12) one sees that

K'=T"'44p (39)
which leads to
T=K+:1:KpT =K +:1TpK (40)
and
TpK = KpT (41)
Solving for T', one obtains
T=KUI—ipK)=(I—-iKp)'K (42)

Note that K and p do not commute. The Lorentz-invariant 7-matrix is then given by

T’ _ 1 < k\n:’i/)zb\ e f{\12 A) (43)
1 — p1p2D — i(p1 K11 + p2K22) K Ky —1p1D
where
D - K11K22 - K122 (4:4:)
Defining K1 = U, one finds in addition
< [722:2'/)2 A—ﬁlz )
~ —U. U1 —1
o 21 11 — /1 (45)

(Ta2 —ip2) (001 —ip1) — U

It was shown by Cahn and Landshoff[2] that the Flatté formula[6] may be derived as a
special limiting case of the U-matrix. Let the channels 1 and 2 stand for 77 and K K. Define

2
~ m
U. = A+ 2
22 g1 + 242
2
~ m
U, = X2+ 2 46
11 9, 29% ( )
m?

—[712 = Ag1g92 +



where g; and mg are parameters in the problem, and let A go to infinity. Then one finds

9 G192
j:, _ g192 g%

mg —m? —i(p1g} + p293)

(47)

This is the familiar Flatté formula. Note that the g; are given in units of energy and for a
resonance in S-wave it is also a constant; one may therefore define unitless constants «y; via

gi = 1y molo (48)

where I'g is a constant playing the role of ‘width’ in the problem. Then, one may write

T _ mol'o < '712 Y172 ) (49)

mg —m? —imolo(p17i + p273) \ M2 %

with the normalization condition

"ty =1 (50)
A second derivation of this formula is given in the next section, with further comments on
the mass and the width.

4 Resonances in K-matrix Formalism

Resonances should appear as a sum of poles in the K-matrix. In the approximation of
resonance domination for the amplitudes, one has therefore

K = Z g;i(m)gaj(m) (51)
and .
EJ_ -y 9ai(m)gai(m) (52)

o« (md —m?)\/pip;

where the sum on a goes over the number of resonances with masses m,, and the residue
functions (expressed in units of energy) are given by

gai(m) = malai(m) (33)

where gqi(m) is real (but it could be negative) above the threshold for channel ¢. The width
[a(m) is
Ta(m) = Zfai(m) (54)

for each resonance «.

Consider now a resonance a coupling to n open two-body channels, i.e. the mass mq,
is above the threshold of all the two-body channels. The partial widths may be given an
expression

2
]_—\az(m) — gaz(m) — ,yi

My

ToBai(m)p: (55)
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and the residue function by

9ai(™M) = Yaiy/mal'y Bai(m)y/pi (56)

where B(m)’s are the barrier factors

Bui(m) = [ gi(m) r (57)

gi(ma)

in terms of the breakup momentum in channel ¢+ and the orbital angular momentum £. The
7’s are real constants (but they can be negative) and may be given the normalization

Z’Yii =1 (58)

In practice, it is probably better to avoid this normalization condition by using the param-

Goi = Vi) Ml (59)

as variables in the fit [see also (48)]. The residue function is then given by

Jai(m) = gg; Bai(m)y/pi (60)

eters

The observed total width f‘a and the observed partial width f‘m- are given by

From these one finds

..
FO — [
* Xz: pi(ma)
f‘ai

T - 62

ma]-_‘ai

pi(ma)

0 —
Goai =

In the limit in which the masses of the decay particles can be neglected compared to m,, one
has ['y(mg) =~ I'Y. In terms of the 4’s and ¢%’s, the invariant K-matrix now has a simpler

form
= Yai Ve 'maFgBai(m)Ba (m)
K, = Eaj T (63)
_ 9ai9a;j Bai(m)Baj(m)

Here one allows for the possibility that 4’s and ¢°’s can be negative.
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Consider now an isovector P-wave w7 scattering at or near the p mass. Then the elastic
scattering amplitude at the m7-mass m is given by

mol'(m)

2 _ .2
my —m

K = =tané (64)

where mg is the mass of the p and ¢ is the usual phase shift. The mass-dependent width is

T'(m) = To (%) (q‘-’—0>3 (65)

where T'; is the observed p width and ¢ (qo) is the 77 break-up momentum for the 77 mass

given by

m (mg). Neglecting the angular dependence of the amplitude, one obtains

reetsing= o) () [ (2) 0

The first bracket in (66) contains the usual Breit-Wigner form and the last bracket expresses

the two-body phase-space factor. Note that the phase-space factor is absent in the Lorentz-
invariant amplitude T given by (26). The ¢® dependence of the amplitude reflects the fact
that both the initial and the final 77 systems are in P-wave. The normalization for the
transition amplitude has been chosen such that
. ~ T+
T =47 and T=7 at m=mg (67)

It is seen that the invariant amplitude 7' is not normalized to 1 but to p~ 1. It is for this
reason that the Argand diagram is usually plotted with 7" and not 7.

Consider again a 77 scattering at mass m. But suppose there exist two resonances with
masses m, and my coupling to the isoscalar S-wave channel. The prescription for the K-

matrix in this case is that
mela(m)  mpls(m)

2 _ 2 2
m; —m

K =

(68)

mi —m

i.e. the resonances are summed in the K-matrix. The mass-dependent widths are given by

ra(m) =12 (%) (2) (69)

where o = a or a@ = b and I'% and ' are the two observed widths in the problem. g, is the
w7 breakup momentum at m = mg. If m, and m; are far apart relative to the widths, then
K is dominated either by the first or the second resonance depending on whether m is near
mg or my. The transition amplitude reduces to

=[] | (%) (). "




for m >~ m,. If one assumes that the two resonances dominate the region between m, and
mp, then the total amplitude is given merely by the sum, i.e.

r = [ () (2)]

e () ()] (m)

This provides a justification for the ‘addition rule’ of the Breit-Wigner forms within the K-

matrix formalism. In the limit in which the two states have the same mass, i.e. m. = m, = ma,
then the transition amplitude becomes

me[La(m) + Tp(m)]
m2 —m? —im.[[a(m) + T's(m)]

& —

T = (72)
This shows that the result is a single Breit-Wigner form but its total width is now the sum
of the two individual widths.

As a next example one may take the case of a single resonance coupling to two channels.
An example would be the isovector S-wave aq(980) coupling to the 7y (channel 1) and K K
(channel 2) final states. Then the elements of the K-matrix are

mol'1(m
Ky = Tobtm)
mo]__‘z(m)
Ky, = W (73)
mg Fl(m)Fz(m)
Ki, = Ky = 2 3
2_
and
2 2q: 2 2 29, 2
[i(m) =i To (?) =79 Topr and Ty(m)=~;T% (;) =73 Lopa2 (74)

The nominal mass and width of the ao(980) are denoted by mg and I'c—they may be ex-
pressed in terms of the observed values, as shown later. The ‘reduced’ widths are denoted
by 7? and 42, which are both unitless and satisfy

Mmt+m =1 (75)

It is instructive to sketch a second derivation of the Flatté formula. The invariant K-matrix
elements have constant numerators, as given by

— 2mel
Ky = 278
— 2mel
0
Ry = K — rmrmelo

2 _ 2
my — m
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Note that r = +1 in the limit of factorization. Since D = 0, one readily finds from (43) the
Flatté formula (49). The case r? < 1 has been explored; the resulting amplitudes contain a
zero at m = mg in the numerator and thus they were deemed unacceptable.

The a¢(980) appears as a ‘regular’ resonance in the 77 system (channel 1). Let the
apparent mass and width in this channel be m, and I';. Then the denominator of (49)
should appear as, for m near m,,

2 2 -
m, —m° —i1mgI,

in the resonance approximation. One finds, therefore,

2
m = m? (1) l|pz<ma>|] _—
M1 p1(ma)
mal's
T e man? 0
in terms of the ‘observed’ mass m, and width I'; in the 7 channel. Note that p;’s have
been evaluated at m = m, where T is expected to attain its maximum value. The above
formulas give merely a good starting point; in practice one must vary mq and [y to fit the
7n spectrum. The ratio (y2/7:1)? is an unknown (commonly fixed at the SU(3) value of 1.5),
but the shape of the square of the amplitudes depends only weakly on this value. Once the
ratio is fixed, then 42 and <5 are fixed through the normalization condition (75).

5 Production of Resonances

So far one has considered s-channel resonances, or ‘formation’ of resonances, observed in
the two-body scattering of the type ab — cd. The K-matrix formalism can be generalized to
cover the case of ‘production’ of resonances in more complex reactions. The key assumption
is that the two-body system in the final state is an isolated one and that the two particles
do not appreciably interact with the rest of the final state in the production process.

According to Aitchison[7], the production amplitude P should be transformed into F in
the presence of two-body final state interactions, as follows:

F=(I—-iK)'"P=TK'P (78)
Or, taking the invariant form, it may be written
F=(I-iKp)'P=TK'P (79)

where P characterizes production of a resonance and F is the resulting invariant amplitude.
It is emphasized that P must have the same poles as those of the K-matrix. They are both
column vectors, n-dimensional for an n-channel problem. If the K-matrix is given as a sum
of the poles as in (51), then the corresponding P-vector 1s

m2

11



and

]31' _ za: ( o ai(m) (81)

where 32 is in general complex (expressed in units of energy), carrying the the production
information of the resonance . One has made an assumption here that there exists a single
complex constant B2 for a given resonance a, independent of the decay channels. Under
the assumption that the only thresholds present in the production process are those of the
resonating two-body channel under study, one can put G2 real, since it does not have the

thresholds.

It is often more convenient to rescale 8%’s

B2 = fay/mal? (82)

so that B’s are unitless [see (59)]. Then the P-vectors read

B /Ba’Ya'i maFgBaz(m)
P = Z 2 2

[0 ma

(83)

—m

where, once again, (3’s are complex and 4’s are real. In the remaining part of this note one
shall occasionally drop the barrier factor in the above formula, so that the numerators are
now mass-independent, as follows:

30 BaVai marg ﬁg ggi
B = o Tl (84)
Then, the resulting production amplitude, defined by
A(m) = (1 —iKp)~*P° (85)

may be considered a generalization of the familiar Breit-Wigner form. The complete produc-
tion amplitude must of course contain the barrier factors as well as the angular dependence,
which are traditionally considered ‘external’ to the Breit-Wigner form. It is instructive to
work out the above formula in the case of a single resonance in a single channel. Then the
Kp is given by (64) and

]’50 . Bmol

2 2
my —m

so that

ﬁmoro
2

mi — m? — imol'(m)

A(m) = (86)

This is exactly what one writes down for a Breit-Wigner form, except that one has multiplied
by an arbitrary complex constant (. This provides a K-matrix justification of the traditional
‘isobar’ model. Note that the numerator is a constant, independent of m.

12



For a two-channel problem, the production amplitudes are

Fl _ ]31 - 2Z’\z(f{\.zzﬁl/\— f{\mf’ﬂ (87)
1 — p1p2D —1(p1 K11 + p2K32)
Fz _ 132 - ipl(k\llﬁz - f{\12]31) (88)

1— plpzb\— i(P1k\11 + sz\zz)

where D is as given in (44). See Longacre[8] examples of the use of the P-vector approach.

Cahn and Landshoff[2] state that in some approximations the column vector Q= K-'P
may be considered a constant in a given limited energy range. It is in general complex, but
it can be real if 82 of P is real. Then, one has

F=TQ (89)

i.e. the two-body final-state interaction may be expressed as a product of the T-matrix
and a constant column vector. The Q—Vector is devoid of the threshold singularities (i.e.,
no dependence on p) and therefore depend in general on s = m? only. For a two-channel
problem, one obtains

. Ky —i0,D)0; + K150

P = ( .11 iPz )Qlj 12Q/2\ (90)
1-— Z[P1(K11 - 2,02D) + P2K22]

5 (ff\zz — iplb\)Qg + K10y

AR LT (91)
1-— Z[Pz(Kzz - 2,01D) + PlKll]

Au, Morgan and Pennington[3] also used this method with the Q-vector expanded as poly-
nomials in m? (they assumed that @ is real in their analysis of the double-Pomeron data).

Consider a single-channel problem, e.g. the isoscalar 77 system in S-wave below 1 GeV.
Then, the K is simply given by (20) and one finds

F=¢e®cosé P (92)
In the Q-vector approach, one has similarly

~ 1. ~
F="e%sin§ Q (93)
p

In either case, the final-state interaction brings in a factor e*—this is the familiar Watson’s
theorem.

Consider next a single-resonance approximation to the two-channel problem. For con-
creteness one may wish to generalize the Flatté formula, i.e. the two-channel ag(980) formula

13



appropriate for an arbitrary production process. Cahn and Landshoff[2] pointed out in fact
that one can devise a number of models which differ fundamentally from the Flatté formula.
It may be useful here to show yet another application of the K-matrix formalism. For the
purpose one may start out with the expression for T as given in (45) and set

PN ~ ~ ~ m
U22 =, U11 =Yy and U12 = U21 = —2 (m—) (94:)
where z, y and z are unitless real constants to be determined, and then demand that the

(o) 1)

for m near m,. As before, m, and I', are the observed mass and width of the ag(980) in the

denominator approach

7n system (channel 1). Then one finds

y = (Tg—:) p1(ma)
2 = y{z+]|pa(ma)l} (95)

Once again, the p;’s have been evaluated at m = m,, and thus they are mere constants here.
The parameter z is an additional variable left free to be determined by the data [the ratio
y/z could be fixed to the SU(3) value of 1.5]. Note that y is always positive but that z or z
can be negative (but z should be greater than —|p2(m4)|).

If one takes the Q-vector approach, then the invariant amplitudes in the two channels
may be written

o= (z — ip2)Q1 + 2(m/m4) Qs
zy — 2%(m/ma)’ — p1p2 — (21 + yp2)
- (y —1p1)Q2 + 2(m/my) Q1 (96)

zy — 22(m/mg)? — p1pa — t(zp1 + yp2)

where Q; and §, are additional parameters to be determined by the data. They are complex
and may be expressed in general as polynomials in m2. Note that these expressions are
fundamentally different from the Flatté formula.

6 Multiple Resonances in Multi-Channels

As a concrete example one may consider two resonances coupling to two different chan-
nels. Consider then two isoscalar J¥¢ = 01 resonances m, and ms, with both masses around
1.0 GeV, coupling to 77 (channel 1) and KK (channel 2). The elements of the K-matrix
are, assuming factorization for the residues,

Ky, = ’Yglﬁo( )—}—'yleO(m)
K = 72500(m)+150(m) (97)

K = Kn = 7a7203m) + 1m76:05(m)
(98)
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where

~ maf‘g ~ mpl'?
Qo(m) = e a—r Qy(m) = ﬁ (99)

Note that T'? and I'J are constants for scalar resonances coupling to two spinless particles.
The normalizations are given by

731 + 732 =1 (100)
YootV = 1
The P°vector can be written
f)O — ( /Bafyalg:zg(m) + /Bbfybl{:zg(m) ) (101)
BaYa2Sda(m) + Beysalle(m)

where (B, and (B are unitless complex constants specifying production of the resonances
m, and myp. One can substitute these to the F’s given in (87) and (88), and the resulting
amplitudes describe the production process involving two resonances in two channels.

An alternative method is to apply the Q-vector approach. Assume that mq ~ mjy. Then

one has
(m2 — m?)(mi —m*)D ~ (YarWoz — Va2 Vo) malomsTy = o (102)
Note that a; is a constant, independent of m?. One obtains, on the other hand,
(m2 —m*)(mj — mz)k\n = ay+ azm?
(m2 —m*)(mj — mz)k\zz = a4+ asm? (103)
(m2 —m?)(mg — mz)k\lz = as + arm?

where «;’s are real constants. One may further set, somewhat arbitrarily,

1 = Qo

72 = Qg + agm_2 (104)

Oy L)

A total of 10 parameters a; has been introduced; ap, ag and ag are complex in general, while
the rest of the a’s are real. Now the amplitudes F; can be cast into the form

- Gs(m)
P (m2 = m?)(m2 —m2) — 1[p,Gy(m) + p2Ga(m)]
5 Ge(m)
F: - 105
> (2 = m2)(md = m?) — i[paGa(m) + p2Ga(m)] (15)
where, for F’l,
Gi(m) = ag+ azm® —ipya;
Ga(m) = aq+ asm? (106)

Gg(m) = Q3 + Oég)\lmz — 7;[)2&1)\2 + )\3m_2
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and, for F,

Gi(m) = as+asm® —ipia;
Gs(m) = ag+ azm? (107)
Gg(m) = Q4 + 045)\4’)’77,2 — ’1;)010(1)\5 -+ ()‘6 — ipl)\7)m_2

Here );’s are complex constants. This is the formula used by David Bugg (attributed to
Morgan and Pennington). Note that in this approach one has introduced a total of 12 pa-
rameters. Here the rationale is clear; the o; for + = 1,5 have been previously determined in
the study of 77 and KK scattering amplitudes, and only the ); for 2 = 1,7 are being varied
to fit the data for ‘production’ of the 77 and KK systems.

Consider once again 77 (channel 1) and KK (channel 2) in S-wave. Au, Morgan and
Pennington[3] gave a parameterization of the K-matrix in the following form:

(p) £(p) n
Ea‘:(is_%) {Z 5L, )+ch'1)l i’ —1] } (108)

dmi p=1 (sp = s)(sp — 50 dmiy

where s = m? and so is the Adler zero. (K. Konigsmann found a typographical error in
Ref.[3]—the curly bracket in the above formula was missing.) Note that this parameterization
represents a sum of a series of pole terms and a background term expressed as a polynomial
in s. The fitted values can be read off their Table I. Their ‘primary’ fit (the first column in
their Table I) consists of a single pole term (s; = 0.9247 GeV?) and a polynomial for n < 4.
Their fit covers a mass range of m from the w7 threshold up to 1.7 GeV, but considered
reliable below 1.4 GeV. Their K-matrix can in principle be used to describe the production
amplitude F; both in P- and Q-vector approaches. However, the P vector must again contain
a pole term and a background term consisting of a polynomial. A more economical way might
be to take the F’s given in terms of two complex constants, Q; and Q, [see (90) and (91)].
Of course, it is more general to allow for energy dependence

Q; =Y dMsmk (109)
n=0

where dg")’s are complex constants to be determined by the data and % is an arbitrary integer.
Note that £ =1 was adopted in (104).

As a final example, consider two isoscalar J¥¢ = 2+ states, the f,(1270) and the
f2(1565), both coupling to nm (channel 1). Let the channel 2 [3] stand for the f»(1270)
[f2(1565)] decay into all other non-mm channels. For simplicity one may further assume that
the channels ‘2’ and ‘3’ are completely decoupled.

Then, the K-matrix takes on the form

K = Ky {{\22 523 (110)
K3 K3 Kz
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where

Ky, = 7§1Qa + 'Yglﬁb

Kpn = 750

Kz = ’Yfgﬁb (111)
K, = k\m = ’Yal’Yazﬁa

Ky = k\sz =0

K3 = k\31 = ’Yb1’Ybsﬁb

The subscripts ‘a’ and ‘b’ stand for f»(1270) and f»(1565), respectively, and

~  my'YB%(m) ~  mpl'yBE(m)
Q, = MaraZal™) g MM 112
m2 —m? b mi — m? (112)

where m, and mj are the masses. The barrier factors are given by

By(m) = (q) By(m) = (q) (113)

9a b
so that the usual mass-dependent total widths I';(m) and I'y;(m) may be written

Ta(m) = TYBX(m)p(m) =5 () Bi(m) (1)

m Ga
Tum) = T8B3m)oa(m) = 1% (%) Bim) ( £) (114)

where ¢, and ¢ are the breakup momenta in the 77 channel at m = m, and m = m,
and the observed total widths are given by I'Y and I'y. Note that the coupling constants are
constrained as follows:

731 ‘|")’32 =1 (115)
Yoot = 1

One must note that an important simplifying assumption has been made here; the phase-
space factors for the channels ‘2’ and ‘3’ are taken to be the same as that for channel ‘1’
(the 77 system). As long as the channels ‘2’ and ‘3’ remain unspecified, one has in fact no
choice. Note that the phase-space matrix with this assumption is given by p = p; I, 1.e. it 1s
proportional to the identity matrix. The P°-vector can be written

N /Ba’}/alﬁg + @b’}/bl Qg
P A (116)
5b’}’b392
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where Q2 and Qf are as defined in (99) [or (112) with the barrier factors removed], and 8,
and B, are complex constants specifying production of the states a and b. Note that the
numerators of Qg and Qg have no dependence on m; it should be emphasized once more that
the formula (84) is a generalization of the familiar Breit-Wigner form into the multi-channel
problem. The overall amplitude one writes down must include the barrier factors, as they
are not contained in the P°-vector.

In the Q-vector approach, the generalized Breit-Wigner form reads
Alm)=TQ =(1-iKp)'KQ (117)

One may take the Taylor series expansion Q in terms of m?. Once agaln, one must try
both methods and choose that which gives the best fit to the data with the least number
of parameters. However, to the extent that the 8’s may be taken as constants, the P-vector
approach may be more efficient in general.

One may cast treatment of two isoscalar J¥¢ = 27+ resonances, the f,(1270) and the
f2(1565), into a two-channel problem as follows: let 77 be the channel 1, and let pp be the
channel 2. One assumes here that the f5(1565) has a substantial decay mode into pp, but
the f2(1270) evidently decays very little into this channel. Then, the K-matrix takes on the
form

= k\n f{\m )
K= = — 118
( Ky Kj ( )

where

k\n = 7§1§a1+'yflﬁb1
Ky = 720 + 750 (119)

k\m = k\m = Ya1Ya2'V Qalﬁa2 + Yo1Y62 Y ﬁb1ﬁb2

where v’s are real but can be negative. Note the normalization

TtV = 1
’751 + '}’52 =1 (120)
where 751 = £0.96, 7,2 = £0.27 for the f5(1270) [derived from the Particle Data Book],

and «2, for the f,(1565) should be large, e.g. 0.95. The subscripts ‘a’ and ‘b’ again stand for
f2(1270) and f»(1565), respectively, and

0 _ maFSBS(m)
al — 2 2
m, —m
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5 malgBi(m)

Qa2 = mg 2
3 myl'y By (m)
Qg = —5——== 121
no= T (121)
0 . mbI‘ng(m)
b2 = 2 2
my —m

The barrier factors B,(m) and By(m) are as given in (113), and B,(m) and By(m) are
similar to B,(m) and By(m), except that the breakup momenta are for the pp system. They
can be evaluated numerically in a straightforward manner. Let the effective masses for two
p’s be m; and m,, and let m stand for the pp effective mass. The four-body phase-space
factor may be written (see Appendix B, Chung[4]), neglecting the angular dependence,

dp = p(m,m1, ma)p(ma, p, p)p(ma, g, p)dsidss (122)

where p(m, m1,m3) = 29(m, m1,m2)/m and q is the breakup momentum of a state of mass
m into the two-body system with ‘masses’ m; and m,. The pion masses are denoted by g,
and s; = m? and s; = m2. Define ¥ containing the Breit-Wigner forms for the p’s and the
barrier factors for their decay, as follows:

U = A%(ma)q(ma, p, p)A%(ma)q(ma, p, p) (123)

where the Breit-Wigner forms are

A%(m) = ol (124)

mi — m? — imol'(m)

The p mass and width are denoted by mg and Iy, and I'(m) is the mass-dependent width as
given in (65). Then, the barrier factor for the pp system is given by, for @ = a or b,

n2 f dgo|\:[lq2(m7m17m2)/q2(ma7mlym2)|2
B (m) = T do|TP? (125)

This formula is well defined for m > 4u; below this value one may analytically continue in

the standard fashion, but one may also set it zero as m is now far away from the resonances
masses.

The P°-vector may be written

po o /Ba’Yal‘(:zg —I' /Bb’Yleg (126)
/3a7a292 —I' /3b7b292

where Q2 and Qf are as defined in (99). Substituting these into (84), one obtains the gener-
alized Breit-Wigner form for the two-channel problem involving the two f;’s. The §’s once
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again define production characteristics of the resonances ‘a’ and ‘b.” Since the f»(1565) is
seen only the pp annihilations, B is large compared to B,. On the other hand, the f(1565)
branching ratio into 77 cannot be large; otherwise it would have been observed in previous
analysis of the 77 channels. Therefore, -4 is likely to be small, but evidently one must have
Ba. comparable to Byys1, as both ‘a’ and ‘b’ are seen copiously in the 77 system from the pp
annihilations.

Of course, one can also try out the Q—Vector approach, with a polynomial expansion of

the Q-vector in m?.
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