
CB–Note 93/Revised

LEAR Crystal Barrel Experiment, PS197

Chamber Reconstruction Software

Locater Version 2.00

Curtis A. Meyer

Carnegie Mellon University

20 July, 1994

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@

��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@
@@

�
�
��

Z
Z
ZZ

Z
Z

ZZ

�
�

��

0

Contents

1 Generation of Code 1

1.1 Building the LOCATER code . 1

1.2 The USER code . 3

1.3 The value of π . 3

1.4 Access to Track Bank Sizes . 4

1.5 Input and Output . 4

2 Data Banks for CB Chambers 6

2.1 Description of the Chamber Data Banks . 6

2.1.1 RJDC . 7

2.1.2 RJDF . 8

2.1.3 RPWC . 8

2.1.4 TJDC . 9

2.1.5 TCHT . 10

2.1.6 TCTK . 12

2.1.7 TCTR . 15

2.1.8 TCHX . 17

2.1.9 TCVX . 17

2.1.10 TCVT . 17

2.1.11 TCVP . 19

2.2 The TPWC Data Bank . 20

2.3 Calibration Data Banks . 22

2.3.1 TJCE . 23

2.3.2 TJCP . 23

2.3.3 TJCZ . 23

2.3.4 TJCT . 24

2.3.5 TJRF . 24

2.3.6 TJST . 25

2.3.7 TJT0 . 26

2.3.8 TJWR . 26

2.3.9 TJZL . 26

2.3.10 TJZ0 . 26

2.4 Monte Carlo data banks . 26

2.4.1 RMCB . 26

3 User Callable Routines 27

3.1 User Service Routines . 27

3.1.1 SUBROUTINE BCLDD . 27

3.1.2 SUBROUTINE BCLDS . 27

3.1.3 SUBROUTINE CJOORD . 27

3.1.4 SUBROUTINE RJRJDC . 28

3.1.5 SUBROUTINE RJRJDF . 28

3.1.6 SUBROUTINE RPRPWC . 28

3.1.7 SUBROUTINE RJTJDC . 28

3.1.8 SUBROUTINE TCBARL . 29

3.1.9 SUBROUTINE TCBARX . 29

3.1.10 SUBROUTINE TCHLDD . 29

3.1.11 SUBROUTINE TCHLDS . 29

i

3.1.12 SUBROUTINE TCKFT3 . 30

3.1.13 SUBROUTINE TCKFT4 . 30

3.1.14 SUBROUTINE TCOORD . 32

3.1.15 SUBROUTINE TCPRNT . 33

3.1.16 SUBROUTINE TCRHIT . 33

3.1.17 SUBROUTINE TCRSLT . 34

3.1.18 SUBROUTINE TCTCHT . 34

3.1.19 SUBROUTINE TCVERS . 35

3.1.20 SUBROUTINE TCVHLD . 35

3.1.21 SUBROUTINE TCVHLS . 35

3.1.22 SUBROUTINE TCVLDD . 36

3.1.23 SUBROUTINE TCVLDS . 36

3.1.24 SUBROUTINE TJTJDC . 36

3.1.25 SUBROUTINE TPTPWC . 37

3.2 Utility Routines . 37

3.2.1 FUNCTION KRATE . 37

3.2.2 SUBROUTINE SM353 . 37

3.2.3 SUBROUTINE SORTIL . 38

3.2.4 SUBROUTINE SORTFL . 38

3.2.5 SUBROUTINE SRTREE . 38

4 Chamber Reconstruction Software 39

4.1 Description of the Chamber Reconstruction Common Blocks 39

4.1.1 LGHOLD . 39

4.1.2 RJDATA . 39

4.1.3 RJPRMS . 40

4.1.4 TCANGL . 41

4.1.5 TCCUTS . 41

4.1.6 TCFLAG . 42

4.1.7 TCHITS . 43

4.1.8 TCLIFT . 43

4.1.9 TCPRMS . 44

4.1.10 TCSCAT . 45

4.1.11 TCSEGS . 45

4.1.12 TCSTAT . 46

4.1.13 TJCONV . 46

4.1.14 TJCUTS . 46

4.1.15 TJPRMS . 47

4.1.16 TJSLCN . 48

4.1.17 TJWIRE . 48

4.1.18 TPPRMS . 48

4.2 Description of the General and Steering Software . 49

4.2.1 SUBROUTINE TCDONE . 49

4.2.2 SUBROUTINE TCINIT . 49

4.2.3 SUBROUTINE TCTRAK . 49

4.2.4 SUBROUTINE TJGAIN . 50

4.2.5 SUBROUTINE TJGAOT . 50

4.2.6 SUBROUTINE TJSLOW . 51

4.2.7 SUBROUTINE TJTIMI . 51

ii

4.3 Description of the Raw Data Processing Software . 53

4.3.1 SUBROUTINE RJAFIT . 53

4.3.2 SUBROUTINE RJPROC . 53

4.3.3 SUBROUTINE RJPULS . 54

4.3.4 SUBROUTINE TJDCGT . 55

4.3.5 SUBROUTINE TJTIME . 55

4.3.6 SUBROUTINE TPWPOS . 56

4.4 Description of the Pattern Recognition Software . 58

4.4.1 SUBROUTINE TCFSRC . 58

4.4.2 SUBROUTINE TCPATT . 58

4.4.3 SUBROUTINE TCRAW1 . 59

4.4.4 SUBROUTINE TCRAW2 . 59

4.4.5 SUBROUTINE TCRESL . 60

4.4.6 SUBROUTINE TCROSS . 60

4.4.7 SUBROUTINE TCRSRC . 61

4.4.8 SUBROUTINE TCSGMT . 61

4.4.9 SUBROUTINE TJDROP . 62

4.5 The Circle Fitting Software . 64

4.5.1 SUBROUTINE TCADD . 64

4.5.2 SUBROUTINE TCAHIT . 64

4.5.3 SUBROUTINE TCASSC . 64

4.5.4 SUBROUTINE TCCIRC . 65

4.5.5 SUBROUTINE TCCNCT . 65

4.5.6 SUBROUTINE TCDEDX . 66

4.5.7 SUBROUTINE TCDISC . 66

4.5.8 SUBROUTINE TCDROP . 66

4.5.9 SUBROUTINE TCFITR . 66

4.5.10 SUBROUTINE TCHECK . 67

4.5.11 SUBROUTINE TCIFIX . 68

4.5.12 SUBROUTINE TCITER . 69

4.5.13 SUBROUTINE TCLOAD . 71

4.5.14 SUBROUTINE TCRSLV . 72

4.5.15 SUBROUTINE TCSPLT . 73

4.5.16 SUBROUTINE TCSWEP . 74

4.5.17 SUBROUTINE TCTHET . 74

4.6 Helix Fitting Software . 77

4.6.1 SUBROUTINE TCHELX . 77

4.6.2 SUBROUTINE TCHXLD . 79

4.6.3 SUBROUTINE TCMSCT . 80

4.6.4 SUBROUTINE TC2HLX . 81

4.6.5 SUBROUTINE TPCNCT . 82

4.7 Vertex Fitting Software . 82

4.7.1 SUBROUTINE TCVERT . 82

4.7.2 SUBROUTINE TCVRTX . 83

iii

5 Chamber Calibration Software 87

5.1 Description of the Chamber Calibration Common Blocks 87

5.1.1 CJCUTS . 87

5.1.2 CJEXFT . 89

5.1.3 CJFLAG . 89

5.1.4 CJGAIN . 89

5.1.5 CJGLOZ . 90

5.1.6 CJPCAL . 91

5.1.7 CJSTAT . 91

5.1.8 RJSTAT . 91

5.1.9 TCDEBG . 92

5.2 Description of the Chamber Calibration Software . 92

5.2.1 SUBROUTINE CJCALB . 92

5.2.2 SUBROUTINE CJDCAL . 93

5.2.3 SUBROUTINE CJDEDX . 93

5.2.4 SUBROUTINE CJFITR . 93

5.2.5 SUBROUTINE CJGZFT . 94

5.2.6 SUBROUTINE CJINIT . 96

5.2.7 SUBROUTINE CJITER . 101

5.2.8 SUBROUTINE CJSLOW . 102

5.2.9 SUBROUTINE CJUPDT . 102

5.2.10 SUBROUTINE CJWIPE . 102

5.2.11 SUBROUTINE CJZCHK . 102

5.2.12 SUBROUTINE CJZFIT . 103

5.2.13 SUBROUTINE CJ4PRG . 103

List of Tables

1 I.O. Units used. 5

2 Data in the RJDC data bank. 7

3 Data in the RJDF bank . 8

4 Data in the RPWC data bank. 9

5 Data in the TJDC data bank. 9

6 Data in the TCHT data bank. 11

7 Data in the TCTK data bank. 13

8 Data in the TCTR data bank. 16

9 Data in the TCHX data bank. 17

10 Data in the TCVT data bank. 18

11 Data in the TCVP data bank. 20

12 Data in the TPWC data bank. 20

13 Data in the TPWC data bank. 22

14 Data in the TJCT data bank. 24

15 The look–up table . 24

16 Data in the TCTK data bank. 97

iv

List of Figures

1 Data bank layout. 6

2 Access to the vertex information. 18

3 General Offline Flow Diagram . 52

4 Sector coordinates in the jdc. 56

5 Raw Data Processing Software Flow . 57

6 Pattern Recognition Software Flow . 63

7 Bad tracks. 73

8 Circle Fit Software Flow I. 75

9 Circle Fit Software Flow II. 76

10 Closest Approach . 85

11 Helix and Vertex Fit Software Flow. 86

12 General Calibration Flow Diagram . 105

13 Calibration flow I. 106

v

Updates to the Code

Version 1.30 to 1.44

• The /rjprms/ common block has changed to allow different time offsets in each FADC crate.

The variables itffrj and itfgrj have been replaced with itfcrj(16).

• Variables which are no longer used have been dropped from the /rjdata/ common block.

• The cards ITFF and ITFG have been removed. They have been replaced by the ITFC data

card. To use this card, it is necessary to have 17=1 as part of the input.

• The RJDC bank has been modified to include a self describing header. Also, the units in

which time is stored have been changed from 1ns per channel to 200ps per channel.

• The RJTFIT routine has been removed. It is now included inline in the RJPULS subroutine.

• The TJZPOS and TJTIME routines have been merged into one subroutine, TJTIME. Since

they were always called in pairs, this should cut down on overhead.

• The time fitting algorithem for raw pulses has been changed from a bin of maximum difference

to a first electron method.

• The double pulse separation algorithem in TJDCGT has been modified to allow separation

down to much smaller levels when the pulses are well separated in charge division.

• The User service routine TCRHIT has an additional call argument. It now returns the address

of each hit in the TCHT bank in addition to the previous information.

• The addition of two new User service routines, TCHLDD and TCHLDS. These will return the

three momentum and covariance matrix of a track in the TCTR data bank in either double

or single precision.

• The addition of a calibration routine for performing a kinematic fit to the constraints of three–

momentum balance, CJKFIT. The input is of the form generated by the TCHLDS subroutine.

• The value σdE/dx in the TJDC bank has been replaced with a term σφ near the edge of the

cell.

• The value σdE/dx in the TCHT bank has been replaced with a term σφ near the edge of the

cell.

• The subroutine TCVERS now will return the version number, and optionally print out the

version information. This code is now section on User Service Routines.

• Inclusion of a new calibration data bank, TJT0. This contains time offsets for every wire in

the jdc.

• The polynomials parameterizing the drift–time distance relation ship are now Hermite instead

of Taylor polynomials. This allowed me to decrease the order by one and retain the same

accuracy. It also makes the covraiance matrix more diagonal.

• The code has been put in the cmz code manager for ease of updating. All patchy commands

still work.

• Expanded the number of PATCHes in the code to facilitate updates.

vi

• Modified version of the helix fit routines to remove a singularity at 90◦.

• Included Laguerre Polynomials in the allowed types for the drift time to distance relationship.

These are better than the Hermite.

• Included Slow Control monitoring code. This is both in the calibration phase, and the auto–

updating of calibration constants based on changing conditions in the chamber.

• Included the subroutine BCLDD to load crystal data for the TCKFT4 and TCKFT3 routines.

• Modified the form of the TCVP data bank to accommodate a three by three covariance matrix

for the vertex momenta.

version 1.44 to Version 1.45

Version 1.45 to Version 1.46

• The slow control information is now used to correct the r–φ look–up table.

• The TCHT data bank has been changed. It now has three additional words of information.

Version 1.46 to Version 1.50

• A new filtering scheme for outlyers has been implemented into the software. This causes about

20 percent of the data to be thrown away.

• New r–φ calibrations tables have been created based on input from Garfield.

• The handling of online data processing has been implemented, and steering cards rjdd and

rjdf have been added to control this.

• Error logging is now handled by the errlog subroutine. The slow control software will no

longer produce hundreds of pages of useless output.

• pwc software has been implemented, and pwc hits are now included in the helix and vertex

fits. Note that the inclusion of the pwc hits does not happen until after all circle fits are done.

This means that they have no effect on the pattern recognition.

• The code has been modified to recognize and handle jdc data which has been processed online.

There have also been cards introduced to allow the user to steer between the various types of

raw data.

• The patches in the locater cmz file have been reorganized. It is necessary to pick up a fresh

card file at this release.

vii

Chamber Reconstruction Software 1

1 Generation of Code

1.1 Building the LOCATER code

The Locater code is distributed as a PAM file, LOCATER.PAM, and a default cradle file, LO-

CATER.CRA. In order to generate the most basic version of the code, one need only issue the

command:

YPATCHY LOCATER.PAM LOCATER LOCATER.CRA .GO

However, other options have been installed in the PAM file which allow the user to:

• Install the chamber calibration software.

• Install debug print print lines, at many different levels.

• Select only standard Fortran–77.

In the most basic of installations, the user needs to have LOCATER.PAM, CBOFF.PAM, (the main

code), and the following lines in LOCATER.CRA.

+USE,machine flag.

+USE,COMMCB,TCCOMMON.

+USE,TC_MAIN,TC_GAIN,TC_RAWS,TC_PATT,TC_CIRC.

+USE,TC_HELX,TC_VERT,TC_SERVC,TC_UTIL.

+EXE.

+PAM,12,T=ATTACH. LOCATER.PAM

+PAM,11,R=COMMCB,T=ATTACH. CBOFF.PAM

+QUIT.

Machine flags supported by locater are as follows.

• ALT Alliant FX/8 for the Alliant fortran compiler.

• DECS For DecStations, using f77 fortran compiler.

• IBM For IBM-CMS and IBM-MVS computers.

• NXT For NeXT stations using the f77 fortran compiler.

• SUN For the SUN Work stations, f77 fortran compiler.

• UNIX Generic unix flag.

• VAX For VAX/VMS computers.

For installation of the calibration code in its most basic form, the cradle should be.

+USE,machine flag.

+USE,COMMCB,TCCOMMON.

+USE,TC_MAIN,TC_GAIN,TC_RAWS,TC_PATT,TC_CIRC.

+USE,TC_HELX,TC_VERT,TC_SERVC,TC_UTIL.

+USE,TC_CALIBRATE.

+EXE.

+PAM,12,T=ATTACH. LOCATER.PAM

+PAM,11,R=COMMCB,T=ATTACH. CBOFF.PAM

+QUIT.

2 Chamber Reconstruction Software

To install debug lines, the following patches and flags are used.

• TCDEBUG is the patch containing all debug print statements. It also installs a minimum

amount of event logging to let the user know which sections of the code were called for each

event.

• TCPRINT installs statements which cause the results of each level of the code to be printed

out. All of these statements are installed in the TCTRAK and CJCALB routines.

• DEBUGRAW installs debug print lines in the routines which process the data in the RJDF

data bank.

• DEBUGPAT installs debug print lines in the pattern recognition section of the code.

• DEBUGFIT installs debug print lines in the circle fitting section of the code.

• DEBHELIX installs debug print lines in the helix fitting section of the code.

• DEBVERTX installs debug print lines in the vertex fitting section of the code.

• DEBUGCAL installs debug print lines in the calibration code.

• DDDDEBUG installs print lines that produce a lot of mostly useless output.

• DEBFALSE causes the default value of debgtc, the parameter which turns on and off

printing to default to .false..

As an example, the following would create code which included calibration, and debug print lines

in the pattern recognition and circle fitting sections, and a general event monitor.

+USE,machine flag.

+USE,COMMCB,TCCOMMON.

+USE,TC_DEBUG.

+USE,TCPRINT,DEBUGPAT,DEBUGFIT.

+USE,TC_CALIBRATE.

+USE,TC_MAIN,TC_GAIN,TC_RAWS,TC_PATT,TC_CIRC.

+USE,TC_HELX,TC_VERT,TC_SERVC,TC_UTIL.

+EXE.

+PAM,12,T=ATTACH. LOCATER.PAM

+PAM,11,R=COMMCB,T=ATTACH. CBOFF.PAM

+QUIT.

The user will find that several pilot cradles have been installed in the LOCATER code itself. The

following is a list of what is available.

• *LOCATE Installs the basic code with no calibration and no debug print lines.

• *DEBUG installs the basic code with all debug options on.

• *CALIB installs the calibration code with no debug lines.

• *DEBUGC installs the calibration code with all debug options on.

Finally, because of both help in debugging the code, and readability of output, the LOCATER

code is not written in absolutely standard Fortran–77. Such extensions as IMPLICIT NONE and

print statements containing lower case characters have been used throughout the code. However, it

is possible to remove these in the normal, (no calibration, no debug print lines) version of the code

Chamber Reconstruction Software 3

by inclusion of the patchy flag, +USE,F77. However, unless the user’s computer forbids these

extensions, it is recommended that the above flag not be used.

Since version 1.42, locater has only been supported within the cmz program, (Code Manager

under Zebra). The released Locater card file can be taken into cmz using the following commands.

cmz

cmz[0] make locater

locater[1] ytoc locater.car

locater[2] exit

The same pilots used for patchy are also used for cmz. To generate the standard program, (source

code only), do the following:

cmz

CMZ[0] file locater -R

locater[1] set locater.for -F

locater[2] pilot *LOCATE

locater[3] sel machine_flag, (i.e. ALT,DECS,IBM,SUN or VAX)

locater[4] set calibration_set (i.e. dec_89_1, jun_90_1, jul_90_1)

locater[5] seq commcb

locater[6] ctof -P

locater[7] exit

1.2 The USER code

As discussed in the Offline Reconstruction Software Manual, the user is able to provide several

specific routines to the entire software framework. These routines are usually provided in the

framework of a patchy cradle file, user.cra. In order to have access to all the common blocks

used routinely throughout the rest of the software, the following patchy commands can be used in

the beginning of the uses’s cradle.

+USE,machine flag.

+USE,COMMCB.

+USE,TCCOMMON.

+USE,P=CBPHYS,D=CBMAIN.

+USE,USERCODE.

+EXE.

+PAM,11,R=COMMCB,CBPHYS,T=ATTACH. CBOFF.PAM

+PAM,12,R=TCCOMMON,T=ATTACH. LOCATER.PAM

+PATCH,USERCODE.

+DECK, ...

+QUIT.

This of course assumes that the user already has the pam files for cboff and locater. In the next

sections are described several standardizations which are used throughout the offline software, and

can/should also be used throughout the user’s own code.

1.3 The value of π

The value of π, π/2 and 2π in both single and double precision forms are obtained with the patchy

statement +cde,pi2pi. This call will include the following piece of code.

4 Chamber Reconstruction Software

*

REAL PI,PI2,PIHLF

PARAMETER (PI = 3.141592653589793)

PARAMETER (PI2 = 6.283185397179866)

PARAMETER (PIHLF = 1.570796326794896)

*

DOUBLE PRECISION DPI,DPI2,DPIHLF

PARAMETER (DPI = 3.141592653589793D0)

PARAMETER (DPI2 = 6.283185307179866D0)

PARAMETER (DPIHLF = 1.570796326794896D0)

*

1.4 Access to Track Bank Sizes

Many of the data banks used to contain tracking information have been organized in a table format.

For each entity in the bank, there are a fixed number of attributes. As an example, the TJDC data

bank contains hits, and for each hit there are 16 attributes. So, if one wants to have access to the

n’th hit in the bank at ltjdc, then one computes itjdc as ltjdc +16 · (n− 1). It is possible at

some future date that it will become necessary to add more information on each of these hits. In

order to simplify that transition, the length of each block in these data banks has been specified as

a parameter which can be obtained using the patchy command +CDE,TRKPRM. This will then

include the following information. It is recommended that the user use these where ever possible to

avoid possible confusions in later versions of the program.

INTEGER LENTJ,LENHT,LENTK,LENTR,LENHP,LENVX,LENVP,LENPW,LENCL

PARAMETER (LENTJ=16,LENHT=20,LENTK=30,LENTR=32,LENHP=6)

PARAMETER (LENVX=14,LENVP=13,LENPW=10,LENCL=12)

• lentj is the length of the repeating block in the TJDC bank.

• lenht is the length of the repeating block in the TCHT bank.

• lentk is the number of data words found in a TCTK bank.

• lentr is the number of data words found in a TCTR bank.

• lenhp is the length of the repeating block in the TCHX bank.

• lenvx is the number of data words found in a TCVT bank.

• lenvp is the length of the repeating block in the TCVP bank.

• lenpw is the length of the repeating block in the TPWC bank.

• lencl is the length of the repeating block in the cluster banks.

1.5 Input and Output

Throughout this code, a standardized set of io parameters has been used. These are obtained using

the patchy command +cde,cbunit.. This then includes a set of integers whose values are shown

in table 1.

Chamber Reconstruction Software 5

Unit Name Description

In the /cbunit/ common.

4 llog Log file for the program

4 lprnt Alternate log file if needed

6 lterm Terminal for interactive jobs

7 ldbg Debug print file.

8 lerr Error file for the program

9 lnorm Short term unit. This unit is used in setup routines

for reading in files. All files using this unit

should be one–pass routines which open and

close the file before returning .

10 lhst hbook histogram file

10 lhst This is also used by the grafiks routines

for printing of meta files.

17 Unit from which the data base file is read.

20 ldst Unit for output of processed data

21 lrdt Unit from which the data is read into the program

30 ltime Unit to read the fera look–up–table.

31 ltiml Unit to read the 2282 look–up–table.

70 ljtout write out large calibration files.

72 ljgout write out the corrected gain file.

81 ljcal read in the jdc calibration card file.

82 ljgain read in the jdc gain file.

In the /zunit/ common.

iqread

iqprnt

iqpr2

iqlog

iqpnch

iqttin

iqtype

Table 1: A list of all io units presently defined. The first two sections of the table are accessed through

a +cde,cbunit command, while the third section is obtained through a +cde,zunit command. The

third section seems to be an internal zebra common, and is used in the graphics sections of the code.

6 Chamber Reconstruction Software

2 Data Banks for CB Chambers

2.1 Description of the Chamber Data Banks

In this section are described all data banks used in processing the chamber information from the

Crystal Barrel. There are three types of banks so far: [1] those containing raw or unprocessed data,

[2] those containing the results of pattern recognition and track reconstruction, and [3] scratch or

temporary banks used through out the analysis. In figure 1 is shown the general structure of master

and subbanks used throughout the chamber reconstruction. Because of the large amount of overhead

required in setting up data banks1, it is desirable to store many hits in the chamber in the same

data bank. There are two natural divisions in the jdc, by sector, (30) and by layer (23). Both of

these divisions have been utilized in storing chamber hit information. A top level, or master bank is

set up, and then a series of subbanks for either each sector or each layer containing data. The link

area in the master bank then contains pointers to all the subbanks which are addressed via their

sector or layer number, and the data area of the master bank contains the number of hits stored in

each subbank.

As a convention, all data banks which exist on the raw data tape have the letter R as the first

letter in their names. For example, the data banks containing the results of the Qt analysis in the

jdc are called RJDC. Banks that are either used in tracking, or contain tracking have T as the first

letter in their names, while the second letter denotes the detector from which the data came, (J for

the jdc, P for the pwc and C for the chambers in general). Beyond this, banks whose first letter is

a C are used for calibration purposes, while banks whose first letter is K result from kinematic fits.

�
�

�
�

�
�

�
�@ @ @ @@ @ @ @

@ @ @ @

MASTER

SUBBANK SUBBANK SUBBANK SUBBANK

�
@

- - - -

-

? ? ??

Figure 1: Layout of master and subbank structure used in chamber reconstruction. The master bank

contains a down link to each array of subbanks in the link area, and the number of events stored in each

subbank in the data area. The subbanks contain the actual event data, repeated for each event in the

bank.

1A minimum of 10 data words per bank are required.

Chamber Reconstruction Software 7

2.1.1 RJDC

The RJDC data bank contains the processed raw jdc data. This bank can either be produced by

LOCATER from the RJDF bank, or be produced online by the FEP’s. All data stored in this bank

are integers, however the data is packed to try to optimize storage space. The bank format can also

change from time to time, so a large header has been provided to identfy what the data format is.

The data as shown in in table 2 is the standard format.

offset type Quantity

bits 17–32 bits 1–16

+1 byte N I*2 Header

+2 byte Length Time Conv.

+3 byte t0 Subtracted Dynamic Ped.

+4 unused

+5 byte Format n I*2

+6 byte sector/layer Drift time

+7 byte A Left A Right
...

... repeat +6 and +7 for all hits

Table 2: The data format in the RJDC data bank.

• Header is a header word set to FFFD hex.

• N I*2 is the number of integer*2 words in the data bank.

• Length is the length of the subunit in words which contain data. In the default bank this is

2, corresponding to words +6 and +7.

• Time Conv. is the conversion between time units in the RJDC bank, and nanoseconds. The

normal storage time is 200ps per count, in which case the conversion constant is 5.

• Dynamic Pedestal indicates if the pedestals have been taken as given in the RJDF bank, or

computed dynamically. A value of zero means they are taken from the RJDF bank, while a

value of one means they have been dynamically computed.

• t0 subtracted indicates if the time offset from the FADC crate has been subtracted from the

data. If the value is zero, then this has been subtracted, if it is one, then it has not been

subtracted.

• Format is a format word set to FFFD hex.

• n I*2 is the number of number of remaining integer*2 words in the bank, (excluding itself,

but including the Format word.

• Sector/Layer contains the sector number (high order byte) and layer number, (low order byte)

of the hit.

• Drift Time is the drift time in units of 200ps. Note that it is possible this may change, so to

convert to nanoseconds, one should always use the provided Time Conversion word.

• A Left is the amplitude from the left or +z preamplifier.

• A Right is the amplitude from the right or −z preamplifier.

8 Chamber Reconstruction Software

2.1.2 RJDF

This bank contains the unprocessed pulse information from the jdc. This is the full pulse information

for the chamber and tends to be very large in volume. This bank will only be available on the raw

data tapes, at all later levels, this bank will have been replaced with the RJDF data bank. The

bank contents are shown in table 3.

offset type Quantity

bits 17–32 bits 1–16

+1 byte Format N(I*4)

+2 byte n(I*2) Sector/layer

+3 byte Not used Time Offset

+4 byte Ped. Right Ped. Left

+5 byte Chan1 L/R Chan2 L/R
...

...
...

...

+4 + (n(I ∗ 2) + 1)/2 byte n(I*2) Sector/layer
...

...
...

...

Table 3: The data format in the RJDF data bank.

• Format is a format word for the bank, FFFB hex.

• N(I*4) is the number of integer*4 words in this bank.

• n(I*2) is the number of integer*2 words in this hit. Note, if this is odd, then the integer*4

word containing the last data word is padded out so that the next hit information has exactly

the same structure.

• Sector/Layer contains the sector number, (high order byte) and the layer number, (low order

byte) of this hit.

• Time Offset is the time offset in FADC channels, (10 ns) to the start of the recorded infor-

mation.

• Ped. Right is the right or −z pedestal.

• Ped. Left is the left or +z pedestal.

• Chani L/R is the packed pulse data from the flash ADC’s. The high order eight bits contain

the non–linear data from the left end, and the low order eight bits contain that from the right

end.

2.1.3 RPWC

The data stored in the RPWC bank contains a list of all wires which fired in both pwc’s. The bank

is filled in the TPWCGT routine, and then used in the TPWPOS routine for obtaining physical

positions. The data format is shown in table 4. The wire numbers run continuously from 0 to 319.

Wires 0–119 are in the inner chamber, while wires 129–308 are wires 128–309 in the outer chamber.

Wires 120–127 and 310–319 are not physically connected to anything. The wire data is stored as

two wires per integer word. Bits 17 to 32 contain the first wire, while bits 1 to 16 contain the second

wire.

Chamber Reconstruction Software 9

Offset type Quantity

bits 17–32 bits 1–16

-1 integer Number of data words

+1 integer Number of wires +2

+2 byte wire 1

+3 byte wire 2 wire 3
...

...
...

...

Table 4: The data stored in the RPWC data bank.

2.1.4 TJDC

The TJDC bank is a bank structure whose top level bank is the TJDC bank. Under this bank,

there are up to 30 TJDS subbanks, (one for each jdc sector containing data). The information

stored here is the result of the Qt analysis on the jdc fadc information. As well as semi–processed

hit information. The chamber information is stored in the TJDS subbanks. The structure of

the TJDC bank contains 30 pointers and 30 data words. The pointers point to the subbanks for

each sector in the jdc, while the data words contain the number of fired wires in each sector. The

structure of the TJDS subbanks contains 4 data words for each fired wire in the sector. The TJDC

bank is filled in TJDCGT routine, and then used throughout the pattern recognition section of the

code, (TCSGMT, TCRAW1 and TCRAW2). After the level of pattern recognition, this bank is no

longer needed. Table 5 shows the structure of the TJDC data bank, where each of the contained

quantities is described in detail as follows.

Offset type Quantity

+1 integer Layer number

+2 integer Resolution code

+3 integer Segment number

+4 integer Hit number in TCHT

+5 real tD
+6 real A+

+7 real A−
+8 real xl [cm] in Sector coordinates

+9 real yl [cm] in sector coordinates

+10 real xr [cm] in sector coordinates

+11 real yr [cm] in sector coordinates

+12 real z [cm] in CB coordinates

+13 real σz [cm]

+14 real dE/dx [MeV]

+15 real σφ (Edge)[radians]

+16 real tanλ in CB coordinates
...

... repeated for every hit in this sector

Table 5: The data stored in the subbanks of the TJDC bank, (TJDS). This structure is repeated for

each hit in the bank.

• Layer is the layer in the jdc in which this hit was found.

• Resolution is a code indicating if the left–right ambiguity has been resolved for this point.

A value of 0 indicates it has not been resolved, a value of 1 indicates left and a value of 2

10 Chamber Reconstruction Software

indicates right.

• Seg. No. A number identifying with which segment this hit has been identified in the tanλ

association, (see TCSGMT routine).

• Hit no. is the number of the hit in the TCHT data bank where this point has been stored.

• tD Drift time for this hit, [µs].

• A+ Amplitude from +z or the left end of the jdc.

• A− Amplitude from −z or the right end of the jdc.

• xl and yl are the x and y coordinates of the hit under the assumption that it came from the

left side of the cell. These points are in what I define as a Sector–coordinate System. In this

system, the sector is assumed to have the x–axis running down it’s middle, an the y–axis points

up, (see TJTIME routine).

• xr and yr are the same as above, except assuming that the hit came from the right side of the

cell.

• z and σz are the z–coordinate and the error in z–coordinate for the hit.

• dE/dx is the energy loss at this point.

• σφ is the error in φ due to edge effects. This error term is zero unless the hit is within ycuttj

of the cell edge, (see the /tjprms/ common block.

• tanλ is the tangent of the opening angle of this hit under the assumption that the interaction

was at the center of the target. We have that tanλ = z
r where z is obtained from charge

division, and r is the radius of the hit wire.

2.1.5 TCHT

The TCHT bank structure contains reconstructed hit information on each hit in the jdc. The

TCHT data bank is a top level data bank that contains one subbank for each layer containing

hits in the chamber, TCLY. The TCHT bank has 23 pointers, and 23 data words. Each pointer

points to one of the TCLY banks, and the data word contains the number of hit wires in that layer.

The stored information on each hit is given in table 6. The TCHT banks are lifted and filled in

TCRAW1 and TCRAW2. At this point, a warning should be made about the addressing of this

bank. Because many hits are stored in the same physical data bank, the convention of the first data

word being at one added to the bank pointer has not been strictly followed. In some of the code,

the computed pointer actually points to the first data word, while in other routines it points to the

word immediately before the first data word. Eventually this inconsistency will be removed, but

until then, most of the patter recognition uses the latter scheme, while the fitting sections tend to

use the former scheme.

• Track number identifies if the point has been incorporated into a segment, and if so what the

number of the track in TCTK is. A 0 indicates no connection has been made.

• Resolution code identifies if the point has been resolved or not. It is defined the same as in

the TJDC bank.

• Forward pointer for layer is the layer number of the next hit in this segment.

Chamber Reconstruction Software 11

Offset type Quantity

+1 integer Track number

+2 integer Resolution code

+3 integer Forward pointer for layer

+4 integer Forward pointer for hit

+5 integer Backward pointer for layer

+6 integer Backward pointer for hit

+7 integer Sector number

+8 integer Hit number in TJDC

+9 real xl [cm] in CB coordinates

+10 real yl [cm] in CB coordinates

+11 real xr [cm] in CB coordinates

+12 real yr [cm] in CB coordinates

+13 real z [cm] in CB coordinates

+14 real σz [cm]

+15 real dE/dx [MeV]

+16 real σφ (Edge) [rad]

+17 real r [cm] in CB coordinates

+18 real φ [rad] in CB coordinates

+19 real σr [cm]

+20 real σφ [rad]

+21 real Drift Time µs

+22 real Left Amplitude

+23 real Right Amplitude
...

... repeated for every hit in this layer

Table 6: The data stored in the subbanks of the TCHT bank, (TCLY). The subbanks are arranged

by layer, and the structure is repeated for each hit in the layer.

12 Chamber Reconstruction Software

• Forward pointer for hit is the hit number of the next point in this segment in the TCHT

bank.

• Backward pointer for layer is the layer number of the previous hit in this segment.

• Backward pointer for hit is the hit number of the previous hit in this segment in the TCHT

bank.

• Sector is the sector in which this hit was found.

• Hit No. is the hit number in the sector. These last two entries are used to refer back to the

TJDC bank.

• xl and yl are the x and y coordinates of the hit assuming that it was on the left side of the cell.

These coordinates are in the CB system, (z along the direction of the incoming antiproton, y

pointing up, and x such that the system is right handed).

• xr and yr are the x and y coordinates of the hit assuming that it was on the right side of the

cell.

• z and σz are the z–coordinate and its error for the hit.

• dE/dx is the energy loss for the hit.

• σφ (Edge) is the error in φ due to effects at the edge of the drift cell.

• r and φ are said coordinates for the hit. If the hit has not been resolved, then they are not

set.

• σr and σφ are the 1σ errors in r and φ, (see the TCRESL routine for calculations of these

quantities).

• Drift Time

• Left Amplitude

• Right Amplitude

2.1.6 TCTK

The TCTK bank structure contains the results of the first level reconstruction for each track found

in the jdc. The TCTK is a master bank over the TCSG data banks. TCTK contains 50 pointers

and one data word. The data word is the number of tracks found, and the pointers then point to

the TCSG bank for each found track. The data stored in each TCSG bank is shown in table 7.

The TCTK banks are lifted in the TCRAW1 and TCRAW2 routines, but filled mostly in the circle

fitting section of the code, (TCLOAD). Additional information is coded into the header word of each

sub–bank. If bit 1 is set to 1, then isochron corrections have already been performed. The TCIFIX

routine checks this to make sure it does not apply isochron corrections twice. If bit 2 is set to 1,

then the track crosses sector boundaries in the jdc. The circle fit parametrization is given by the

formula:

κ · ri + c2/ri + sin(φi − ψ0) = 0

In this form, if the center of the circle is at the point (a, b), and it has a radius of ρ, then:

κ =
1

2 ·
√
a2 + b2

c2 = (
1

2 · κ
)2 − ρ2

Chamber Reconstruction Software 13

Offset type Quantity

+1 integer Number of Hits

+2 integer Layer of Hit 1

+3 integer Hit number of hit 1

+4 integer Layer of Hit n

+5 integer Hit number of hit n

+6 integer Number of dE/dx hits

+7 integer Error code from fit

+8 real Charge

+9 real Mass [MeV]

+10 real dE/dx [MeV/cm]

+11 real σdE/dx [MeV/cm]

+12 real p⊥ [MeV/c]

+13 real ψ0 [radians]

+14 real pL [MeV/c]

+15 real δp⊥ [MeV/c]

+16 real δψ0 [radian]

+17 real s · κ [cm−1]

+18 real c2 [cm2]

+19 real tanλ0

+20 real a [cm]

+21 real Crφ
...

...
...

+27 real Cλ(1, 1)

+28 real Cλ(2, 1)

+29 real Cλ(2, 2)

+30 real χ2

Table 7: The data stored in the subbanks of the TCTK bank, (TCSG). There is one TCSG data

bank for each track found in the chambers.

14 Chamber Reconstruction Software

• Number of Hits is the number of hits incorporated into this track.

• Layer of hit 1 is the layer number of the first hit in this track.

• Hit number of hit 1 is the number in TCHT of hit 1.

• Layer of hit n is the layer number of the last hit in this track.

• Hit number of hit n is the number in TCHT of hit n.

• Number of dE/dx hits is the number of hits used for dE/dx calculations.

• Error code is initially set in the TCRAWS routine to either 0 or 1. A value of 1 indicates that

the track crosses sector boundaries, while a value of 2 indicates that the track is contained in

one jdc sector. The routines TCFITR and TCTHET later change the value of the error code

to have the following meanings:

0 The fit converged normally, and exited because the χ2 became small enough.

1 The initial guess was good enough, and no iteration was performed.

2 The fit converged to a value which was too large, but the TCSPLT routine could find

nothing wrong with the track.

3 The fit converged to a χ2 larger than the value of the cutoff.

4 The value of χ2 began to diverge after the third iteration in the fit.

5 The fit failed to converge in nitrtc iterations.

6 There were not enough points to fit a track, fewer than three.

7 The fit did not converge because the program tried to invert a singular matrix. Do not

trust the results, particularly the covariance matrix.

8 The TCTHET routine reconstructed a λ of 90◦.

9 The TCTHET routine got lost in stepping through the track.

• Charge is the electric charge of this track, ±1.

• Mass is the mass in MeV/c of this particle.

• dE/dx is the average dE/dx of this particle.

• σdE/dx is the error in the dE/dx measurement.

• p⊥ is the momentum perpendicular to the beam direction, [MeVc].

• ψ0 is the direction of the particle in the x–y plane at the point of closest approach to the

origin.

• pL is the longitudinal component of the particle’s momentum, [MeV/c].

• δp⊥ is the error in the fit momentum.

• δψ0 is the error in the fit φ.

• κ comes from the r− φ circle fit. It is 1/2R where R is the distance from the center of the fit

circle from the origin, (If the circle center is at (a, b), then R =
√
a2 + b2).

Chamber Reconstruction Software 15

• c2 is a parameter from the circle fit which is related to the distance of closest approach to the

origin. The radius of curvature of the particle is given as

ρ =
√
R2 − c2

and the distance of closest approach is then | ρ−R |.

• tanλ is the tangent of the opening angle obtained from the r–z fit.

• Crφ is the 3 by 3 covariance matrix obtained from the fit to a circle in r − φ The matrix is

symmetric, and stored as follows. +21 ∗ ∗
+22 +24 ∗
+23 +25 +26

 =

 σRKRK σRKψ σRKc2

σRKψ σψψ σψc2

σRkc2 σψc2 σc2c2


• Cλ(1, 1) = σtanλ tanλ.

• Cλ(2, 1) = σtanλa.

• Cλ(2, 2) = σaa.

• χ2 is the χ2 of the circle fit performed in the TCFITR routine. It has units of cm2.

2.1.7 TCTR

The TCTR bank structure contains all the tracking results for each track located in the chambers.

This bank is a master bank over the TCTX data banks, (one TCTX for each track). The data

stored in each TCTX bank is shown in table 8. The TCTR banks are lifted and filled in the helix

fitting section of the code. These banks are generically referred to as the TCTR data banks. The

header word, iq(itctr) also contains some coded information about the tracks. If bit 2 is set to

1, then the track crossed at least one sector boundary, whereas if it is set to 0, then the track is

contained in one sector.

• Nhits is the number of hits incorporated into this track, (jdc).

• NPED is the number of the PED to which this track connects. This word is filled during

global tracking, and is not available until that has been performed.

• Vertex is the number of the vertex from which this track originated.

• Layer1 is the layer number of the first hit in this track.

• LayerN is the layer number of the last hit in this track.

• Error code Is a combination of the fit error in the TCTK bank, and the error returned from

the TCHELX routine. It’s value is the TCTK error code plus the following:

0 Completely normal convergence in the TCHELX routine.

10 The TCHELX routine was not implemented as there were only 3 points found in the

track.

30 The χ2 in the TCHELX routine converged to a value larger than the allowed cutoff.

40 The χ2 in the TCHELX routine began to diverge.

50 The maximum number of iterations was exceeded.

16 Chamber Reconstruction Software

offset type Quantity

+1 integer Nhits

+2 integer NPED

+3 integer Vertex

+4 integer Layer1

+5 integer LayerN
+6 integer Error code

+7 real Charge

+8 integer Npwc

+9 real dE/dx

+10 real σdE/dx
+11 real r0

+12 real z0

+13 real α

+14 real tanλ

+15 real ψ0

+16 real s

+17 real χ2

+18 real Cξ[1, 1]
...

...
...

+32 real Cξ[5, 5]

Table 8: The data stored in the subbanks of the TCTR bank, (TCTX). There is one TCTX data

bank for each track found in the chambers.

70 An attempt was made to invert a singular matrix.

• Charge is the electric charge of this particle, ±1.

• Npwc is the number of pwc hits attached to this track. They are stored as the first entries

of the TCHX bank for the track.

• dE/dx is the average energy loss per centimeter of track length.

• σdE/dx is the error in the above dE/dx.

• r0 is the distance of closest approach of the helix to the z–axis. It is possible for this number

to be negative.

• z0 is the z–coordinate at the radius r0.

• α is the curvature of the track. This number is positive.

• tanλ is the tangent of the opening angle of the track.

• ψ0 is direction angle from the circle fit.

• s is a sign parameter of the track. It is determined by looking at the angle β0, the angle as

measured from the center of the circle describing the track to the point of closest approach,

(r0, z0). β0 = ψ0 + s · π2 .

• χ2 is the returned the χ2 of the helix fit with 3·Nhits−5 degrees of freedom.

Chamber Reconstruction Software 17

• Cξ is the covariance matrix for the above six parameters. This is a 5 by 5 symmetric matrix

which is stored as follows.
+18 ∗ ∗ ∗ ∗
+19 +20 ∗ ∗ ∗
+21 +22 +23 ∗ ∗
+24 +25 +26 +27 ∗
+28 +29 +30 +31 +32

 =


σrr σrz σrα σrλ σrψ
σrz σzz σzα σzλ σzψ
σrα σzα σαα σαλ σαψ
σrλ σzλ σαλ σλλ σλψ
σrψ σzψ σαψ σλψ σψψ


2.1.8 TCHX

The TCHX data bank contains the coordinates of the hits used in the helix fits. The bank structure

is one TCHX bank to which is attached one TCHP subbank for every track. The data stored in

this bank are the improved coordinates from the helix fit. Because of this, one should not perform

the helix fit twice. After the second iteration, the errors will be nonsense. To prevent this from

happening, the routine TCHXLD sets the lowest order bit of the status word, IQ(LTCHP), to 1.

The routine will not refit tracks with this bit set. The contents of the TCHP bank follows, where

N is the number of hits in the track, which is taken from the corresponding TCTR data bank.

These banks are generically referred to as the TCHX banks.

Offset type Quantity

+1 real x1

+2 real y1

+3 real z1

+4 real σ2
x1

+5 real σ2
y1

+6 real σ2
z1

...
...

...

+6n− 5 real xn
+6n− 4 real yn
+6n− 3 real zn
+6n− 2 real σ2

xn

+6n− 1 real σ2
yn

+6n− 0 real σ2
zn

Table 9: The data stored in the TCHX data banks. All hits for one track are stored in their own bank.

• (x, z, y) are the coordinates of the points used in this track. These points have been improved

by the helix fit. They will not refer to exactly the same point as in the TCHT data banks.

• (σx, σy, σz) are the errors is the used coordinates. These are not the input errors, but the

errors coming from the helix fit.

2.1.9 TCVX

The TCVX data bank is a steering bank to all found vertices in the event. It contains one data

word, which is the number of found vertices, and then one pointer to the TCVT bank for each

vertex. Access to the vertex information is shown in figure 2.

2.1.10 TCVT

The TCVT data banks are subbanks to the TCVX data bank, and contain information regarding

the found vertices. The data are shown in table 10.

18 Chamber Reconstruction Software

LQ(LTCVX-N)

LQ(LTCVX-1)

IQ(LTCVX+1)

�

LQ(ITCVT-1)

IQ(ITCVT)

Data

- IQ(ITCVP)

Data

�

LQ(ITCVT-1)

IQ(ITCVT)

Data

- IQ(ITCVP)

Data

Figure 2: Layout of the bank structure containing all found vertices.

Offset type Quantity

+1 integer Ntrks

+2 integer Nneutral

+3 integer Error code

+4 integer NDF
+5 real x[cm]

+6 real y[cm]

+7 real z[cm]

+8 real Cx
...

...
...

+14 real χ2

Table 10: The data stored in the TCVT data bank. There is one bank for every vertex.

Chamber Reconstruction Software 19

• Ntrks is the number of tracks fit to this vertex. The set of pointers to each of these tracks in

the TCTR bank is in the pointer section of this bank.

• Nneutral is the number of neutral tracks assigned to this vertex. At present, there is no list

available as to which tracks these are.

• Ierr is an error code returned from the TCVRTX routine for this vertex. It has the following

meanings:

0 Normal convergence occurred.

100 Only one track fit to this vertex.

300 The iterative routine converged with a too large χ2.

400 The χ2 started to diverge for this track.

500 The routine did not converge in the allowed number of iterations.

600 The number of tracks to fit was out of range.

700 The routine tried to invert a singular matrix.

• NDF is the number of degrees of freedom from the fit.

• x is the x coordinate of the fit vertex, [cm].

• y is the y coordinate of the fit vertex, [cm].

• z is the z coordinate of the fit vertex, [cm].

• Cx contains the 6 unique elements of the 3 by 3 symmetric covariance matrix for ~x. They are

stored as follows:  +6 ∗ ∗
+7 +8 ∗
+9 +10 +11

 =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz


• χ2 is the resulting χ2 of the fit with NDF degrees of freedom.

2.1.11 TCVP

The TCVP data bank contains fit momentum information for all tracks coming from the corre-

sponding vertex. The TCVP bank is a subbank under the TCVT data bank describing the vertex.

It contains the following information for every track. The length of each block is given by the

parameter lenvp obtained using +cde,trkprm..

• Track number is the track number from the TCTR data bank.

• Quality word is the track length in hits plus one hundred times the first layer of the track plus

ten thousand times the error code from the helix fit.

• Charge is the electric charge of this particle. It is possible for this to be different from the

charge in the TCTR bank, as the vertex fit is allowed to change the charge of a track.

• px is the improved x–component of momentum.

• py is the improved y–component of momentum.

• pz is the improved z–component of momentum.

20 Chamber Reconstruction Software

Offset type Quantity

+1 integer Track Number in TCTR

+2 integer Quality Word

+3 real Charge of particle.

+4 real px [MeV/c]

+5 real py [MeV/c]

+6 real pz [MeV/c]

+7 real E [MeV]

+8 real σ2[px] [Mev/c]2

+9 real σ[pxy] [Mev/c]2

+10 real σ2[py] [Mev/c]2

+11 real σ[pxz] [Mev/c]2

+12 real σ[pyz] [Mev/c]2

+13 real σ2[pz] [Mev/c]2

...
...

...

Table 11: The data stored in the subbank of the TCVT data bank, (the TCVP bank). The above

information is repeated for every track.

• E is the energy under the assumption the particle is a pion.

• The remaining six terms are the unique elements of the three by three covariance matrix for

the momentum.  +8 ∗ ∗
+9 +10 ∗
+11 +12 +13

 =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz


2.2 The TPWC Data Bank

The TPWC data bank contains the position information from each hit in the pwc’s, and from each

cluster in the pwc. The hit information is stored in two TPCH subbanks under the TPWC bank.

These banks are attached at the -1 and -2 downlinks. The format of this information is given in

table 12.

Offset type Quantity

+1 integer Track number

+2 integer Wire number

+3 real xi [cm]

+4 real yi [cm]

+5 real zi [cm]

+6 real ri [cm]

+7 real φi [radians]

+8 real σx [cm]

+9 real σy [cm]

+10 real σφ [radians]

Table 12: The data stored in the two subbanks of the TPWC data bank, (TPCH). This format is

repeated for every cluster each chamber.

• Track number refers to the track to which this hit is connected.

Chamber Reconstruction Software 21

• Wire number is the number of the fired wire.

• The x coordinate as determined from the wire number.

• The y coordinate as determined from the wire number.

• The z coordinate as projected by the jdc.

• r is the radius of the wire.

• The φ position of the wire.

• σx is the error in the x position.

• σy is the error in the y position.

• σφ is the error in the φ angle.

To obtain the number of hits found in each pwc, and then extract the hit data, use the following

code. (Note that the parameter LENPW is obtained using the +CDE,TRKPRM.)

IF(LTPWC .GT. 0) THEN

NHIT1 = IQ(LTPWC+1)

NHIT2 = IQ(LTPWC+2)

IF(NHIT1 .GT. 0) THEN

ITPWC = LQ(LTPWC-1)

DO 1000 IHIT = 1,NHIT1

XHIT = Q(ITPWC+3)

YHIT = Q(ITPWC+4)

ZHIT = Q(ITPWC+5)

...

ITPWC = ITPWC + LENPW

1000 CONTINUE

ENDIF

*

* Repeat the above for the outer chamber if desired.

*

ENDIF

The cluster information is contained in two TPCL banks attached to the -3 and -4 down links

of the TPWC bank. The format of these cluster banks are given in table 13. It is important to

note that the cluster information is linked to the jdc, and not the hit information.

• Track number refers to the track to which this hit is connected.

• Wire 1 is the first wire in the cluster.

• Cluster Size is the number of wires in the cluster.

• Central Wire Number is the pseudo wire at the center of the cluster.

• The x coordinate as determined from the wire number.

• The y coordinate as determined from the wire number.

• The z coordinate as projected by the jdc.

22 Chamber Reconstruction Software

Offset type Quantity

+1 integer Track number

+2 integer Wire 1

+3 integer Cluster Size

+4 real Central Wire Number

+5 real xi [cm]

+6 real yi [cm]

+7 real zi [cm]

+8 real ri [cm]

+9 real φi [radians]

+10 real σx [cm]

+11 real σy [cm]

+12 real σφ [radians]

Table 13: The data stored in the two subbanks of the TPWC data bank, (TPCL). This format is

repeated for every cluster each chamber.

• r is the radius of the wire.

• The φ position of the wire.

• σx is the error in the x position.

• σy is the error in the y position.

• σφ is the error in the φ angle.

To obtain the number of clusters found in each pwc, and then extract the cluster data, use the

following code. (Note that the parameter LENCL is obtained using the +CDE,TRKPRM.)

IF(LTPWC .GT. 0) THEN

NCL1 = IQ(LTPWC+3)

NCL2 = IQ(LTPWC+4)

IF(NCL1 .GT. 0) THEN

ITPWC = LQ(LTPWC-3)

DO 1000 IHIT = 1,NCL11

XHIT = Q(ITPWC+5)

YHIT = Q(ITPWC+6)

ZHIT = Q(ITPWC+7)

...

ITPWC = ITPWC + LENCL

1000 CONTINUE

ENDIF

*

* Repeat the above for the outer chamber if desired.

*

ENDIF

2.3 Calibration Data Banks

In this section are described the data banks which contain jdc calibration constants. These are the

constants used for adjusting the gains of all preamplifiers, and for defining the drift region in the

Chamber Reconstruction Software 23

jdc. They are used in the following formula, where Pi are polynomials of order i.

zi = zi0 + zil ·
[
A+ − αi ·A−
A+ + αi ·A−

]
(1)

dE

dx
= ciE ·

[
A+ + αi ·A−

]
(2)

yil = si + ai0(1− e−a
i
5

√
tD) + ai1 · P0(tD) + ai2 · P1(tD) + a3 · P2(tD) + ai4 · P3(tD) (3)

xil = ri + bi0 · P0(yil − si) + b1 · P1(yil − si) + b2 · P2(yil − si) (4)

yir = si + ai6(1− e−a
i
11

√
tD) + ai7 · P0(tD) + ai8 · P1(tD) + a9 · P2(tD) + ai10 · P3(tD) (5)

xir = ri + bi3 · P0(yir − si) + b4 · P1(yir − si) + b5 · P2(yir − si) (6)

At present, the allowed polynomials are Taylor, Hermite and Laguerre. These are selected by the

flag word in the TJCP data bank. The forms of these polynomials are given by:

T0(t) = t H0(t) = 1 L0(t) = 1

T1(t) = t · T0(t) H1(t) = t L1(t) = t− 1

T2(t) = t · T1(t) H2(t) = 2 · (t ·H1(t)−H0(t)) L2(t) = 1
2 ((t− 3)L1(t)− 1)

T3(t) = t · T2(t) H3(t) = 2 · (t ·H2(t)− 2 ·H1(t)) L3(t) = 1
3 ((t− 5)L2(t)− 2L1(t))

Where Ti are Taylor polynomials, Hi are Hermite polynomials and Li are Laguerre polynomials.

Note that in the case of Taylor polynomials, no constant term is used. Also, the scale factor is

absorbed into the fit constant for these terms. The various constants in the above equations are

stored in the following data banks.

2.3.1 TJCE

The TJCE bank contains the 690 ciE constants used to convert the modified amplitude sums to an

energy. There is one constant for every wire in the jdc, and the are addressed in the bank as:

cEi = (s− 1) · 23 + l

where s is the sector number, (1–30), and l is the layer number, (1–23).

2.3.2 TJCP

The TJCP data bank contains a set of parameters for generating the look–up table in the TJCT

data bank. These are the aik and bik values in the last four equations. The data bank contains 20

words per layer, with words 1 through 10 containing a0 to a5, b0 to b2 and a radius parameter.

Words 11 to 20 then contain a6 to a11, b3 to b5 and a second radius parameter. The word iq(ltjcp)

contains information about what these parameters mean. Bits 1,2 and 3 are set according to the

following code scheme:

000 Use Taylor polynomials for the expansion.

001 Use Hermite polynomials for the expansion.

010 Use Laguerre polynomials for the expansion.

011 Use Garfield tables.

2.3.3 TJCZ

The TJCZ bank contains the 690 αi constants used to compute the z position on each wire. They

are a measure of the relative gain between the two ends of the chamber, and are addressed in the

same way as the constants in the TJCE bank.

24 Chamber Reconstruction Software

2.3.4 TJCT

The TJCT bank contains a look–up table used to convert drift time to position in the jdc. The

positions are stored in sector coordinates, (see the description of the TJTIME routine), and are

computed every 25ns of drift time. For each drift time, there are two possible positions in the

chamber, so four data words are stored for each word. This bank is generated from the data in the

TJCP data bank in the TJTIMI routine.

The TJCT data is actually a top level bank which contains 23 sub–banks, one for each layer in

the jdc. The data in the TJCT bank is shown in table 14. Once the pointer, L and the number

lq(–23) integer Pointer for layer 23
...

...
...

lq(–1) integer Pointer for layer 1

iq(+1) integer Number of entries for layer 1
...

...
...

iq(+23) integer Number of entries for layer 23

Table 14: The pointers and data words in the TJCT data bank.

of entries, Ne has been obtained from the TJCT bank, the data in the table can be accessed. The

storage locations of the data for each of the four quantities is shown in table 15.

Quantity From To

xl L+ 1 L+Ne
yl L+Ne + 1 L+ 2Ne
xr L+ 2Ne + 1 L+ 3Ne
yr L+ 3Ne + 1 L+ 4Ne

Table 15: Storage of data in the Look–up table.

2.3.5 TJRF

This data bank contains reference conditions in the jdc. The bank is created at the same time the

rφ calibration is performed. The bank is filled with the averages and standard deviations of various

slow control data. The bank has 200 entries, of which the following entries are filled.

Offset type Quantity

+001 integerCalibration Date.

+002 integerCalibration Time.

+003 real JDC Set Voltage Chan. 1.
...

+034 real JDC Set Voltage Chan. 32.

+035 real Standard Deviation of Voltage 1.
...

+066 real Standard Deviation of Voltage 32.

+067 real JDC True Voltage Chan. 1.
...

+098 real JDC True Voltage Chan. 32.

+099 real Standard Deviation of Voltage 1.

Chamber Reconstruction Software 25

...

+130 real Standard Deviation of Voltage 32.

+132 real JDC Isobutane Flow.

+133 real JDC CO2 Flow.

+134 real JDC Mixed Flow.

+137 real Standard Deviation of JDC Isobutane Flow.

+138 real Standard Deviation of JDC CO2 Flow.

+139 real Standard Deviation of JDC Mixed Flow.

+140 real HDC Potential Voltage.

+141 real HDC Grid Voltage.

+142 real HDC Drift Voltage.

+145 real Standard deviation of Potential Voltage.

+146 real Standard deviation of Grid Voltage.

+147 real Standard deviation of Drift Voltage.

+150 real HDC Drift Time 1.

+151 real HDC Drift Time 1 Sigma.

+152 real HDC Drift Time 2.

+153 real HDC Drift Time 2 Sigma.

+154 real HDC Drift Time Difference.

+155 real HDC Drift Time Difference Sigma.

+160 real Standard Deviation of Time 1.

+161 real Standard Deviation Time 1 Sigma.

+162 real Standard Deviation Time 2.

+163 real Standard Deviation Time 2 Sigma.

+164 real Standard Deviation Time Difference.

+165 real Standard Deviation Time Difference Sigma.

+170 real JDC Absolute Pressure.

+171 real JDC Differential Pressure.

+172 real Gas mixture as fraction Isobutane.

+175 real Standard Deviation JDC Pressure.

+176 real Standard Deviation JDC Diff. Pres.

+177 real Standard Deviation of mixture.

+180 real JDC Temperature 1 in Kelvins.

+181 real JDC Temperature 2 in Kelvins.

+182 real JDC Temperature 3 in Kelvins.

+183 real JDC Temperature 4 in Kelvins.

+184 real JDC Temperature in Kelvins.

+185 real Sigma in Temperature 1.

+186 real Sigma in Temperature 2.

+187 real Sigma in Temperature 3.

+188 real Sigma in Temperature 4.

+189 real Sigma in Temperature.

2.3.6 TJST

This data bank contains the stagger in centimeters of every wire in the jdc, si. It allows for the

possibility that the position of some wires are not within tolerance. The data is addressed in the

same manner as the TJCE data bank.

26 Chamber Reconstruction Software

2.3.7 TJT0

This bank contains the time offset to be used for every wire in the jdc. At present, the data is read

in from unit 81 with the rest of the gain information. If the information is not found in the file,

then the program takes the crate–wise values in the itfcrj array found in the /rjprms/ common

block. These values can be forced by using the ITFC control card. If 17=1 is used on this card,

then the values from the common block are always used.

2.3.8 TJWR

This bank contains a coded list of wires which are found to have poor z–resolution. The bank

contains 23 unsigned integer words, one for each layer in the jdc. In each word, a bit corresponds

to a sector in the jdc, (i.e. bit one to sector 1 and bit 30 to sector 30). If a particular bit is set

to one, then that wire should not be used. At the start of analysis, this bank is unpacked into the

/tjwire/ common block, which is then used by the TJDCGT subroutine. During normal analysis,

the z–coordinate for these wires is assigned to be zero, and the error in z is set to 20 cm.

2.3.9 TJZL

This bank contains the length of each wire in the jdc, zil . These are not necessarily the same for

every wire as the position of the electrical connection between the wire and crimp pins can vary by

several millimeters at both ends of the chamber. This data is addressed in the same manner as in

the previous bank.

2.3.10 TJZ0

This bank contains the z–position at the center of each sense wire, (zl/2). This can also be different

from zero for the same reasons as with the previous data bank. As with the last bank, the addressing

is as in the TJCE data bank.

2.4 Monte Carlo data banks

2.4.1 RMCB

The RMCB data bank contains event information from GEANT. This bank contains the GEANT

JVERTEX bank and the JKINE banks, which have been shunted to lq(l-1) and lq(l-2) resec-

tively. See the GEANT 3 manual for a better description.

Chamber Reconstruction Software 27

3 User Callable Routines

3.1 User Service Routines

The following routines have been provided to allow the user easier access to the data stored in the

tracking data banks. It is of course possible, and usually faster to explicitly access the data, however

often the user is interested in getting a hold of the data without actually knowing where it is stored.

For this reason, the following routines have been written. The consist of two classes of routines;

one which prints tracking data to a specified logical unit, and one which returns fit information to

the user. Except in special cases, (debug versions and calibration versions), these routines are not

actually called by any of the tracking software. However, there use in USER routines is recommended

to avoid errors in addressing the bank structures. All of these routines are found in the tc servc

patch in the locater card file.

3.1.1 SUBROUTINE BCLDD

Author: Brigitt Schmid

Creation Date: May, 1990

References:

Call Arguments: (NPED, *DY, *DCOVR, *IERR).

Common Blocks Used: cbbank and cblink.

Subroutines Referenced: None.

This routine will extract the double precision 3–momentum, (px, py, pz), and the 3 by 3 covariance

matrix for ped number nped. The momentum is returned in the vector dy, and the covariance

matrix is returned in the 3 by 3 array dcovr. The value of ierr is returned as zero upon successful

completion. For single precision values, consult the BCLDS subroutine. It is important to observe

that the 3 by 3 covariance matrix is not diagonal in the these coordinates. In order for the TCKFT3

and TCKFT4 routines to work, it is necessary to load the photons using this routine.

3.1.2 SUBROUTINE BCLDS

Author: Brigitt Schmid

Creation Date: May, 1990

References:

Call Arguments: (NPED, *SY, *SCOVR, *IERR).

Common Blocks Used: cbbank and cblink.

Subroutines Referenced: None.

This is just a single precision entry point to the BCLDD routine. Consult the BCLDD routine for

a description.

3.1.3 SUBROUTINE CJOORD

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Call Arguments: (ITRK, *NPTS, *ISEC, *ILYR, *ISID, *TIME, *XTJ, *YTJ, *XTC, *YTC).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

28 Chamber Reconstruction Software

This routine will return the sector number, layer number, resolution code, drift time, x and y

coordinates from the TJDC bank, and x and y coordinates from the TCHT data bank for the

npts points in track number itrk.

3.1.4 SUBROUTINE RJRJDC

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the RJDC data bank on unit lun.

3.1.5 SUBROUTINE RJRJDF

Author: Curtis A. Meyer

Creation Date: 20 May, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the RJDF data bank on unit lun.

3.1.6 SUBROUTINE RPRPWC

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the RPWC data bank on unit lun.

3.1.7 SUBROUTINE RJTJDC

Author: Curtis A. Meyer

Creation Date: 25 May, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

This routine will print only the information found in the RJDC data bank, but the information

will be taken from the TJDC data bank, rather than the RJDC bank. This has the advantage

that the information will be sorted by sector and layer number. All information will be printed to

logical unit lun.

Chamber Reconstruction Software 29

3.1.8 SUBROUTINE TCBARL

Author: Curtis A. Meyer

Creation Date: 26 April, 1989

References:

Call Arguments: (*NTRKS, *IFLAG, *XTRK, *YTRK, *ZTRK).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

This routine will return the intersection point, (x,y,z) of every track in the TCTR bank. ntrks

is the number of tracks, and the three vectors contain the coordinates of each of the ntrks tracks.

The returned value of IFLAG indicates if it is safe to use this projection. A value of zero means it

is good, and any other value is at the users own risk.

3.1.9 SUBROUTINE TCBARX

Author: Curtis A. Meyer

Creation Date: 15 March, 1990

References:

Call Arguments: (*NTRKS, *IFLAG, *XTRK, *YTRK, *ZTRK, *DXTRK, *DYTRK,

*DZTRK).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

This routine will return the intersection point, (x,y,z) of every track in the TCTR bank with the

barrel. It also returns a direction vector at the intersection point, (dx/dr,dy/dr,dz/dr). ntrks is

the number of tracks in the helix bank, and the three vectors contain the coordinates of each of the

ntrks tracks. The returned value of IFLAG indicates if it is safe to use this projection. A value of

zero means it is good, and any other value is at the users own risk.

3.1.10 SUBROUTINE TCHLDD

Author: Curtis A. Meyer

Creation Date: 21 April, 1990

References:

Call Arguments: (ITRK, *PMOM, *COVR, *IERR).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

This subroutine will compute the momentum vector, pmom as (px, py, pz) and the three by three

covariance matrix for the momentum, covr for track number itrk as stored in the TCTR data

bank. If the routine is unable to compute these, then the value of ierr is returned as one; successful

completion has ierr of zero. The returned values of pmom and covr are double precision. For

single precision values, see the TCHLDS subroutine.

3.1.11 SUBROUTINE TCHLDS

Author: Curtis A. Meyer

Creation Date: 21 April, 1990

References:

Call Arguments: (ITRK, *PMOM, *COVR, *IERR).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

30 Chamber Reconstruction Software

This subroutine will compute the momentum vector, pmom as (px, py, pz) and the three by three

covariance matrix for the momentum, covr for track number itrk as stored in the TCTR data

bank. If the routine is unable to compute these, then the value of ierr is returned as one; successful

completion has ierr of zero. The returned values of pmom and covr are single precison. For double

precision values, see the TCHLDD subroutine. (Note, this is not a separate subroutine, but rather

an entry point to the TCHLDD subroutine.)

3.1.12 SUBROUTINE TCKFT3

Author: Curtis A. Meyer

Creation Date: 20 April, 1990.

References:

Call Arguments: (NPART, PMOM, COVR, *CHISQ, *CHI, *IERR).

Common Blocks Used: None.

Subroutines Referenced: cernlib: matin2.

This subroutine will perform a kinematic fit to the constraints of three-momentum balance for

the npart particles whose three momentum, (px, py, pz) are passed in the pmom array, and whose

three by three covariance matricies are passed in the covr array. Internally, pmom and covr are

dimensioned as:

REAL PMOM(3,NPART),COVR(3,3,NPART),CHI(NPART)

The routine will return the improved values of momentum in the pmom variable, the χ2 for three

degrees of freedom in the variable chisq, the contribution to chisq from each of the npart particles

in the chi array, and an error code ierr. If ierr is not reurned as zero, then the fit has failed.

The routine uses the following three equations of constraint:

0 =

n∑
i=1

pxi

0 =

n∑
i=1

pyi

0 =

n∑
i=1

pzi

and does a kinematic fit to the momentum using the passed covariance matricies. The passed

variables are all single precision, but internally, the routine works in double precision. Note that

because this problem is linear, only one iteration is performed.

3.1.13 SUBROUTINE TCKFT4

Author: Curtis A. Meyer

Creation Date: 20 April, 1990.

References:

Call Arguments: (NPART, PMOM, COVR, MASS, *CHISQ, *CHI, *IERR).

Common Blocks Used: None.

Subroutines Referenced: cernlib: dinv.

This subroutine will perform a kinematic fit to the constraints of three-momentum and energy

balance for the npart particles whose three momentum, (px, py, pz) are passed in the pmom array,

whose three by three covariance matricies are passed in the covr array and whose masses are passed

in the mass array, (dimensions of MeV/c2). Internally, the passed variables are dimensioned as:

Chamber Reconstruction Software 31

REAL PMOM(3,NPART),COVR(3,3,NPART),MASS(NPART),CHI(NPART)

The routine will return the improved values of momentum in the pmom variable, the χ2 for four

degrees of freedom in the variable chisq, the contribution to chisq from each of the npart particles

in the chi array, and an error code ierr. If ierr is not reurned as zero, then the fit has failed. The

value of ierr then indicates the reason for failure as follows.

• ierr=–1 Loading problem, (more than twenty tracks).

• ierr=0 Successful completion.

• ierr=3 Iterative procedure diverged.

• ierr=5 Iteration limit, (10) exceeded.

• ierr=7 Attempted to invert a singular matrix.

The routine uses the follwoing three equations of constraint:

0 =

n∑
i=1

pxi

0 =

n∑
i=1

pyi

0 =

n∑
i=1

pzi

0 = −2 ·mp +

n∑
i=1

√
p2
xi + p2

yi + p2
zi +m2

i

and does a kinematic fit to the momentum using the passed covariance matricies. The passed

variables are all single precision, but internally all computations are done in double precision.

An example for loading the data for a four prong event at vertex number 1, and two photons

from ped numbers 7 and 8 is as follows. For two prong data, or if you want to take the helix bank

momentum rather than the vertex bank, replace the call to TCVLDS with one to TCVHLS.

*

INTEGER NTRK,ICODE(20),IERR

REAL CHRG(20),PMOM(3,20),COVR(3,3,20),MASS(20),CHI(20),CHISQ

*

REAL MPI

PARAMETER (MPI=139.5673)

*

* Load the particles at the vertex using TCVLDS, then make sure

* that the vertex and tracks are ok.

*

CALL TCVLDS(1,NTRK,ICODE,CHRG,PMOM,COVR,IERR)

IF(IERR .NE. 0 .OR. NTRK .NE. 4) GOTO 5000

MASS(1) = MPI

MASS(2) = MPI

MASS(3) = MPI

MASS(4) = MPI

NTRK = NTRK + 1

32 Chamber Reconstruction Software

*

* Load the two PEDs using the BCLDS routine. Then make sure

* that they are correctly loaded.

*

CALL BCLDS(7,PMOM(1,NTRK),COVR(1,1,NTRK),IERR)

IF(IERR .NE. 0) GOTO 5000

MASS(NTRK) = 0.0

NTRK = NTRK + 1

CALL BCLDS(8,PMOM(1,NTRK),COVR(1,1,NTRK),IERR)

IF(IERR .NE. 0) GOTO 5000

MASS(NTRK) = 0.0

*

* Perform the kinematic fit using the loaded data.

*

CALL TCKFT4(NTRK,PMOM,COVR,MASS,CHISQ,CHI,IERR)

*

3.1.14 SUBROUTINE TCOORD

Author: Curtis A. Meyer

Creation Date: 19 December, 1988

References:

Call Arguments: (ICODE, ITRK, *NPTS, *X1, *X2, *X3).

Common Blocks Used: cbbank, cblink, tcprms, and tcangl.

Subroutines Referenced: None.

This routine will return the (x, y, z) coordinates of all hits in the specified track, or all found vertices.

The call argument icode determines what is returned as described below, while the argument itrk

specifies which track to examine. The returned information consists of the number of returned data

points, npts, and three coordinates for each point given in x1, x2 and x3. The returned values are

specified as follows by icode.

• icode=0 The routine returns the coordinates (xl, yl.z) for all points along the track. Where

xl and yl are the left side resolution of every point on the track. These points are returned in

CB–coordinates with units of [cm], however these are not necessarily the points chosen.

• icode=1 The routine returns the coordinates (xr, yr.z) for all points along the track. Where

xr and yr are the right side resolution of every point on the track. These points are returned

in CB–coordinates with units of [cm], however these are not necessarily the points chosen.

• icode=2 The routine returns the chosen coordinates (x, y, z) along the track in CB–coordinates

as taken from the TCHT data bank.

• icode=3 The routine returns the chosen coordinates (r, φ, z) along the track in CB–coordinates

as taken from the TCHT data bank.

• icode=4 The routine returns the chosen coordinates (x, y, z) along the track in CB–coordinates

as taken from the TCTR data bank.

• icode=5 The routine returns the coordinates of all found vertices as (x, z, y). These data are

taken from the TCVX bank.

Chamber Reconstruction Software 33

3.1.15 SUBROUTINE TCPRNT

Author: Curtis A. Meyer

Creation Date: 30 June, 1988

References:

Call Arguments: (LUN, IOPT).

Common Blocks Used: cbbank, cblink, cbhead and tcprms.

Subroutines Referenced: None.

This routine prints out tracking results to logical unit lun, (the log file). The printing is controlled

through the passed variable iopt, and is given as follows.

• iopt=0 Print the Monte Carlo data if available.

• iopt=1 The results of TCFITR and TCTHET as stored in the TCTK data bank are printed

out.

• iopt=2 The results of TCHELX as stored in the TCTR data bank are printed.

• iopt=3 The results of TCVERT as stored in the TCVX data bank are printed.

3.1.16 SUBROUTINE TCRHIT

Author: Curtis A. Meyer

Creation Date: 3 March, 1989

References:

Call Arguments: (ITRK, *NPTS, *ISEC, *ILYR, *IRES, *TIME, *ALFT, *ARGT, *DEDX,

*NTCHT).

Common Blocks Used: cbbank and cblink.

Subroutines Referenced: None.

This routine will return the raw hit information on track itrk. The returned variables have the

following meanings.

• npts is the number of hits in the track.

• isec(50) is the sector number of each hit.

• ilyr(50) is the layer number of each hit.

• ires(50) is the resolution code of each hit, (left/right).

• time(50) is the drift time of each hit.

• alft(50) is the +z amplitude of each hit.

• argt(50) is the −z amplitude of each hit.

• dedx(50) is the dE/dx of each hit.

• ntcht(50) is the address in the TCHT bank for each hit.

34 Chamber Reconstruction Software

3.1.17 SUBROUTINE TCRSLT

Author: Curtis A. Meyer

Creation Date: 21 March, 1989

References:

Call Arguments: (ICODE, ITRK, *CHRG, *XVEC, *PVEC, *COVR, *SIGP, *IERR).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

This routine will return information about fit tracks. The passed variable icode identifies if circle

or helix fit results are desired. The variable itrk specifies the number of the fit track. If icode is

zero, then track data from the TCTK data banks are returned, while for icode of one, data from

the TCTR banks are returned. The returned variables are as follows.

chrg is returned as the charge of the particle.

xvec is a vector containing five entries. The have the following meanings. See bank descriptions

for TCTK and TCTR for clarification of the variables.

xvec(1) icode=0, q ·R ; icode=1 r0.

xvec(2) icode=0, ψ0 ; icode=1 z0.

xvec(3) icode=0, c2 ; icode=1 α.

xvec(4) icode=0, tanλ ; icode=1 tanλ.

xvec(5) icode=0, a0 ; icode=1 ψ0.

pvec is a vector containing three entries. They have the following values:

pvec(1) p⊥, the transverse momentum, [MeV/c].

pvec(2) ψ0, the direction angle in the r − φ plane.

pvec(3) p‖, the longitudinal momentum, [MeV/c].

covr is a five by five array which contains the covariance matrix for xvec.

sigp is a vector of length three containing the 1σ errors for pvec.

ierr is the error code associated with the track fit.

3.1.18 SUBROUTINE TCTCHT

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the TCHT data bank on unit lun.

Chamber Reconstruction Software 35

3.1.19 SUBROUTINE TCVERS

Author: Curtis A. Meyer

Creation Date: 21 March, 1989

References:

Call Arguments: (LUN, *IVERS).

Common Blocks Used: None.

Subroutines Referenced: None.

This subroutine identified the present version number of locater. If the value of lun is given as a

positive number, then the version information will be printed on logical unit lun. In all cases the

returned value of IVERS is the integer form of the version number. For locater version 1.44/01,

the returned version number is 14401. This number is stored in the HTJD bank during tracking.

In order to determine under which version data was track, use the following code.

*

IVERS = IQ(LHTJD+1)

IDATE = IQ(LHTJD+2)

ITIME = IQ(LHTJD+3)

*

3.1.20 SUBROUTINE TCVHLD

Author: Curtis A. Meyer

Creation Date: 19 September, 1990

References:

Call Arguments: (IVRT, *NTRK, *ICODE, *CHRG, *PMOM, *COVR, *IERR, LONGT).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: TCHLDS.

This subroutine will compute the momentum vector, pmom as (px, py, pz) and the three by three

covariance matrix for the momentum, covr for all tracks connected to vertex ivrt. The number of

tracks is returned as ntrk, the vertex quality word is returned as icode, and the charge is returned

as chrg. The data is taken from the TCTR data bank using the only the tracks connected to the

vertex.. If the routine is unable to compute these, then the value of ierr is returned as -1; otherwise

the error code is set bitwise with the following meanings:

Bit 0 Set if the charge sum is not zero.

Bit 1 Set if all tracks are not long.

Bit 2 Set if a track error codes is not good.

Bit 3 Set if a track starts outside layer 5.

Bit 4 Set if the vertex fit is poor.

The returned values of pmom and covr are double precison. The user can specify the minimum

track length as longt. For single precision values, see the TCVLDS subroutine.

3.1.21 SUBROUTINE TCVHLS

Author: Curtis A. Meyer

Creation Date: 18 September, 1990

36 Chamber Reconstruction Software

References:

Call Arguments: (IVRT, *ICODE, *NTRK, *CHRG, *PMON, *COVR, *IERR, LONGT).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: TCHLDS.

This routine is identical to TCVHLD, except that it returns single precision arguments. See the

TCVHLD routine for a description.

3.1.22 SUBROUTINE TCVLDD

Author: Curtis A. Meyer

Creation Date: 21 April, 1990

References:

Call Arguments: (IVRT, *NTRK, *ICODE, *CHRG, *PMOM, *COVR, *IERR, LONGT).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

This subroutine will compute the momentum vector, pmom as (px, py, pz) and the three by three

covariance matrix for the momentum, covr for all tracks connected to vertex ivrt. The number of

tracks is returned as ntrk, the vertex quality word is returned as icode, and the charge is returned

as chrg. The data is taken from the TCVT data bank. If the routine is unable to compute these,

then the value of ierr is returned as -1; otherwise the error code is set bitwise with the following

meanings:

Bit 0 Set if the charge sum is not zero.

Bit 1 Set if all tracks are not long.

Bit 2 Set if a track error codes is not good.

Bit 3 Set if a track starts outside layer 5.

Bit 4 Set if the vertex fit is poor.

The returned values of pmom and covr are double precison. The user can specify the minimum

track length as longt. For single precision values, see the TCVLDS subroutine.

3.1.23 SUBROUTINE TCVLDS

Author: Curtis A. Meyer

Creation Date: 21 April, 1990

References:

Call Arguments: (IVRT, *ICODE, *NTRK, *CHRG, *PMON, *COVR, *IERR, LONGT).

Common Blocks Used: cbbank, cblink and tcprms.

Subroutines Referenced: None.

This routine is identical to TCVLDD, except that it returns single precision arguments. See the

TCVLDD routine for a description.

3.1.24 SUBROUTINE TJTJDC

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Chamber Reconstruction Software 37

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the TJDC data bank to unit lun.

3.1.25 SUBROUTINE TPTPWC

Author: Curtis A. Meyer

Creation Date: 15 January, 1989

References:

Call Arguments: (LUN).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

Print the contents of the TPWC data bank on unit lun.

3.2 Utility Routines

All of these routines are found in the tc util patch in the locater card file. Most of these routines

are called directly by locater. However, they could also be useful to users of the code.

3.2.1 FUNCTION KRATE

Author: Curtis A. Meyer

Creation Date: 12 April, 1990.

References:

Call Arguments: (ISEC, ILYR).

Common Blocks Used: None.

Called by: rjproc.

Subroutines Referenced: None.

Given a wire described by sector isec and layer ilyr, this function will compute the FADC crate

number in which the wire’s data is processed. The allowed numbers are 1 to 16. A value of 0 is

returned for nonsensical layer or sector numbers.

3.2.2 SUBROUTINE SM353

Author:

Creation Date:

References:

Call Arguments: (Y, Z, N).

Common Blocks Used: None.

Called by:

Subroutines Referenced: None.

This routine will smooth data using the 3G53CQH method. The data are passed as an array y

containing n points. The smoothed data is returned in the array z. y and z can be the same array.

38 Chamber Reconstruction Software

3.2.3 SUBROUTINE SORTIL

Author:

Creation Date:

References:

Call Arguments: (A, IDX, N).

Common Blocks Used: None.

Called by: tjdcgt.

Subroutines Referenced: None.

This subroutine will sort a list of integer from smallest to largest. The numbers are given in a, and

a set of indices given in idx. There are n elements in the list. If the value of n is negative, then the

routine creates the index list.

3.2.4 SUBROUTINE SORTFL

Author: Curtis A. Meyer

Creation Date: .

References:

Call Arguments: (A, IDX, N)

Common Blocks Used: None.

Called by:

Subroutines Referenced: None.

This routine is identical to SORTIL, except that it sorts a list of real numbers, rather than integers.

3.2.5 SUBROUTINE SRTREE

Author: Brigitt Schmid and Curtis A. Meyer

Creation Date: 01 Jun2, 1990.

References:

Call Arguments: (DIST, LIST, N, *NRED, *INDX)

Common Blocks Used: None.

Called by:

Subroutines Referenced: None.

Given a list of n pairs of numbers, list(2,n), and a distance dist(n) corresponding to each pair, this

routine will find the minimum spanning set over all the data. The value of nred will be returned

as the number of reduced pairs, and the array indx will contain a pointer to the original two lists

for each pair chosen.

As an example, consider the problem of making π0’s and η’s from a list of photons. To be

specific, consider a system containing four photons. From these four photons, there are six ways to

form π0’s and six ways to form η’s. The problem is then what is the most likely combination. If we

then compute the probability Pi for each of these 12 combinations, and then define the distance as

Di = 1− Pi, the routine SRTREE will return INDX pointing to the two combinations that should

be taken to maximize the probability. In using this routine, it is most important to get the errors

on the invariant massed correct. A suggested error for a π0 invariant mass is:

error=min(4σ[π0width],max(1σ[π0width],σmγγ))

Chamber Reconstruction Software 39

4 Chamber Reconstruction Software

This chapter describes the software normally used to analyze the chamber data in the experiment.

This chapter is divided into several subsections, each dealing with a particular section of the code.

The first is an overview of all the common blocks used in this code, and a description of their

contents. The remaining sections describe the various sections of the code, and contain a flow

diagram of the calling sequence in that particular section. The code itself has been broken into the

following sections: General Routines, Raw Data Processing, Pattern Recognition, Circle Fitting and

Helix/Vertex Fitting. The descriptions found here are essentially those found in the header blocks of

each program. In all of the subroutines described here, an asterisk, (*) in front of a call argument’s

name means that its value is returned by the subroutine. Also, all variable types conform to fortran

defaults unless specifically mentioned.

4.1 Description of the Chamber Reconstruction Common Blocks

Here is contained a description of the common blocks used in the tracking program. In order to

include one of these is a subroutine, use the patchy command +cde,name. Where name is the six

character name of the common block.

4.1.1 LGHOLD

The variables in this common block are set to .true. if the user wants to prevent the data base

from overwriting input constants.

LOGICAL ANGLLG,BMAGLG,IAMPLG,ITFCLG,OPWCLG

LOGICAL ZOFFLG,WIRELG

COMMON /LGHOLD/ ANGLLG,BMAGLG,IAMPLG,ITFCLG,OPWCLG

& ,ZOFFLG,WIRELG

SAVE /LGHOLD/

• angllg

• bmaglg

• iamplg

• itfclg

• opwclg

• zofflg

• wirelg

4.1.2 RJDATA

The /rjdata/ common block is used to convert the RJDF hit information into RJDC format. It

is used in the RJPROC, RJPULS, and RJAFIT routines, and is not meaningful outside of those

routines. At most four hits per pulse are allowed. Hit number zero and hit number five are only

used for bookkeeping; hit zero refers to the start of the pulse, and hit five refers to the end of the

pulse.

40 Chamber Reconstruction Software

INTEGER NCHARJ,ITOFRJ,INTGRJ,ILPDRJ,IRPDRJ

INTEGER MINPRJ(0:5,2),MAXPRJ(0:5,2)

INTEGER IENDRJ(0:5,2),IDTIRJ(0:5,2)

COMMON /RJDATA/ NCHARJ,ITOFRJ,INTGRJ,ILPDRJ,IRPDRJ,

& MINPRJ,MAXPRJ,IENDRJ,IDTIRJ

• ncharj is the number of FADC channels in the pulse.

• itofrj is the time offset to the beginning of the pulse, (in FADC channels).

• intgrj is the integration time in FADC channels.

• ilpdrj is the left pedestal, (linearized and times ten).

• irpdrj is the right pedestal, (linearized and times ten).

• minprj is the start position of all hits found in the pulse.

• maxprj is the end position of all hits found in the pulse.

• iendrj is the bin at the end of each hit.

• idtirj is the fit drift time of each hit. ipulrj.

4.1.3 RJPRMS

The /rjprms/ common block contains parameters used in the routines which process the RJDF

data banks, (RJPROC, RJPULS, RJTFIT and RJAFIT). All the parameters in this bank can be

changed during calibration with a card in the CJINIT routine, (see CJINIT).

LOGICAL LGT0RJ,LGPDRJ,LGRJDD,LGRJDF

INTEGER NPULRJ,ITMIRJ,ITIMRJ,MXPLRJ,ITFCRJ(16)

COMMON /RJPRMS/ LGT0RJ,LGPDRJ,LGRJDD,LGRJDF

& ,NPULRJ,ITMIRJ,ITIMRJ,MXPLRJ,ITFCRJ

• lgt0rj Identify if t0 subtraction is done in RJPROC.

• lgpdrj Identify if dynamic pedestal calculation is done in RJPROC.

• lgrjdd Take online processed data if it exists.

• lgrjdf Perform Qt-analysis on the raw jdc pulses. Ignore any existing online processed data.

• npulrj Minimum pulse height above the height at the pulse start for a pulse in the RJDF

bank. It has a default value of 5, but can be changed using the NPUL card.

• itmirj Minimum time separation between two pulses in RJPULS. It has a default value of

100ns, but can be changed using the ITMI card.

• itimrj Integration time in the RJAFIT routine. It has a default value of 40 FADC channels,

but can be changed using the INTG card.

• mxplrj The maximum time difference between the left and right channel in order to accept

the two pulses as one. It has a default value of 25ns, but can be changed using the MXPL

card.

• itfcrj Is a t0 offset subtracted from the fit pulse time in the RJPROC routine. It has a

nominal value set for the December, 1989 data set, but can be changed with the ITFC card.

It is given in units of 200ps. This time offset is a function of the FADC crate number, (0-16).

Chamber Reconstruction Software 41

4.1.4 TCANGL

The /tcangl/ common block contains the double precision sines and cosines of all hits incorporated

into tracks. These are stored in order to reduce computation time in the circle fit, (routine TCITER).

DOUBLE PRECISION SINTTC(50),COSTTC(50),RDEVTC(50),CHISTC(50)

COMMON /TCANGL/ SINTTC,COSTTC,RDEVTC,CHISTC

SAVE /TCANGL/

• sinttc contains sinφi for each of up to 50 points in the present track. Its values are loaded

in the TCLOAD routine.

• costtc contains cosφi for each of up to 50 points in the present track. Its values are loaded

in the TCLOAD routine.

• rdevtc contains the deviation of the measured points from the circle fit, (units of cm) for the

fit track. Its values are set in the TCITER routine.

• chistc is the contribution to χ2 of each point along the track. This is filled in the TCITER

routine.

4.1.5 TCCUTS

The /tccuts/ common block contains all the cuts used throughout the charged tracking code.

They are all initialized in the TCINIT routine.

INTEGER NITRTC,NHLXTC,NVTXTC,LYVXTC

REAL CXSQTC,CLMBTC,XSQRTC,DXSQTC

REAL TIMETC(23),RSLVTC,CHCTTC

REAL VPRBTC,VFRCTC,ZVTXTC

DOUBLE PRECISION CCUTTC,CHDSTC,CHLXTC,CVXCTC

COMMON /TCCUTS/ CCUTTC,CHDSTC,CHLXTC,CVXCTC,

& CXSQTC,CLMBTC,XSQRTC,DXSQTC,TIMETC,CHCTTC,

& NITRTC,NHLXTC,NVTXTC,LYVXTC,RSLVTC,

& VPRBTC,VFRCTC,ZVTXTC

SAVE /TCCUTS/

• cxsqtc is a chisquare cut used in the TCSGMT routine a a measure of track closeness in

dy/dr. It has a default value of 1.75, and can be altered using the CXSQ card.

• clmbtc is chisquare cut for associating tracks in tanλ. It is used in the TCSGMT routine for

putting the segments together, and in the TCROSS routine for associating tracks in different

sectors. Its nominal value is 1.70 which can be changed using the CLMB card.

• xsqrtc is a χ2 cut for connecting points in the jdc. It is used in the TCFSRC and TCRSRC

routines. Its nominal value is 0.050[cm2], it can be changed using the XSQR card.

• dxsqtc is a cut used in the TCFSRC and TCRSRC subroutines to determine if a track has

crossed the wire plane. It is the difference between the left and right χ2, and has a nominal

value of 0.01. It can be changed during calibration using the DXSQ card.

• timetc is an array containing the minimum time in each jdc layer a hit can have, and still

be matched with a hit in the adjacent sector. This cut is used in the TCROSS routine.

42 Chamber Reconstruction Software

• nitrtc is the maximum number of iterations in TCITER. Its nominal value is 10, which can

be altered with the NITR card.

• ccuttc is used to decide if a track is well fit in the TCITER routine. If the track has

converged, and the last variation in the first fit parameter is larger than 0.10, then the value of

χ2 must be smaller than ccuttc times the number of points in the track. This has a nominal

value of 6.0, but can be changed using the CCUT card.

• chdstc is the convergence criteria in the TCITER and CJITER routines. If the computed

χ2 varies by less than the value of chdstc between any two iterations, then the routine stops

iterating. Also, if the value of χ2 falls below the value of chdstc, the routine also stops

iterating. This has a nominal value of 0.100, but can be changed using the CHDS card.

• chcttc is a closeness parameter, (χ2) used to determine if two different track segments belong

to the same track and is used in the TCASSC routine. Its nominal value is 4.50, but it can be

modified by use of the CHCT card.

• nhlxtc is the maximum number of iterations in the TCHELX routine. Its nominal value is

5 which cna be changed with the NHLX card.

• chlxtc is a convergence criteria in the TCHELX routine. Its nominal value is 1.0 which can

be modified with the CHLX card.

• nvtxtc is the maximum number of iterations in the TCVRTX routine. Its nominal value is

10, but it can be changed using the NVTX card.

• lyvxtc is the outermost inner layer a track can have and be considered for the primary vertex.

It has a default value of six, but this can be changed using the LYVX card.

• cvxctc is a χ2 cut for convergence in the TCVRTX routine. Its nominal value is 1.0[cm2],

but it can be changed using the CVXC card.

• rslvtc is a parameter used to decide if a point can be added to an existing fit track. Its value

can be set using the RSLV card, (See routine TCRSLV).

• vprbtc is a probaility cut used in the vertex fit to decide if tracks should be dropped from

the vertex. It has a default value of 0.001, but can be changed using the VPRB data card.

• vfrctc is a cut to decide if tracks should be dropped from the vertex. If the probability is

smaller than vprbtc and one track contributes vfrctc of the total χ2, then that track is not

used in the vertex fit. The default value is 0.900, but can be changed using the VFRC data

card.

• zvtxtc is a criteria in the vertex fit to decide if a track belongs to the primary vertex. The

track must have z0 within zvtxtc of the nominal z–vertex to be used. This has a default

value of 10cm, but can be changed using the ZVTX data card.

4.1.6 TCFLAG

The tcflag common contains flags which control which parts of the track reconstruction code are

executed. The nominal value of all these cards is .true., but they can be varied via the CHAM

card in the main code.

Chamber Reconstruction Software 43

LOGICAL GPWCTC

LOGICAL TRAKTC,RAWSTC,PATTTC,CIRCTC,HELXTC,VERTTC

COMMON /TCFLAG/ GPWCTC,

& TRAKTC,RAWSTC,PATTTC,CIRCTC,HELXTC,VERTTC

• gpwctc identifies if the pwc was used.

• traktc controls whether CBPHYS calls TCTRAK.

• rawstc controls whether the routine process raw data.

• patttc controls whether pattern recognition is done.

• circtc controls whether circle fitting is done.

• helxtc controls whether helix fits are performed.

• verttc controls whether vertex fitting is performed.

4.1.7 TCHITS

The tchits common block is filled by the TCLOAD routine, and identifies which points in a track

have not been resolved, (left/right). This is then later used by the TCRSLV routine to resolve those

points.

LOGICAL LGUNTC,LGCNTC(50),LGNEAR(50)

INTEGER NTOTTC,NPTSTC,IPNTTC(50)

COMMON /TCHITS/ LGUNTC,LGCNTC,LGNEAR,NTOTTC,NPTSTC,IPNTTC

• lguntc is a logical flag that is set .TRUE. if the track contains any unresolved points.

• lgcntc is an array of logicals. Each entry corresponds to a hit in the track, and if the value

is .true., then the hit has been resolved.

• lgnear is set .true. if the hit is within 1.5mm of a sense wire. TCFITR is then allowed to

switch the resolution on this point if it would improve the track fit.

• ntottc is the total number of hits in the track.

• nptstc is the number of resolved hits in the track.

• ipnttc is an array of pointers to the TCHT data bank for every hit in the track.

4.1.8 TCLIFT

The /tclift/ common block contains bank information used in Lifting all data banks used in

locater. All this information is filled in the ZBFORM routine. This means that all bank formats

can be changed in the same place. The common block contains the following information. For a

detailed description, consult the data bank information.

INTEGER MRJDC(5),MTJDC(5),MTJDS(5),MTCHT(5),MTCLY(5)

INTEGER MTCTK(5),MTCSG(5),MTCTR(5),MTCTX(5)

INTEGER MTCHX(5),MTCHP(5),MTCVX(5),MTCVT(5),MTCVP(5)

INTEGER MTPWC(5),MTPCH(5),MHTJD(5)

INTEGER MTJCT(5),MTJXX(5),MTJCP(5),MTJRF(5),MTJST(5)

INTEGER MTJCZ(5),MTJCE(5),MTJZ0(5),MTJZL(5),MTJWR(5)

44 Chamber Reconstruction Software

COMMON /TCLIFT/ MRJDC,MTJDC,MTJDS,MTCHT,MTCLY

& ,MTCTK,MTCSG,MTCTR,MTCTX

& ,MTCHX,MTCHP,MTCVX,MTCVT,MTCVP

& ,MTPWC,MTPCH,MHTJD

& ,MTJCT,MTJXX,MTJCP,MTJRF,MTJST

& ,MTJCZ,MTJCE,MTJZ0,MTJZL,MTJWR

SAVE /TCLIFT/

4.1.9 TCPRMS

The /tcprms/ common block contains parameters used in the reconstruction of tracks. All of these

parameters are initialized in the TCINIT routine.

INTEGER NLYRTC,LJDCTC

REAL PHSETC,PHOFTC,ZOFFTC

REAL SINETC(30),COSETC(30),ANGSTC(30)

REAL RLYRTC(23),RINVTC(23),STAGTC(23)

REAL ANGLTC,BMAGTC,BINVTC,BMGCTC,BSGNTC,DELZTC(23)

COMMON /TCPRMS/ NLYRTC,LJDCTC,PHSETC,PHOFTC,ZOFFTC,

& SINETC,COSETC,ANGSTC,RLYRTC,RINVTC,STAGTC,

& ANGLTC,BMAGTC,BINVTC,BSGNTC,BMGCTC,DELZTC

• nlyrtc is the total number of chamber layers, xdc/pwc and jdc.

• ljdctc is the number of jdc layers, nominally 23.

• phsetc is the angle in radians spanned by one jdc sector.

• phoftc is the offset angle in radians to the center of jdc sector 1.

• zofftc is the offset of the interaction plane in the target from the center of the jdc. This

parameter is used in the TJZPOS routine for computing quantities for the TCSGMT routine.

It can be set with the ZOFF card.

• sinetc contains the sines of the rotation angle to the center of each jdc sector.

• cosetc contains the cosines of the rotation angle to the center of each jdc sector.

• angstc contains φ angle at the center of each jdc sector in radians.

• rlyrtc contains the radius of each layer in the jdc in units of cm.

• rinvtc contains 1/r for each layer in the jdc.

• stagtc contains the wire stagger, (in cm) for each layer in the jdc.

• angltc is an offset angle for the first sector of the jdc. It specifies how many radians away

from 0 it is, and can be set with the ANGL card.

• bmagtc is the magnitude of the magnetic field along the z–axis in units of KG. It can be

changed with the BMAG card.

• binvtc is 1
eB in the units above. It is calculated in the TCINIT subroutine.

Chamber Reconstruction Software 45

• bmgctc is eB in units of MeV/c
cm . The value of e is

e = 0.299792458
MeV/c

KG · cm

Its value is computed in the TCINIT subroutine from bmagtc.

• bsgntc is the sign of the magnetic field. +1 is along the +z axis, while –1 is along the −z
axis. It is computed from the value of bmagtc.

• delztc is the nominal error in the measured z coordinate for each wire in the jdc. It has a

nominal value of 0.8cm, but can be changed using the DELZ card.

4.1.10 TCSCAT

The tcscat common block contains the data used to compute the multiple scattering contribution

to the covariance matricies. This data is initially loaded in the TCINIT routine. The initial data

depends on whether the xdc or pwc is inside the jdc. A description of how the multiple scattering

contribution is computed can be found in the section of the TCMCST subroutine.

REAL GASXTC,R0XTTC,R1XTTC,R2XTTC

COMMON /TCSCAT/ GASXTC,R0XTTC,R1XTTC,R2XTTC

• gasxtc is the inverse radiation length of the gas in the jdc. It is is units of cm-1.

• r0xttc is a sum over all discrete scatterers between the interaction point and the first hit in

the jdc. The sum is of the quantity ti/xi where ti is the thickness of the scatterer and xi is

its radiation length.

• r1xttc is a sum over all discrete scatterers of the quantity: ti · ri/xi where ri is the radius of

the scatterer. The dimensions of this quantity are cm.

• r2xttc is a sum over all discrete scatterers of the quantity: ti · r2
i /xi. It has units of cm2.

4.1.11 TCSEGS

The tcsegs common block contains information on the track segments found in the jdc. It is

essentially an organization of the points in each sector according to tanλ where λ is the track

opening angle. The routine TCSGMT is called to fill the data in this common block, and then the

TCRAW1 and TCRAW2 routines use this information in building tracks in the chamber.

LOGICAL GCNCTC(10,30)

INTEGER NSEGTC(30),NSGPTC(2,10,30),JSECTC(4,10,30)

REAL LMBDTC(4,10,30)

COMMON /TCSEGS/ GCNCTC,NSEGTC,NSGPTC,JSECTC,LMBDTC

• gcnctc is a logical array identifying which segments have been processed. TCSGMT sets this

value to .FALSE. for all segments, then as TCRAW1 and TCRAW2 use the data, they change

the value to .TRUE. .

• nsegtc is an array containing the number of segments found in each sector of the jdc.

• nsgptc contains the number of points found in each segment, and the number of points

incorporated into tracks. There is storage space for up to 10 tracks per sector.

• jsectc contains information on the beginning and end of each found segment.

46 Chamber Reconstruction Software

JSECTC(1,i,j) layer number of the innermost hit in segment i of sector j.

JSECTC(2,i,j) layer number of the outermost hit in segment i of sector j.

JSECTC(3,i,j) hit number of the innermost hit in segment i of sector j.

JSECTC(4,i,j) hit number of the outermost hit in segment i of sector j.

• lmbdtc contains the cuts on tanλ for each found segment in each sector.

LMBDTC(1,i,j) tanλ for the outermost hit in segment i in sector j.

LMBDTC(2,i,j) contains
∑

tanλ for all points in segment i in sector j.

LMBDTC(3,i,j) contains the average of tanλ for all hits in segment i in sector j.

LMBDTC(4,i,j) 1.0/σ2
tanλ for segment i in sector j. σ2

tanλ = 0.260(1.0 + tan2 λ).

4.1.12 TCSTAT

The /tcstat/ common block is used to keep track of run statistics throughout the LOCATER

code. For a precise description of each variable, one should consult the TCCOMMON Patch in the

LOACTER PAM file. Information from this common is printed during a call to TCDONE.

INTEGER ISTATC(20),ISTKTC(50)

COMMON /TCSTAT/ ISTATC,ISTKTC

• istatc contains global statistics.

• istktc contains statistics from the circle fitting code.

4.1.13 TJCONV

The /tjconv/ common block contains variables which are passed to the TJTIME, TJZPOS and

TCRESL routines. This allows these routines to have no call arguments.

INTEGER IRESTJ,ISECTJ,ITJDTJ,ITCHTJ

COMMON /TJCONV/ IRESTJ,ISECTJ,ITJDTJ,ITCHTJ

• irestj is the resolution code for the point, (0,1,2).

• isectj is the sector number in the jdc.

• itjdtj is a pointer to the TJDC data bank for this hit.

• itchtj is a pointer to the TCHT data bank for this hit.

4.1.14 TJCUTS

The tjcuts common block contains cuts applied only to the jdc. Its values are initialized in the

TCINIT routine.

INTEGER IAMPTJ,IGAPTJ,JGAPTJ,ITDFTJ,ITMXTJ(23)

REAL TCRSTJ(23),TMINTJ,YMAXTJ(23),YCUTTJ

REAL DMINTJ,DMAXTJ

COMMON /TJCUTS/ IAMPTJ,IGAPTJ,JGAPTJ,ITDFTJ,ITMXTJ,TCRSTJ,

& TMINTJ,YMAXTJ,YCUTTJ,DMINTJ,DMAXTJ

SAVE /TJCUTS/

Chamber Reconstruction Software 47

• iamptj is the minimum accepted amplitude in the TJDCGT routine. It has a nominal value

of 45 FADC channels, but can be changed with the IAMP card.

• igaptj is the largest gap in layers allowed within a segment in the TCSGMT routine. It has

a default value of 4, but can be changed using the IGAP card.

• jgaptj is the largest gap in layers allowed in the TCRSRC and TCFSRC routines. It has a

default value of 2, but can be changed using the JGAP card.

• itmxtj is the minimum drift time distance in ns as used in the TJDCGT routine. It has a

value of 250ns, but can be set using the ITDF card.

• itmxtj is the maximum drift time allowed on each layer of the jdc, (ns). The values can be

changed using the itmx card.

• tcrstj is a time cut used in the TCFSRC and TCRSRC subroutines when trying to resolve

a second point in a track. The cut says that if we know the resolution of one point along the

track, a second point can have that same resolution only if it is within tcrstj µs of the first

point. The nominal value is 0.7µs.

• tmintj is the minimum time a hit can have and still be resolved with the (t1 + t3)/2 − t2
method. It is nominally set at 90 ns, but can be changed with the TMIN card. This cut is

used in the TCRAWS routine.

• ymaxtj contains the maximum allowed value of y for each layer in the jdc.

• ycuttj is used in the TJTIME routine to decide when a point is physically outside of a sector.

If the point reconstructs outside the sector, but not more than the value in ymaxtj, then it

is assigned the coordinates of the sector boundary. Otherwise it is assigned an unphysically

large position. The default value is 1mm, but it can be changed using the YCUT card.

• dmintj is the minimum value of (t1 + t3)/2− t2 with which one can identify the left or right

side of the wire. This has a default value of 0.025µs, but can be changed using the DMIN

card. Note that the program will naturally decrease the value of this parameter if no track

can be extracted.

• dmaxtj is the maximum value of (t1 + t3)/2− t2 which can be used to decide left and right in

the chamber. It has a default value of 0.130µs, but can be modified using the DMAX card.

Note that the program will naturally increase this cut if no tracks can be extracted.

4.1.15 TJPRMS

The /tjprms/ common block contains data for computing the position error to be associated with

every hit in the jdc. See the TCRESL routine for a description of the error calculation.

LOGICAL LGT2TJ

REAL DELYTJ,DLY2TJ,DELTTJ,RISOTJ(23,2)

REAL SY02TJ,SYDFTJ,SYDQTJ,SXDQTJ

COMMON /TJPRMS/ LGT2TJ,DELYTJ,DLY2TJ,DELTTJ,RISOTJ,

& SY02TJ,SYDFTJ,SYDQTJ,SXDQTJ

SAVE /TJPRMS/

• lgt2tj is a flag to control if we use a complicated form normally used in chamber calibration.

Its value is set with the LGT2 card.

48 Chamber Reconstruction Software

• delytj The linear term in the computation. It has a nominal value of 0.0250 [cm], but can

be changed using the DELY card.

• dly2tj is used in calibrating the jdc. It has the function of delytj in normal running. It

has a default value of 0.025 [cm], and can be changed by using the DLY2 card.

• delttj the quadratic term, only applied if the flag is true. It has a nominal value of 0.0250

[cm], but can be changed using the DELT card.

• risotj is the maximum isochron radius on each side of each wire.

• sy02tj is the flat term in the chamber resolution, it has a nominal value of 90 microns, but

can be changed using the SY02 card.

• sydftj is the diffusion term which is proportional to the square root of the drift distance. It

has a nominal value of 100 micorns, but can be changed using the SYDF card.

• sydqtj is nominally zero, and must be changed using the SYDQ card. It is used during

calibration to allow for an error in the drift distance proportional to the drift distance.

• sxdqtj is nominally zero, and must be changed using the SXDQ card. It is used during

calibration to allow for an error in the x coordinate proportional to the drift length, essentially

a Lorentz angle.

4.1.16 TJSLCN

The /tjslcn/ common block is used to monitor the jdc slow control events.

LOGICAL LCLRTJ

INTEGER NTMPTJ,NMIXTJ,NPRSTJ

REAL STMPTJ,SMIXTJ,SPRSTJ

COMMON /TJSLCN/ STMPTJ,SMIXTJ,SPRSTJ

& ,NTMPTJ,NMIXTJ,NPRSTJ

& ,LCLRTJ

4.1.17 TJWIRE

The /tjwire/ common block identifies which wires can and cannot be used in analysis. It is used

in the TJDCGT routine.

LOGICAL LGWIRE(23,30)

COMMON /TJWIRE/ LGWIRE

If an entry, (layer,sector) in the lgwire array is .true., then the wire should not be used in analysis.

4.1.18 TPPRMS

The /tpprms/ common block contains parameters which describe the PWC.

REAL RPWCTP(2),APWCTP(2),OPWCTP(2)

REAL XPWCTP(0:319),YPWCTP(0:319)

COMMON /TPPRMS/ RPWCTP,APWCTP,OPWCTP,XPWCTP,YPWCTP

• rpwctp contains the radius in centimeters of the two layers in the pwc.

Chamber Reconstruction Software 49

• apwctp contains the angular spacing between wires in the pwc for the two layers. The units

are in radians.

• opwctp contains the angular offset for wire number zero in both layers of the pwc, the units

are radians, and this can be set using the OPWC card.

• xpwctp contains the x coordinate of every wire as a function of the wire number in the

RPWC data bank.

• ypwctp contains the y coordinate of every wire as a function of the wire number in the

RPWC data bank.

4.2 Description of the General and Steering Software

The following subroutines are found in the tc main patch in the locater card file.

4.2.1 SUBROUTINE TCDONE

Author: Curtis A. Meyer

Creation Date: 27 July, 1988

References:

Call Arguments: (ICODE)

Common Blocks Used: cjflag.

Subroutines Referenced: cjtavg, cjtimo,

cern library, datimh.

This routine is called once at the end of a run to write out the status of the tracking code. If

calibrations are done, this routine calls the routines to update the look up table, and to write out

the new table.

4.2.2 SUBROUTINE TCINIT

Author: Curtis A. Meyer

Creation Date: 12 February, 1988

References:

Call Arguments: (*IERR).

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tcprms, tccuts, tcscat and

cjgain.

Subroutines Referenced: tcvers, tjtimi and cjinit.

This routine is called once, at the beginning of each run. It’s purpose is to set up the constants used

throughout the tracking section. The returned value ierr is zero for no problems, and set equal to

one if io problems were encountered. In this case the calling program should terminate as the drift

chamber calibration tables will be incorrect.

4.2.3 SUBROUTINE TCTRAK

Author: Curtis A. Meyer

Creation Date: 12 February, 1988

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tctest and smtest.

50 Chamber Reconstruction Software

Subroutines Referenced: tjdcgt, tpwcgt, tcpatt tccirc, tcdedx, tcpcnt, tchelx,

tcmsct, tcvert and usevnt.

zebra library mzlift.

This subroutine controls the flow of the tracking programs for normal data analysis. It’s only job is

to call other subroutines. The value of ievnt is the event number, lgfin is a logical that identifies

if the end of data was encountered, and ierr is an error code from the routine. If ierr is returned

not equal to zero, the run should be ended.

The subroutine USEVNT is called throughout this routine to enable the user to abort event

processing. To do so, the user need only set the variable accecb in the /cbcntl/ common block

to .false.. The following entries are made to USEVNT.

20 After unpacking of the pwc data, (TPWCGT).

21 After unpacking of the jdc data, (TJDCGT).

22 After pattern recognition, (TCPATT).

23 After circle fitting, (TCCIRC).

26 After helix fitting, (TCHELX).

27 After vertex fitting, (TCVERT).

29 After calibration, (CJCALB).

4.2.4 SUBROUTINE TJGAIN

Author: Curtis A. Meyer

Creation Date: 1 March, 1989.

References:

Call Arguments: (*IERR)

Common Blocks Used: cbbank, cblink and tclift.

Subroutines Referenced: (zebra library:) mzlift.

This routine will first lift the TJCE and TJCZ data banks in the constant division. It will then

read in the jdc energy and z calibrations from logical unit ljgain and store them in the banks.

The returned value of ierr is set to zero if the routine is successful.

4.2.5 SUBROUTINE TJGAOT

Author: Curtis A. Meyer

Creation Date: 1 March, 1989.

References:

Call Arguments: None.

Common Blocks Used: cbbank and cblink.

Subroutines Referenced: None.

This routine will write the contents of the TJCE and TJCZ banks out to the file jdcgain.new

through the logical unit lnorm. This routine is only used during calibration.

Chamber Reconstruction Software 51

4.2.6 SUBROUTINE TJSLOW

Author: Curtis A. Meyer

Creation Date: 21 August, 1990

References:

Call Arguments: (*IERR).

Common Blocks Used: sclink, cblink, cbbank and tclift.

Subroutines Referenced: (zebra): mzlift

This routine will monitor the slow control data from the jdc, and print out warnings when it

deviates by two much from the reference data as stored in the TJRF data bank. The routine is also

supposed to correct the rφ calibrations based on temperature, pressure and gas mixture as seen in

the jdc. This is not yet implemented.

4.2.7 SUBROUTINE TJTIMI

Author: Klaus Peters

Creation Date: 9 September, 1988

References:

Call Arguments: (*IERR,MKxxxx).

Common Blocks Used: cblink, cbbank and tclift.

Subroutines Referenced: (zebra): mzlift

This subroutine will read in the lookup table to convert drift time into position in the jdc. If an io

error occurs, then the value of ierr is returned as one. Otherwise it is returned as zero. The data

is stored in the TJCT data bank, which is lifted in this routine. The function MKxxxx is used to

tell TJTIMI from where the input should come. The possible functions included in locater are:

• mkdumy A do–nothing routine used when data is taken from the data base.

• mkreal is the generic name for calibration sets for real data. The correct sets are chosen

using cmz select flags.

• mkgean is the calibration table for geant output.

• mkdfpl is a starting table for rφ calibrations if the field is positive.

• mkdfmn is a starting table for rφ calibrations if the field is negative.

52 Chamber Reconstruction Software

CBMAIN

t

- CBINIT

t

- CBFFGO

- ZBINIT

- BCINIT

- TCINIT - TCVERS

- ZBFORM

- TJTIMI

- TJGAIN

- USINIT

- CBLOOP - CBPHYS - TCTRAK

- ZEND - TCDONE

Figure 3: The calling sequence for the offline analysis code.

Chamber Reconstruction Software 53

4.3 Description of the Raw Data Processing Software

The following subroutines are found in the tc raws patch of the locater card file.

4.3.1 SUBROUTINE RJAFIT

Author: Curtis A. Meyer

Creation Date: 8 May, 1989

References: Online routine AMP1 by H. von der Schmitt.

Call Arguments: (*LHIT1, *LHIT2, *LGHIT, *IERR, *IAMPR, *IAMPL, NPULS, MXPLD,

IBEGL, IBEGR, IAOFL, IAOFR)

Common Blocks Used: rjdata.

Subroutines Referenced: RJPULS.

This subroutine computes the amplitude of a pulse by integrating the FADC contents for a fixed

time, (itimrj in the /rjprms/ common). Integration is performed simultaneously on both the left

and right channels, with the resulting amplitudes being returned in the iampl and iampr variables.

Integration is started at channel number ibegl on the left, and ibegr on the right. The routine

also looks for the appearance of a second pulse during integration by identifying if either pulse starts

falling, and then starts rising again. If this happens, the RJPULS routine is called, and if it finds

a pulse, the lhit variables are set true. If a second pulse is found, then the integration of the first

pulse is stopped early, and its total amplitude is corrected for the fraction of time remaining. This

correction is also returned in the iaofl and iaofr variables for subtraction from the second pulse.

The returned amplitudes are linearized.

The criteria for a second pulse is given as the following:

• The maximum of the present pulse has been reached.

• The channel iseprj channels away from the present channel is over for non–linear bins higher

than the present channel.

• The RJPULS routine says that it is a second pulse.

4.3.2 SUBROUTINE RJPROC

Author: Curtis A. Meyer

Creation Date: 8 May, 1989

References:

Call Arguments: (*IERR).

Common Blocks Used: rjdata, cbbank, cblink, and cbunit.

Called by: tjdcgt Subroutines Referenced: rjpuls and rjafit.

zebra library: mzlift and mzpush.

This routine is the top level routine in the section to convert jdc data from the RJDF format into

the RJDC format. The routine is called from the TJDCGT routine when no RJDC bank exists,

but an RJDF bank does exist. The output from this routine is an RJDC data bank.

The routine loops over all pulses found in the RJDF bank, and processes them in exactly the

same manner as the online system. The pulses are extracted from the bank, linearized using the

formula:

l = (64 · i)/(64− 0.7539 · i)

and stored in two working arrays, one for the left side and one for the right side of the pulse. The

routine then calls the RJPULS for both the left and right pulse, which returns the number of found

54 Chamber Reconstruction Software

hits, the start position of each hit, the position of the maximum for each hit, and the fit time for each

hit, (the times are in units of 200ps). (The returned variables are passed through the /rjdata/

common block.)

The routine then looks simultaneously at the hits on the left and right side. Two hits which are

within mxplrj time units of each other are assumed to the two sides of the same hit. The drift

time for these is taken as the average of the left and right time. Two hits which are farther apart

then mxplrj, but closer than 100ns are assumed to be the same hit, but the drift time is taken as

only the earlier time. Otherwise hits are assumed to be separate.

When both sides of a hit have been identified, the routine defines an integration length. This

is taken as the shortest of either itimrj channels, or the difference between the start time of the

present hit and the next hit in the pulse. This is done for both the left and right side, and the

final integration time is taken as the minimum of the two. The routine RJAFIT is then called to

simultaneously integrate the two hits over the given integration length. The resulting drift time,

and amplitudes are then stored in the RJDC data bank.

The returned value of ierr is used to flag the routine exit status.

ierr= 0 is normal completion with no errors.

ierr= 1 tags a header problem. The routine was unable to unpack the RJDF bank and has exited.

4.3.3 SUBROUTINE RJPULS

Author: Curtis A. Meyer

Creation Date: 8 May, 1989

References: Online routine PULSDF by G. Eckerlin.

Call Arguments: (ISIDE, *NPULS, IPULS).

Common Blocks Used: rjdata and rjprms.

Called by: rjproc.

Subroutines Referenced: krate.

This routine looks at the pulse stored in the ipuls array to find the starts, maximums and drift

times of all hits. The search looks for one rising bin followed by a bin which does not fall. This is

defined as a hit start. The hit maximum is then defined as the bin just before the first falling bin.

Hits must be separated by at least itmirj bins. If a hit is found, then the drift time is fit using

a first electron method. A line is fit to the rising edge of the pulse, and the intersection with the

pedestal is defined as the drift time, (time units are 200ps). The information on the starting bin,

maximum bin, and drift time are returned to the calling routine through the /rjdata/ common

block. The number of hits found is returned as npuls. The following conditions must be met in

order for a hit to be accepted as a hit, (all values are found in the /rjprms/ common block):

• The pulse height as defined as the maximum minus the minimum must be larger than npulrj,

(Default value of 30, but can be changed using the NPUL card.

• The number of bins between the start of the present hit and that of the previous, (for more

than one hit), must be at least ntmirj, (Default value of 10, but can be changed using the

NTMI card).

• There can be no more than four hits in a passed pulse.

• A second hit must be at least 80% as high as the previous hit.

Chamber Reconstruction Software 55

4.3.4 SUBROUTINE TJDCGT

Author: Curtis A. Meyer

Creation Date: 1 February, 1989.

References:

Call Arguments: (IERR).

Common Blocks Used: cbbank, cblink, tclift, zbdivs and mjdata.

Called by: tctrak.

Subroutines Referenced: rjproc and sortil,

(zebra library:) mzlift and mzwork.

This routine is called once per event. It will take the jdc data out of the magnetic tape format, and

load it into the TJDC data banks. The format of the raw data can be either the RJDC or RJDF

bank format. If the RJDC format exists, it is used by default. However, if the RJDC does not

exist, and the RJDF does exist, the the RJPROC routine is called to create an RJDC data bank.

This routine then examines all hits in the RJDC bank, and moves those that pass the following

cuts into the TJDC data banks. All accepted hits must satisfy the following:

• The total amplitude of the hit is larger than the iamptj cutoff in the /tjcuts/ common

block.

• The drift time of the hit must be smaller than the value of tmaxtj(layer) in the /tjcuts/

common block.

• If more than one hit is found on any wire, the minimum time separation between the hits must

be larger than tdiftj in the /tjcuts/ common block. If they are closer than this, they are

assumed to be the same hit, and are merged.

Finally, if more than one hit remain on any wires, the SORTIL routine is called to arrange those

hits in order of drift times, smallest to largest.

4.3.5 SUBROUTINE TJTIME

Author: Curtis A. Meyer

Creation Date: 8 July, 1989.

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tjconv, tjcuts and tcprms.

Called by: tjdcgt.

Subroutines Referenced: None.

This subroutine will take the time and amplitude information given in the TJDC data bank through

the pointer itjttj and compute the (x, y) position in the jdc for both the left and right possibilities,

the z coordinate through charge division, and the dE/dx at the point. The results are stored in the

TJDC data bank using the pointer itjttj. The x and y positions are obtained by interpolating in a

look up table stored in the TJCT data bank which relates measured drift time to position for every

wire in the chamber. The positions are computed in sector coordinates, as shown in Figure 4. A

standard sector is defined with the x–axis along the wire plane, and the y–axis vertical. The origin

is defined as the center of the jdc. Note that all pointers are passed in the /tjconv/ common

block.

The z coordinate is computed through charge division, using constants stored in the TJCZ,

TJZL and TJZ0 data banks. The dE/dx at the hit is computed using data stored in the TJCE

data banks. For more information on how conversions are performed for these coordinates, see the

subsection of Calibration Data Banks.

56 Chamber Reconstruction Software

(0,0)

0mm 59mm 243mm

·
·
·

··
··
··
··
··
·

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

· · · · · · · · · · · · · ·
· · · · ·

· ·

- +x

Left

Right

6

+y

· ·· ·

Figure 4: Sector coordinates for the jdc, all interpolation for position from drift times is done in a cell

of the above form.

4.3.6 SUBROUTINE TPWPOS

Author: Curtis A. Meyer

Creation Date: 13 January, 1989.

References:

Call Arguments: None.

Common Blocks Used: tpprms, cbbank, cblink, tclift and zbdivs.

Subroutines Referenced: (zebra library) mzlift .

This routine takes the information in the RPWC data bank, converts the hits into position, and

stores the resulting information in the TPWC data bank.

Chamber Reconstruction Software 57

- TCTRAK

t

- TPWPOS

- TJDCGT

t

- RJPROC

t

- RJPULS

- RJAFIT

- SORTIL

- TJTIME

Figure 5: The flow diagram for the processing of Raw data in the jdc.

58 Chamber Reconstruction Software

4.4 Description of the Pattern Recognition Software

The following subroutines are found in the tc patt patch of the locater card file.

4.4.1 SUBROUTINE TCFSRC

Author: Curtis A. Meyer

Creation Date: 1 February, 1988

References:

Call Arguments:(I, ISECT, IRES, ITJDC, ITCHT, IOPT, ITRK, *CHX, *NCHX).

Common Blocks Used: cbbank, cblink,tcsegs and tccuts.

Subroutines Referenced: tcresl.

This subroutine starts at the point i in sector isect which has been resolved as specified by ires,

(1=left, 2=right) and searches forward through the sector to resolve as many additional points as

possible. The procedure uses two points of known resolution to predict the third point, and then

compare this with the two possible choices. The routine stops searching if all the data is used up, or

if a gap larger than 3 layers is found. itjdc and itcht point to the hit in the TJDC and TCHT

data banks respectively. iopt can take the values 0 or 1. When it is zero, TCFSRC assumes that

only the point given is known on the track. It then has to figure out a second point on the track

before proceeding. If iopt is 1, then TCFSRC uses the forward pointer of this hit to get the next

hit, and then starts its search. Finally, itrk is the track number assigned to the track.

The basic algorithm in this routine, (as well as the TCRSRC routine) is to use two points of

known resolution, (x1, y1) and (x2, y2) to predict a third point (x3, y3) using a linear projection.

This third point is taken as the next point in the present sector, and the distance squared between

the left and right choices to the line are computed. If exactly one of these is smaller than the value

of xsqrtc in the /tccuts/ common block, then that choice is taken. If both are smaller than the

cutoff, and the absolute difference between the two is less than dxsqtc in the /tccuts/ common

block, then the routine needs to figure out if the track is very close to, or actually crossing the sense

wire plane. This is done by stepping ahead in this sector, and identifying three adjacent points

whose drift times are longer than tcrstj in the /tccuts/ common block. These points are then

resolved using the quantity ∆ = (t1 + t3)/2− t2, as described in the TCRAW2 routine. This routine

is not restricted to only points identified as in the same segment, (see TCSGMT), as the first point,

but examines all points in the sector, and chooses the best match in r/phi.

The returned value of chx is the sum of the deviations squared of every added point, while nchx

is the number of added points.

4.4.2 SUBROUTINE TCPATT

Author: Curtis A. Meyer

Creation Date: 15 November, 1989

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tcprms, tccuts and tcsegs.

Called By: tctrak .

Subroutines Referenced: tcross .

This is the steering routine for pattern recognition. It first calls the TCSGMT to build loose roads

through the data. Then it sets a minimum road length of 10 hits, and calls the TCRAW2 routine

to search through the chamber, and try to resolve those roads with more than 10 hits. Next, the

TCRAW1 routine is called to try to connect tracks which have crossed sector boundaries. Finally,

Chamber Reconstruction Software 59

the TCRAW2 routine is called again with the minimum length set to three to try and sweep up left

over track pieces.

After the above search, the routine then copies all unused data in the TJDC bank into the

TCHT bank as unresolved and not connected. Presently, if more than 10 tracks are found in this

routine, the event is aborted by calling MZWIPE on the tracking division.

4.4.3 SUBROUTINE TCRAW1

Author: Curtis A. Meyer

Creation Date: 15 January, 1988

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tcprms, tccuts and tcsegs.

Subroutines Referenced: tcross .

This routine looks through all the segments located in the tcsgmt routine, and locates all places

where segments in two adjacent sectors can be connected into a track. If such a connection can be

made, it has the advantage of unambiguously resolving from which side of the sense wire the hits

came. This search is done by forming a loop over the 30 sectors in the jdc, and then a loop over

every segment in the sectors. Given a segment either starts on some layer other than layer 1, or

ends on some layer other than layer 23, a search is made over all the segments in the adjacent two

sectors. One wants to find a segment which matches the tanλ of the first segment and can sensibly

be connected to the segment in terms of layers. If such a segment is found, the TCROSS routine is

called to connect. The TCROSS routine will itself call the TCRESL routine to resolve the hits, and

the TCRSRC and TCFSRF routines to connect more points to the given track start.

The above search is performed as two loops over the chamber. The first forces the starting

segment to have at least 6 hits in it. The second then picks up everything which is left over.

4.4.4 SUBROUTINE TCRAW2

Author: Curtis A. Meyer

Creation Date:

References:

Call Arguments: nmin.

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tcprms, tccuts and tcsegs.

Subroutines Referenced: tcresl, tcfsrc, tcrsrc, tccnct,

(zebra library): mzlift.

This routine looks through all sectors in the jdc and examines those roads, (TCSGMT) which

contain at least nmin hits. The time difference algorithem, ∆ = (t1 + t3)/2 − t2 is used to resolve

the left–right ambiguity in the chamber. This algorithem requires that three adjacent wires have

signals, and the drift time of these signals is larger than tmintj. If this is true, then ∆ is formed.

If ∆ is larger than dmintj and smaller than dmaxtj, then this routine can identify which side of

the wire plane we are on. (All the above cut are in the /tjcuts/ common block.)

This routine searches through all the hits until three adjacent hits satisfy the above requirements.

These three hits are then resolved, and the TCFSRC and TCRSRC routines are used to connect

other points into the track. If both of these routines fail to add points to the track, and the road

length is at least 10, then the routine has made an error, and the track start is dropped. The routine

then continues looking through the data until it finds three more adjacent hits to use.

If after searching through a sector, no tracks are found, then the values of tmintj and dmintj are

lowered and dmaxtj increased in steps to the values of 0.025µs, 0.020µs and 0.300µs respectively,

60 Chamber Reconstruction Software

and the search is repeated. This allows the routine to find high momentum tracks which skim along

a wire plane.

Finally, every track found in this routine has a 1 stored in the TCTK data bank at position

IQ(ITCTK+7) to indicate that it did not cross a sector boundary.

4.4.5 SUBROUTINE TCRESL

Author: Curtis A. Meyer

Creation Date: 25 February, 1988

References:

Call Arguments: None.

Common Blocks Used: cbbank, tjconv, tjprms and tcprms.

Subroutines Referenced: None.

This subroutine uses the value of irestj, (0=unresolved, 1=left, 2=right) and then converts the

point referenced by itjttj from sector coordinates into CB–coordinates, and stores the results in the

TCHT data bank using itchtj as a pointer. (For a definition of sector coordinates, see Figure 4.)

The conversion involves simply rotating the standard sector by the angular offset of the sector, and

in order to facilitate this rotation, the sines and cosines of the angle to every sector have been

precalculated and stored in the /tcprms/ common block. All pointers to this routine are passed

through the /tjconv/ common block.

The routine also computes an error for every measurement and stores that in the data bank as

well. Given that the r and φ coordinates of every hit are, the nominal error calculation is given by:

r =
√
x2 + y2

φ = tan−1(y/x)

the errors can be given as:

σr =| y
r
| ·σy

σφ =| x
r2
| ·σy

where σy is the measurement error of the position, and is given by delytj in the /tjprms/ common

block.

If the code has been compiled using the calibration flags, then the value of σy can be modified.

This is done by setting the lgt2tj flag in the /tjprms/ common block to .true., (use the LGT2

card in CJINIT. If this is done, the value of σy is given as:

σy = σ2
y0 + tD · σt

where σy0 is tly2tj, tD is the drift time in microseconds, and σt is given as dlyttj in the /tjprms/

common block. During calibration, they can be set using the TLY2 and DELT cards in the CJINIT

routine.

4.4.6 SUBROUTINE TCROSS

Author: Curtis A. Meyer

Creation Date: 25 January, 1988

References:

Call Arguments: (ISECT, KSECT, I, K, *IRES, *KRES, *LGFND)

Common Blocks Used: cbbank, cblink, tclift, zbdivs, tcsegs and tccuts.

Subroutines Referenced: tcresl, tcfsrc and tcrsrc,

zebra library mzdrop.

Chamber Reconstruction Software 61

This subroutine looks for sector crossings between sectors isect and ksect. By definition, isect

is the sector containing the innermost layer. A sector crossing can occur only if the times in the

layers are larger than a minimum time given in the timetc array. If a crossing can be found, then

the TCRESL routine is used to resolve the two adjacent points, and then the routines TCFSRC

and TCRSRC are used to extend the resolved regions of the tracks as far as possible. i and k refer

to the segment number of the hits in sectors isect and ksect respectively. ires and kres are the

left–right resolution for the two hits, and if they can be resolved, the lgfnd is returned as .true..

4.4.7 SUBROUTINE TCRSRC

Author: Curtis A. Meyer

Creation Date: 1 February, 1988

References:

Call Arguments:(I, ISECT, IRES, ITJDC, ITCHT, IOPT, ITRK, *CHX, *NCHX).

Common Blocks Used: cbbank, cblink,tcsegs and tccuts.

Subroutines Referenced: tcresl.

This subroutine starts at the point i in isect which has been resolved as specified by ires, (1=left,

2=right) and searches backwards through the sector to resolve as many additional points as possible.

The procedure is to use to points of known resolution to predict the third point, and then compare

this with the two possible positions. The routine stops searching if all the data is used up, or if

a gap larger than 3 layers is found. itjdc and itcht point to the hit in the TJDC, and TCHT

data banks respectively. iopt can take the values 0 or 1. When it is zero, TCRSRC assumes that

only the point given is known on the track. It then has to figure out a second point on the track

before proceeding. If iopt is 1, then TCRSRC uses the backward pointer of this hit to get the next

hit, and then starts its search. Finally, itrk is the track number assigned to the track. See the

TCFSRC routine for a more detailed description.

4.4.8 SUBROUTINE TCSGMT

Author: Curtis A. Meyer

Creation Date: 27 January, 1989

References:

Call Arguments: (*LGHIT).

Common Blocks Used: cbbank, cblink,tcsegs, tjconv and tccuts.

Subroutines Referenced: tjtime and tjzpos

(zebra library): mzlift.

This routine builds roads through the data in the TJDC data bank. The roads are built using two

criteria. The first is that the value of tanλ for every point in a road be close to the average value

for the entire road, and the second is that the value of dy/dr not change suddenly from point to

point in the road. The opening angle of every point λ is computed as

tanλ = z/r,

where r is the radius of the hit wire, and z is computed through charge division. Every point

included must satisfy the condition:

χ2 =
(tanλ− tanλi)

2

σ2
tanλ

< λcut,

where the cutoff is given by clmbtc in the /tccuts/ common block. It is also necessary that the

quantity dy/dr = (∆yl/∆r not change by more than about 0.3 unless the hits are close to a wire.

62 Chamber Reconstruction Software

The routine looks at every hit in each layer, and compares them to every existing segment, (road)

found so far. It then chooses the combination of connections which minimizes the overall χ2 of the

problem. This is done by forming a matrix of χ2 for every combination, and choosing the route that

gives the minimum. At present, the routine has trouble if there are more than two tracks close in

tanλ in the same sector in the jdc. If this turns out to occur quite often, a minor fix will need to

be implemented. At present, if this occurs, a waring message is printed to the logical unit lerr.

4.4.9 SUBROUTINE TJDROP

Author: Curtis A. Meyer

Creation Date: 01 December, 1989

References:

Call Arguments: (ITRK).

Common Blocks Used: cbbank, cblink.

Called by: TCRAW2, TCROSS.

Subroutines Referenced: zbera mzdrop.

This routine will drop a track at the pattern recognition level. The dropped track is assumed to

be the last track lifted, and if this is not the case, severe errors can occur, (this is checked for in

the routine). Dropping at the pattern recognition level implies disconnecting the hits in the TJDC

bank, and removing the hits from the TCHT banks. The user should not try to use this routine.

Chamber Reconstruction Software 63

- TCPATT

t

- TCSGMT

- TCRAW1

- TCROSS

t

- TCRESL

- TCFSRC

- TCRSRC

- TCRESL

- TCRESL

- TCRAW2

t

- TCRESL

- TCFSRC

- TCRSRC

- TCRESL

- TCRESL

- TCRAW1 - . . .

- TCRAW2 - . . .

Figure 6: Flow of chamber software, pattern recognition section.

64 Chamber Reconstruction Software

4.5 The Circle Fitting Software

The following subroutines are found in the tc circ patch of the locater card file.

4.5.1 SUBROUTINE TCADD

Author: Curtis A. Meyer

Creation Date: 16 November, 1989

References:

Call Arguments: (ITRK, IRSL, ITCHT).

Common Blocks Used: cbbank, cblink and tjprms.

Called by: TCSWEP.

Subroutines Referenced: None.

This routine will add the point at itcht to the track itrk with resolution irsl. This routine can

only be called by TCSWEP, and should not be generally used.

4.5.2 SUBROUTINE TCAHIT

Author: Curtis A. Meyer

Creation Date: 16 November, 1989

References:

Call Arguments: (LYR, X, XERR, *KTCHT, *IMIN, *IRSL, *LGADD, IS, IDS)

Common Blocks Used: cbbank, cblink and tccuts.

Called by: TCSWEP.

Subroutines Referenced: TCHECK.

This subroutine will loop over all hits in layer lyr, and see which ones which are unresolved and

finds the point ktcht and the resolution irsl which minimizes the distance to the track specified

by the circle fit parameters x and xerr. The parameters is and ids specify the sector number of

the previous hit, and the allowed variation in sector numbers of the added hit. imin is returned as

the hit number of the matched hit.

4.5.3 SUBROUTINE TCASSC

Author: Curtis A. Meyer

Creation Date: 18 November, 1987

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, tcprms, tccuts and tcangl.

Subroutines Referenced: tcload, tccnct, tciter, and tcplow.

This routine is designed to examine all tracks found in the pattern recognition section, and use the

fit parameters as obtained from the TCFITR routine to determine if any of the tracks are really the

same track.

In the first part, all tracks containing fewer than three points are dropped using the TCCNCT

routine. Then the remaining tracks are ordered by the layer number of the innermost hit in each,

smallest layer number to largest, and stored in a track list..

In the second section, a search is made through all tracks in the track list. Each track is

examined to see if it could be sensibly have one of the later tracks added to the end of it. If so, then

Chamber Reconstruction Software 65

a comparison is made with all tracks occurring after the first track in the track list to see if they are

close to each other. This closeness is computed through the quantity:

χ2 = ∆p2
⊥/σ

2
p⊥

+ ∆ψ2
0/σ

2
ψ

where

σ2
p⊥

= σ2
p1 + σ2

p2

and

σ2
ψ = σ2

ψ1 + σ2
ψ2.

If this χ2 is smaller than a cutoff, chcttc in the /tccuts/ common block for any pair of tracks,

then the routine uses the TCLOAD routine to put both tracks into a temporary track, and then

calls TCITER to see if the track can be fit. If TCITER returns with no error, the the TCCNCT

routine is used to connect the two tracks. If the fit is not good, then no connection is made. For the

cases where one or both of these tracks have fewer than six points, or an error code from TCFITR

larger than 3, the above χ2 is defined as

χ2 = 2 · (min(∆ψ2
0/σ

2
ψ,∆p

2
⊥/σ

2
p⊥

)).

This redefinition is used because even in a very poor fit, one of the two quantities is usually correct

within errors.

During the above search, a list is compiled of all tracks with p⊥ smaller than 100 MeV/c, or that

are short and disconnected, ie, which start in the middle layers of the jdc. This list is passed to the

TCPLOW routine, which then tries to associate these tracks in a method which is better suited for

low momentum tracks.

4.5.4 SUBROUTINE TCCIRC

Author: Curtis A. Meyer

Creation Date: 15 November, 1989

References:

Call Arguments:

Common Blocks Used: cbbank, cblink and tcangl.

Called by: TCTRAK.

Subroutines Referenced: sc tcfitr, tcassc, tcswep, tcthet and tcifix.

This routine is the steering routine for circle fitting in the jdc. It first calls the TCFITR routine to

fit all tracks found in pattern recognition. It then uses the TCASSC routine to try and put these

tracks together into larger tracks. Then the pointers to all the tracks are loaded into a work area,

and the TCSWEP routine is used to try to add additional points to the tracks. The TCTHET

routine is then called to fit the track in z and φ, and then the TCIFIX routine is called to correct

the coordinates based on their crossing angle through the chamber. Finally, the tracks are stored

back into the appropriate data banks.

4.5.5 SUBROUTINE TCCNCT

Author: Curtis A. Meyer

Creation Date: 22 April, 1988

References:

Call Arguments: (ITRK1, ITRK2, I, ITCTK, JTCTK).

Common Blocks Used: cbbank, cblink and tcangl.

Subroutines Referenced: zebra mzdrop and zshunt.

66 Chamber Reconstruction Software

This routine attaches track 2 whose number is itrk2 to the end of track 1, (itrk1). i is the number

of hits in track 1, itctk is the address of track 1 in the TCTK data bank and jtctk is the address

of track 2 in the TCTK data bank. The connection consists of setting the forward and backward

pointers in the TCHT data bank to connect the two tracks, adjusting the total number of hits in

track 1, and finally dropping the track 2 data bank. After calling this subroutine the total number

of found tracks is decreased by one. This routine does not set the track number of all the hits in

track 2 to be itrk1.

If itrk1 and itrk2 are the same track, then this routine drops the TCTK data bank for track

itrk1.

4.5.6 SUBROUTINE TCDEDX

Author: Klaus Peters and C. Strassburger

Creation Date: 20 December, 1989.

References:

Call Arguments:

Common Blocks Used: /cbbank/, /cblink/ and /cjexft/.

Called by: tctrak .

Subroutines Referenced: tcrhit and tcoord,

cernlib: flpsor.

No documentation available.

4.5.7 SUBROUTINE TCDISC

Author: Curtis A. Meyer

Creation Date: 30 October, 1989

References:

Call Arguments: (ITRK)

Common Blocks Used: cbbank, cblink and tcangl.

Subroutines Referenced: tccnct.

This routine will completely disconnect all hits of track itrk in the TCHT data banks, and then

use the TCCNCT routine to drop the track.

4.5.8 SUBROUTINE TCDROP

Author: Curtis A. Meyer

Creation Date: 26 May, 1988

References:

Call Arguments: (ITRK, IPNT, *IERR).

Common Blocks Used: cbbank and cblink.

Subroutines Referenced: None.

This routine will remove the point ipnt from the track itrk. The removal consists of connecting

the two adjacent hits in the TCHT bank over this hit, and decreasing the total number of hits

in this track by 1. The returned value of ierr is 0 for normal completion and 1 when an error is

encountered.

4.5.9 SUBROUTINE TCFITR

Author: Curtis A. Meyer

Chamber Reconstruction Software 67

Creation Date: 14 September, 1987

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, tcprms, tccuts and tcangl.

Subroutines Referenced: tcload, tcsplt tcrslv and tciter.

This subroutine loops through all the found tracks in the TCRAWS routine and uses the TCLOAD

routine to put the hit information into a working area and to make a guess for the circle which

passes through three of the points. It then passes this information to the TCITER routine. If the

resulting fit from TCITER is considered poor, then the TCSPLT routine is called to either drop

points out of the track, or split the track up. The final fit results are then stored in the TCTK

data banks.

The call to TCITER will usually improve upon the guess from TCLOAD. However, sometimes

problems do occur. The TCITER returns an error code, ierr as well as its improved results.

TCFITR then processes the error code as follows:

• ierr=0,1 means that the fit was good. The results are simply stored in the TCTK data

bank using the TCLOAD routine.

• ierr=3 means that the resulting χ2 of the TCITER fit is too large. TCFITR then calls the

TCSPLT routine to try and either remove points, or break the track into several pieces. If

TCSPLT returns an icode=0, (see TCSPLT for descriptions of icode values), then ierr is

set to 2, and the track is stored. If icode=1,2, then the track is refit using TCITER, and if

icode=3, the track is simply stored with ierr=3.

• ierr=4,5,7 means convergence was not reached in TCITER. The TCSPLT routine is called

and if icode=1,2 the track is refit. If icode=0,3, the track is simply stored using TCLOAD.

There is one special case in which ierr=7 and icode=0,3. ierr=7 means the error matrix

was singular, and could not be inverted to yield the covariance matrix. In this case, the

covariance matrix is assigned rather large values.

4.5.10 SUBROUTINE TCHECK

Author: Curtis A. Meyer

Creation Date: 27 April, 1989

References:

Call Arguments: (ITCHT, X, RIN, XERR, *CHL, *CHR, *CHCUT).

Common Blocks Used: cbbank, cblink and tccuts.

Subroutines Referenced: None.

This routine will examine the hit in the TCHT data bank pointed to by the itcht pointer, and

determine if it can fit on the circle described by the circle parameters x whose errors are given in

xerr, (~x = (κ, ψ0, c2)). rin is passed as 1/2 · x(1), and the routine returns chl and chr, as the

distance in centimeters from the left and right hand solution to the circle respectively.

The distance from a point, (x,y) and a circle of radius ρ, centered at the point (a,b) is given by

the formula:

d =
√

(x− a)2 + (y − b)2 − ρ.

In our circle parametrization, the values of a, b and ρ are given as:

ρ =

√
(

1

2 · κ
)2 − c2

68 Chamber Reconstruction Software

a =
sinψ0

2 · s · κ

b = − cosψ0

2 · s · κ

The routine also computes the error in the distance based on the erros in the circle parameters,

xerr, (~xe = (σ2κ, σ2ψ0, σ
2c2)). The error in the distance is given as:

σd =

√
(a · σa)2 + (b · σb)2√
(x− a)2 + (y − b)2

+ σ2
ρ

where the errors in a, b and ρ are:

σ2
a = (b · σψ0)2 + (a · σκ

κ
)2

σ2
b = (a · σψ0)2 + (b · σκ

κ
)2

σ2
ρ = (

1

2 · ρ
)2 · (1 + (

σκ
2 · κ3

)2).

4.5.11 SUBROUTINE TCIFIX

Author: Curtis A. Meyer

Creation Date: 8 July, 1989

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, cbunit, tcprms, tccuts, tjprms and

tcdebg.

Subroutines Referenced: tcheck.

This routine will perform a crossing angle dependent correction to the fit hit positions in the jdc.

During pattern recognition, and the circle fits to the tracks, it is assumed that all tracks cross

through the jet cells in a direction parallel to the wire planes. For tracks which have momentum

less than infinity, this is rarely true. Instead, they cross through the cell at some angle, (α) away

from the assumed direction. In order to correct the positions in the chamber based on the crossing

angle, it has been assumed that the isochronus curves can be well described as arcs of circles. The

true position in the chamber can then be computed as the point on the isochron–circle where the

slope of the track and the slope of the circle are the same. It is this correction which is performed

by this routine.

In order to correct the hit positions along a track, we start with the fit circle for the track,

(TCFITR routine),
ri

2qR
+

c2

2qRri
+ sin(φi − ψ0) = 0

where R, c2 and ψ0 are the three fit parameters. We note that as long as one rotates both φ and

ψ0 by the same amount, this equation is rotationally invariant. As such, it is simply expressed in

sector coordinates, (see TCRESL routine). In sector coordinates, the angle at which a track crossed

a jet cell is

tanα =
dy

dx
and defining Φi = φi − si, where si is the angle at the center of the jdc sector, then

dy

dx
=

sin Φ + cos Φ · r · dΦ
dr

cos Φ− sin Φ · r · dΦ
dr

Chamber Reconstruction Software 69

Given α, the center of the isochron circle (a,b) and the circle radius, r, the position in the chamber

is given as

x = a− r sinα

and

y = b+ r cosα.

The isochron parameters, a, b and r are obtained from the nominal fit position in sector coordi-

nates by the following transformations. xs and ys are the x–y position in sector coordinates, and si
is the stagger of the wire.

a = xs

yf = ys − si

r = min(yf , rmax)

b = y − r

The isochron correction then pushes the y coordinate out to a larger value to compensate for the

crossing angle.

yc = y + r · (secα− 1)

In addition, there is an error term associated with this correction which is estimated at 7.5% of the

correction term.

Once the positions have been computed, the errors in the r and φ coordinates are computed

from two parameters, σy0 and σd. These two parameters describe the resolution of the chamber as

a function of drift time via the relation:

σ2
y = σ2

y0 + td · σ2
d + (0.075 · r · (secα− 1))

2

The errors in r and φ are:

σr = ys · σy/r

σφ = xs · σy/r2

The parameters σ2
y0 and σ2

d are sy02tj and sydftj in the /tjprms/ common block. During

calibration, they can be set using the SY02 and SYDF cards in CJINIT.

4.5.12 SUBROUTINE TCITER

Author: Curtis A. Meyer

Creation Date: 14 September, 1987

References: Datenanalyse by Siegmund Brandt, p.271.

Call Arguments: (ITRK, Y, GYINV, *X, *COVR, *CHISQ, *IERR).

Common Blocks Used: cbbank, cblink, tcprms, tccuts and tcangl. Subroutines

Referenced: None.

This routine fits the track data as (r, φ) pairs with known errors to the equation of a circle

κ · ri +
κ · c2

ri · q ·R
+ sin(φi − ψ0) = 0

where the fit parameters are κ, ψ0 and c2. κ is defined to be q·Bs
2·R where q is the charge of the

particle, Bs is the direction of the magnetic field, and R is the distance to the center of the circle

from the origin. ψ0 is the direction of the track at the point of closest approach to the origin, and

c2 is defined as c2 = R2 − ρ2 where ρ is the radius of the circle. Note that c2 can be negative.

70 Chamber Reconstruction Software

An initial guess for these parameters is passed in the double precision array x(3), and the final

values are returned in the same array. The covariance matrix from the fit is returned in the double

precision array covr(3,3). The track coordinates are passed as (r, φ) pairs in the double precision

array y(n2), while their errors are passed in the double precision array gyinv(n2). The routine

also returns the χ2 of the fit in the single precision variable chisq and an error code ierr. The

error code identifies how well the iteration converged, and is given the meanings as follows.

• ierr=0 Normal convergence, no problems.

• ierr=1 Initial guess was very good, no iterations done.

• ierr=2 Not set in this routine.

• ierr=3 The χ2 was too large for this track.

• ierr=4 The value of ξ2 started to diverge after 3 iterations.

• ierr=5 The track failed to converge in nitrtc iterations.

• ierr=6 There were too few points to fit (n < 3).

• ierr=7 Matrix inversion of a singular matrix, don’t trust the results of the covariance matrix.

The fit is done by first writing the (r, φ) data pairs in a vector ~Y as:

~Y =



r1

φ1

r2

φ2

...

rn
φn


.

The errors of these points are in a 2npts by 2npts matrix G−1
y given as:

G−1
y =


δr2

1

δφ2
1

. . .

δr2
n

δφ2
n


We then express the three fit parameters as a vector ~X,

~X =

 q ·Bs/R
ψ0

c2

 .

With these, we form npts equations of constraint using the above equation for a circle.

fi = X1 · Y2i−1 +
X1 ·X3

Y2i−1
+ sin(Y2i −X2).

The npts by 3 matrix A = ∂f/∂X is defined as:

A =


∂f1
∂X1

∂f1
∂X2

∂f1
∂X3

...
...

...
∂fn
∂X1

∂fn
∂X2

∂fn
∂X3



Chamber Reconstruction Software 71

The npts by 2npts matrix B = ∂f/∂Y is defined as:

B =


∂f1
∂Y1

· · · ∂f1
∂Y2n

...
...

∂fn
∂Y1

· · · ∂fn
∂Y2n


and the npts elements of the vector ~C are given as the values of fi. We now define the matrix

GB = (BG−1
y BT)−1

and with this, we form the iterative sequence:

~Xi+1 = ~Xi − (ATGBA)−1(ATGB ~C)

and the covariance matrix for these values of ~X is given as:

CX = (ATGBA)−1.

4.5.13 SUBROUTINE TCLOAD

Author: Curtis A. Meyer

Creation Date: 19 April, 1988

References:

Call Arguments: (ITRK, IOPT, ITCTK, *X, COVR, *CHRG, *Y, *GYINV, CHISQ).

Common Blocks Used: /cbbank/, /cblink/, /tcprms/, /tccuts/ /tchits/and /tcangl/.

Subroutines Referenced: None.

This subroutine loads and stores all the hit coordinates, r and φ, for track number itrk into the

y vector, and their errors into the vector gyinv. It also loads the sines and cosines of each point

into the /tcangl/ common block and makes sure that every hit in the track has been assigned the

track number itrk. Finally, the routine makes a guess for the circle parameters, and places that in

the vector x. It also guesses what the charge is, places that in chrg.

The passed value of iopt determines which information is loaded according to the following rules.

0 Load the (r, φ) information and (σr, σφ) information from the TCHT data bank, then make a

guess for the track parameters.

1 Load the (r, φ) and (σr, σφ) information, but do not make a guess.

2 Load the (r, φ) and (σr, σφ) information from this track to the end of the track already loaded.

Do not make a guess.

3 Only make a guess using the previously loaded information

4 Store the fit information for x and its covariance matrix, covr in the TCTK data bank.

5 Store the information for x in the TCTK data bank, and the fit information in y and gyinv

in the TCHT data banks.

The initial guess for the circle parameters are made by fitting three points on the track to a

circle of the form

(x− a)2 + (y − b)2 = r2.

72 Chamber Reconstruction Software

The points chosen are the first hit, (x1, y1), the last hit, (x3, y3) and a hit in the middle of the track,

(x2, y2). The parameters are then given as:

b =

x2
2+y22−x

2
1−y

2
1

2(x2−x1) − x2
3+y23−x

2
1−y

2
1

2(x3−x1)

y1−y2
x1−x2

− y1−y3
x1−x3

a =
x2

2 − y2
2 − x2

1 − y2
1

2(x2 − x1)
− b · y2 − y1

x2 − x1

r2 = (x1 − a)2 + (y1 − b)2

The circle parameters, X = (R,ψ0, c
2) are then obtained as follows:

R = q ·Bs/
√
a2 + b2

ψ0 = tan−1(−b/− a)− s · π
2

c2 = R2 − r2

q = s · bs

where q is the charge of the particle, and bs is the direction of the magnetic field, (+1 along the

z–axis and −1 against the z–axis). The value s is determined from the formula

ψ0 = β0 − s ·
π

2
.

The angle β0 is defined as the angle relative to the center of the circle to the point of closest approach

of the track, it can be obtained from the formula: β0 = atan2(−b,−a). The angle ψ0 measures the

direction of the track at that point.

forming the two values of ψ0, (±π2) and determining which one is closer to the φ angle of the

first hit in the track. If the + case is closer, the charge is positive while if the − case is closer, the

charge is negative. The routine then returns x and chrg containing the 3 fit parameters and the

charge respectively. If guess is .false., then nothing is done to the passed values of x and chrg.

In storing the values of x, covr and chisq into the TCTK data bank for track itrk. x is

double precision and contains the three fit parameters, (R,ψ0, c
2), while covr is the double precision

covariance matrix for these values, and the single precision variable chisq is the chi–square of the

circle fit. This routine also computes the transverse momentum, and its error and puts it in the

TCTK data bank.

p⊥ = e ·B · r

where

r =
√
R2 − c2.

σp =
e ·B
r
·
√
σRR +

1

4
σcc.

4.5.14 SUBROUTINE TCRSLV

Author: Curtis A. Meyer

Creation Date: 10 November, 1988

References:

Call Arguments:(ITRK, X, COVR, *N).

Common Blocks Used: cbbank, cblink, tchits tjconv and tccuts.

Subroutines Referenced: tcheck, tcresl and tcdrop.

Chamber Reconstruction Software 73

This routine is called after the circle fit to a track has been made. It tries to resolve points for which

the left–right ambiguity was unresolvable during pattern recognition. The routine takes the circle

fit information for track itrk given as the double precision variables x and covr, (see TCFITR

for a description), and checks each point which has been unresolved, (identified in the /tchits/

common block) to see if one of the two solutions could be sensibly added to this track. The check

is made using the TCHECK routine, and if the point can be added, the TCRESL routine is called

to resolve it. If the point can not be added, then the TCDROP routine is used to discard the point

from the track.

The TCHECK routine returns three parameters to this routine, a χl χr and χcut. The routine

then uses the rslvtc parameter in the /tccuts/ common block to set a cut level by simply

multiplying it by the returned cut off.

4.5.15 SUBROUTINE TCSPLT

Author: Curtis A. Meyer

Creation Date: 6 May, 1988

References:

Call Arguments: (ITRK, IOPT, DEVI, CHLIM, *ICODE).

Common Blocks Used: tcangl and tccuts.

Called by: tcfitr and tcswep.

Subroutines Referenced: sm353.

This routine is called by TCFITR and TCSWEP to try and remove outlyers in the r–φ plane from

track itrk in the TCTK data bank. The definition of an outlyer is controlled by the passed

arguments devi and chlim. Where devi is the outlyer distance in centimeters, and chlim is

the contribution which the hit must make to the total χ2 to be considered an outlyer. The control

argument iopt identifies if the outlyer is dropped, (iopt=0), or the error in φ is blown up, (iopt=1).

The returned value of icode indicates how many points were either dropped or tagged.

The routine works by using data in the /tchits/ common block which are filled by the TCITER

routine. As such this routine should only be called immediately after TCITER has been called.

TCSPLT uses the SM353 smoothing algorithem to establish a baseline deviation of all points

from their measured values. It then looks at how far every point was moved from its baseline value.

Those points were moved more than devi, and contribute more than chlim to the total χ2 are then

tagged for either dropping or error explosion.

The appropriate action is then taken on all bad points. However, if more than 4 points are

tagged for dropping, no action is taken.

q q q q q qq q q q q

a q q q q q q q q q q

b

Figure 7: Two causes of bad track fits. (a) shows a track with one bad point, and (b) shows a track

that will be split into two tracks.

74 Chamber Reconstruction Software

4.5.16 SUBROUTINE TCSWEP

Author: Curtis A. Meyer

Creation Date: 6 May, 1988

References:

Call Arguments: (*IERR).

Common Blocks Used: tcangl and tccuts.

Called by: TCCIRC.

Subroutines Referenced: tcahit, tcadd.

This routine looks through all fit tracks, and tries to add unused hits to them. It begins by looking

for gaps in the existing track, and then tries to extend the track back to layer 1 in the JDC. Finally,

an outward projection is made to either layer 23, or until a gap of five layers is found.

4.5.17 SUBROUTINE TCTHET

Author: Curtis A. Meyer

Creation Date: 26 October, 1987

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift, tcprms, tccuts and tcangl.

Subroutines Referenced: None.

This routine fits the tracks which have passed through TCASSC for opening angle, λ and z traceback.

In doing this fit, at least 3 points are required, and at most 15 are used. The data are fitted to a

line form:

zi = a+ b · ri,
using a weighted least squares method. From this fit, the tangent of the opening angle is given as:

tanλ = b,

The values of a and b are obtained from a least squares fit, and are:

a =
1

∆
·
(∑ zi

σ2
i

·
∑ r2

i

σ2
i

−
∑ ri

σ2
i

·
∑ ri · zi

σ2
i

)
b =

1

∆
·
(∑ 1

σ2
i

·
∑ zi · ri

σ2
i

−
∑ zi

σ2
i

·
∑ ri

σ2
i

)
∆ =

∑ 1

σ2
i

·
∑ r2

i

σ2
i

−
(∑ ri

σ2
i

)2

s2 =
1

N − 2
·
∑

(zi − ab · ri)2

and the errors in the fit quantities a and b are given as:

σ2
a =

1

∆
· s2 ·

∑ ri
σ2
i

σ2
b =

1

∆
· s2 ·N.

This can then be expressed as a covariance matrix between tanλ and a as:(
σλλ σλa
σλa σaa

)
=

(
σ2
b 0

0 σ2
a

)
If somehow the value of λ were ±90◦, the value of the error code in the TCTK data bank would

be set to 8, and and a value of tanλ = ±108 would be returned. If the routine becomes lost in

stepping through the track, the error code is set to a value of 9.

Chamber Reconstruction Software 75

- TCTRAK - TCCIRC

iA

- TCFITR

t

- TCLOAD

- TCITER

- TCSPLT

- TCRSLV

t

- TCHECK

- TCRESL

- TCASSC

t

- TCCNCT

- TCLOAD

- TCITER

Figure 8: Flow of the chamber software, circle fitting section.

76 Chamber Reconstruction Software

iA

t

- TCSWEP

t

- TCAHIT

- TCADD

- TCTHET

- TCIFIX

- TCDEDX

Figure 9: Flow of the chamber software, circle fitting section.

Chamber Reconstruction Software 77

4.6 Helix Fitting Software

The following subroutines are found in the tc helx patch of the locater card file.

4.6.1 SUBROUTINE TCHELX

Author: Curtis A. Meyer

Creation Date: 27 May, 1988

References: Datenanalyse by Siegmund Brandt, p.271.

CERN Program Library, routine F101, (matin2).

Call Arguments: (IOPT, NTRK).

Common Blocks Used: cbbank, cblink, tclift, tcprms, tccuts and tcangl.

Subroutines Referenced: tchxld,

(cern library) dinv.

This routine loops over the ntrk tracks found, and fits the points in track itrk with a helix of the

form:

xi = r0 · sinψ0 +
1

α
· (cosβi + s · sinψ0) (7)

yi = −r0 · cosψ0 +
1

α
· (sinβi − s · cosψ0) (8)

zi = z0 −
s · tanλ

α
· (βi − ψ0 − s ·

π

2
) (9)

where the angle βi is the azimuthal angle of the line from the center of the helix to the point (xi, yi).

The value of iopt is used to tell the TCHXLD routine from which bank the coordinates are to be

taken, and if they should be updated during the iteration.

• iopt=0 The routine assumes that the TCTR banks do not exist, and creates them. It then

takes the data from the TCTK bank and stores it in the TCTR bank. Also, the (x,y,z)

coordinates are improved at each iteration, and the improved values are stored in the TCTR

bank.

• iopt=1 This is the same as option 0, except the improved coordinates are not stored at the

end of the iteration.

• iopt=2 The routines assumes that the TCTR bank does exist, and takes the track data from

it. The improved coordinates are then stored in the bank upon completion.

• iopt=3 This is the same as 2, except the improved coordinates are not stored upon completion.

The five parameters that describe the helix are ~ξ = (r0, z0, α, tanλ, ψ0; s). r0 is the distance of

closest approach to the z–axis, and can be negative. The sign is chosen to make the helix fit stable

when the charge of the particle is changed by the fit. z0 is the value of z at the radius | r0 |, α
is the inverse of the radius of curvature of the helix, λ is the opening angle of the helix, ψ0 is the

angle from the circle fit and s is a sign parameter which is related to the particle charge through

the direction of the magnetic field.

In order to fit these equations to the measured points (x, y, z)i with measurement errors (σx, σy, σz)i,

we solve for the parameter βi by rewriting the first two equations as:

cosβi = α · xi − sinψ0 (α · r0 + s) (10)

sinβi = α · yi + cosψ0 (α · r0 + s) (11)

(12)

78 Chamber Reconstruction Software

These can be solved to yield βi:

βi = tan−1(sinβi/ cosβi) (13)

(14)

We now have two equations of constraint for every point i on the track:

f1i =
1

α

(
cos2 βi + sin2 βi − 1

)
(15)

f2i = z0 − zi −
s · tanλ

α

(
βi − ψ0 − s ·

π

2

)
(16)

The first equation can also be written as:

f1i = α
(
x2
i + y2

i + r2
0

)
+ 2 · s · r0 + 2 · (α · r0 + s) (yi cosψ0 − xi sinψ0)

In order to make an iterative fit to the unknown helix parameters, ~ξ = (r0, z0, α, tanλ, β0), (see the

description of the TC2HLX routine), we form a vector out of all the measured quantities,

~η = (x1, y1, z1, x2, y2, · · · , zn),

and define a 3N by 3N diagonal error matrix, Gη as:

G−1
η =



δx2
1

δy2
1

δz2
i

δx2
2

δy2
2

. . .

δz2
N


Now the 2N by 5 matrix A is formed such that:

A =


∂f1
∂ξ1

· · · ∂f1
∂ξ5

...
...

∂f2N
∂ξ1

· · · ∂f2N
∂ξ5

 ,

the 2N by 3N matrix B is defined to be:

B =


∂f1
∂η1

· · · ∂f1
∂η3N

...
...

∂f2N
∂η1

· · · ∂f2N
∂η3N


and the 2N long vector C as Ci = fi. If we now define that 2N by 2N matrix GB as:

GB = (BG−1
η BT)−1

and then form the iterative sequence for ~ξ:

~ξ[i+1] = ~ξ[i] − (ATGBA)−1(ATGB ~C).

The measurements, ~η are improved using the formula

δ~η = G−1
η BTGB(~C −Aδ~ξ).

Chamber Reconstruction Software 79

On each step of the iteration, the quantity, ~ε = ~η0 − ~ηi,

χ2 = (B~ε)TGB(B~ε)

is computed. If χ2 falls below the cutoff, chlxtc in the /tccuts/ common block, or the variation

in χ2 between iterations becomes smaller than chlxtc, then the routine stops iterating. The routine

also stops if the number of iterations exceeds nhlxtc in the /tccuts/ common block, or the value

of χ2 begins to increase. If the iteration does successfully converge, the covariance matrix for the 5

fit parameters is given as:

Cξ = (ATGBA)−1,

while the fit errors of the measurements are computed as

G−1

η,final
= G−1

η − G−1
η BTGBBG−1

η + G−1
η BTGBACξATGBBG−1

η .

(Actually, only the diagonal elements of this matrix are computed, as the correlations are not

needed.)

This routine uses an initial guess for ~ξ derived from the results of the separate r − φ and r − z
fits, (see TCHXLD and TC2HLX routines). In most cases, this initial guess should be good enough

that no improvement on the fit values will be made. In that case, only the covariance matrix will

be determined by this routine. It is important that this covariance matrix be correct in order to do

a proper vertex fit at later levels of the analysis.

This routine assigns an error code to each track fit. The meanings of these codes are as follows:

• 0 means that the code converged normally.

• 10 means that the routine was not implemented for this track. This can happen if there are

exactly three points in the track, or if the opening angle λ is close to 0.

• 30 means the code converged with a value of χ2 which was too large.

• 40 means the χ2 started to diverge during iteration.

• 50 means the iteration limit was exceeded.

• 60 means that there were fewer than 3 points in this track.

• 70 means that an attempt was made to invert a singular matrix.

The value of this code is added to the code from the TCFITR and TCTHET routines (that code

is between 0 and 9), to form an error code for the fit track. If the error code from this routine is

0, then the results of the fit are stored in the TCTR data bank using the TCHXLD routine. For

all other values of the error code, the guess to the parameters made in TCHXLD by combining the

TCFITR and TCTHET fits is retained, but the error code is updated.

4.6.2 SUBROUTINE TCHXLD

Author: Curtis A. Meyer

Creation Date: 27 May, 1987

References:

Call Arguments: (ITRK, ICODE, *NPTS, *X, *Y, *GYINV, *SIGN, *COVR, *IERR).

Common Blocks Used: cbbank, cblink, tclift, and zbdivs.

Subroutines Referenced: tc2hlx,

(zebra library) mzlift.

80 Chamber Reconstruction Software

This routine transfers data between the TCTR data banks, and the working double–precision

arrays x, y, gyinv, sign and covr. The direction of the transfer depends on the value of the

passed parameter icode.

In the case of icode=0, the routine first lifts a TCHX subbank for track itrk. Then the results

from TCFITR and TCTHET are converted into helix coordinates using the TC2HLX subroutine,

and stored in both the TCHX data bank. The TC2HLX routine has already stored the helix

coordinates in x and covr. Next, the routine goes into the TCHT data bank for this track, and

loads the (x, y, z) and (σ2
x, σ

2
y, σ

2
z) values into the TCTR data bank. It also loads them into the y

and gyinv arrays. The error code from the TCTK bank is also copied into the TCTR data bank.

If the number of points is less than 3, then this routine returns with ierr=60, and if the number

of points is exactly 3, then the routine returns with ierr=10. Since version 1.50, the routine also

looks through the TPWC cluster banks, and loads any pwc information which has been connected

to the track.

In the case of icode=1, the routine assumes that the TCHX data bank for track itrk exists,

and copies the information out of that bank into the x, y, gyinv and covr arrays.

In the case of icode=2, the routine stores the values in x, y, gyinv and covr in the TCHX

data bank for track itrk.

In the case of icode=3, the routine stores the values contained in x and covr in the TCHX

data bank for track itrk.

In the case of icode=4, the routine updates the error code in the TCTR bank using the value

of ierr, but does not store the passed data.

4.6.3 SUBROUTINE TCMSCT

Author: Curtis A. Meyer

Creation Date: 31 August, 1988

References: R.L. Gluckstern, NIM 24 381, (1963).

Call Arguments: None.

Common Blocks Used: tcscat, tcprms, cbbank and cblink.

Subroutines Referenced:None.

This routine corrects the covariance matrices obtained in the helix fit for multiple scattering in both

the jdc itself, and all the material from the interaction point to the jdc. Within the jdc, the

multiple scattering only from the chamber gas has been included. Multiple scattering off the sense

and guard wires has not been included at this point, but could be roughly added by changing the

radiation length of the chamber gas in the /tcscat/ common block.

This routine loops over all the tracks in the TCTR data bank, and computes the multiple

scattering contributions as follows. For the scattering in the jdc gas, the following formula’s from

Gluckstern are employed.

σαα = Λ2 · Cn
L
· sec4 λ

σαβ = Λ2 ·Dn · sec3 λ

σtanλ tanλ = Λ2 · Fn · L · sec4 λ

σββ = Λ2 · En · L · sec2 λ

where

Λ2 =

(
14.1MeV/c

p · v/c

)2

· 1

xr

and the constants are given as:

Cn = 1.43, Dn = 0.21, En = 0.23, Fn = 0.20.

Chamber Reconstruction Software 81

and xr is the radiation length of the gas in the jdc.

For multiple scattering in the material traversed by the particle before entering the jdc, the

following apply:

σrr = Γ2 · sec2 λ ·
∑ ti · r2

i

xi

σzz = Γ2 · sec4 λ ·
∑ ti · r2

i

xi

σtanλ tanλ = Γ2 · sec4 λ
∑ ti

xi

σββ = Γ2 · sec4 λ
∑ ti

xi

σtanλz = −Γ2 · sec4 λ
∑ ti · ri

xi

σrβ = Γ2 · sec2 λ ·
∑ ti · ri

xi

where

Γ2 =

(
14.1MeV/c

p · v/c

)2

and the sums run over discrete scatterers of thickness ti at radius ri with radiation length xi. All

of the above corrections are added directly to the covariance matricies as stored in the TCTR data

banks.

4.6.4 SUBROUTINE TC2HLX

Author: Curtis A. Meyer

Creation Date: 16 June, 1988.

References:

Call Arguments: (ITRK, *XHLX, *CVHLX).

Common Blocks Used: cbbank, cblink.

Subroutines Referenced: None.

This routine takes the output from the TCFITR and TCTHET routines, and transforms it into

helix coordinates. The initial data is given as:

~ξcirc = (1/2R,ψ0, c
2; s)

~ξrz = (tanλ, a0)

~x = (1/2R,ψ0, c
2, tanλ, a0; s)

s = sign(1, 1/2R)

along with a 3 by 3 and a 2 by 2 covariance matrices, which can be combined into a 5 by 5 matrix,

Cx. The parameter s measures the direction of the track, and is related to the charge q and the

magnetic field direction, bs. The helix coordinates are defined as:

~ξhelix = (r0, z0, α, tanλ, ψ0; s)

The transformation is given by defining the radius of the fit circle as

ρ =
√
R2 − c2

82 Chamber Reconstruction Software

Then we obtain that:

r0 = s · ρ−R
z0 = a

α =
1

ρ

tanλ = tanλ

ψ0 = ψ0

q = +s · bs

One should note that it is possible for r0 to be less than zero. The helix parameters are chosen in

such a way that if the charge of the particle changes, then the parameter α will simply change signs.

All other parameters will be unaffected. This makes it possible for the helix fit to correct wrong

charge assignments performed in previous routines, and for the vertex fit to later correct the charges

found in the helix fits.

4.6.5 SUBROUTINE TPCNCT

Author: Bruce Barnett

Creation Date: July 1991.

References:

Call Arguments:

Common Blocks Used: cbbank, cblink and tcprms.

Called by: tctrak .

Subroutines Referenced: None.

This routine takes as input the TPWC hit banks, (at down links -1 and -2). It then performs a

cluster search, and creates the TPWC cluster banks at down links -3 and -4. A loop is then made

over all tracks in the TCTK banks, and connections are attempted to all clusters in both pwc’s.

The best connections are then identified by stamping the TCTK track number into word +1 of the

cluster banks. These clusters are not physically used in the circle fit, but are picked up by the helix

fit before the fit is made.

It is possible to call this routine from an external user routine without ill effects. This may be

useful in the case of all neutral data where the cluster banks are useful.

4.7 Vertex Fitting Software

The following subroutines are found in the tc vert patch of the locater card file.

4.7.1 SUBROUTINE TCVERT

Author: Curtis A. Meyer

Creation Date: 22 July, 1988

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink and tclift.

Subroutines Referenced:tcvrtx.

(zebra library) mzlift.

Chamber Reconstruction Software 83

This routine looks through all the tracks from the helix fit, and divides them into two classes.

The first is all tracks whose first jdc layer is less than lyvxtc in the /tccuts/ common block,

(the default value is 6, but this can be changed using the LYVX card) and which have a nominal

z–traceback withing zvtxtc of zofftc in the /tccuts/ and /tcprms/ common blocks. These

tracks are then passed to the TCVRTX routine where they are fit to a common vertex.

4.7.2 SUBROUTINE TCVRTX

Author: Curtis A. Meyer

Creation Date: 2 February, 1990

References:

Call Arguments: (NTRKS, NTRAK, IVRTX, *NDROP, *IDROP, *IERR, XGUES).

Common Blocks Used: cbbank, cblink and tccuts.

Subroutines Referenced: cernlib: dinv.

This routine looks at the ntrks tracks whose track numbers are in the ntrak array and tries to fit

them to a common vertex. The returned value of x is the (x, y, z) coordinates of this vertex, covr

is a 3 by 3 covariance matrix for the vertex, chsqr is the χ2 of the fit, and ierr is an error code

from the fit. gues is a guess made by the user to the vertex. The meanings of ierr are given as

follows.

000 No error, normal convergence o a good vertex.

100 Only one track was fit to this vertex.

200

300 The routine converged with a χ2 which was too large.

400 The routine began to diverge.

500 The iteration limit was exceeded before convergence.

600

700 Inversion of a singular matrix was attempted.

The philosophy behind this routine is to attempt to get an rough vertex position which can be

passed to the Crystal routines. The routine does not try to correlate particles with one another,

(i.e. π+ and π− into a Ks), it instead assumes that there is exactly one vertex in the given volume,

and fits to it. As one may later want to assume that there was more than one vertex in the volume,

the routine does not vary the helix parameters nor their covariance matricies. It only looks for the

best vertex given the constraints of the fit parameters. The fit then works as follows.

Given n tracks from the helix fit with fit parameters ~xi and covariance matricies Cix, one forms

a vector ~η such that

~η = (~x1, · · · , ~xn),

with

~xi = (ri, zi, αi, tanλi, ψ0i ; si)

and a 5 by 5 covariance matrix Cη, such that:

Cη =

 C1
x · · · 0
...

. . .
...

0 · · · Cnx



84 Chamber Reconstruction Software

The routine uses this information to obtain the vertex,

~ξ = (xv, yv, zv)

and its 3 by 3 covariance matrix Cξ.

The mathematics begin with the 3 · n helix equations for each track.

f[i,1] = xv − ri · cosψ0i −
1

αi
· (cosβi − cosψ0i)

f[i,2] = yv + ri · sinψ0i −
1

αi
· (sinβi − sinψ0i)

f[i,3] = zi − zv −
si · tanλi

αi
·
(
βi − ψ0i − si ·

π

2

)
where the index i runs over the n tracks. The first two of these equations are then solved to yield

two new equations.

cosβi = αi · xv − sinψ0i (αi · ri + si)

sinβi = αi · yv + cosψ0i (αi · ri + si)

These can then be combined to yield an expression for βi, and an equation of constraint:

βi = ATAN2(sinβi, cosβi)

1

α
=

1

α

(
sin2 βi + cos2 βi

)
This will then yield 2 · n equations of constraint given as:

f[1,i] =
1

αi

(
cos2 βi + sin2 βi − 1

)
f[2,i] = zi − zv −

si · tanλi
αi

· (βi − ψ0i − si ·
π

2
)

An alternate form for the first equation is given as:

f[1,i] = αi
(
x2
v + y2

v + r2
i

)
+ 2 · siri + 2 · (αi · ri + si) · (yv · cosψ0i − xv · sinψ0i)

A vector ~C is then defined as the 2n fi’s. As has been done in the TCITER and TCHELX routines,

matricies A and B are defined via:

Aij =
∂fi
∂ξj

Bij =
∂fi
∂ηj

and a matrix GB is now defined as:

GB = (BCηBT)−1.

With this, an iterative sequence for ~ξ is formed,

~ξi+1 = ~ξi − (ATGBA)−1(ATGB ~C)

with the covariance matrix at each iteration given as

Cξ = (ATGBA)−1

Chamber Reconstruction Software 85

qe '-

%
6

@R
@I
�
�

�
�	

B
(bs=+1)

q=+1

q=−1

r0<0

r0<0

s=+1

s=−1

Figure 10: The distance of closest approach to the origin of a fit circle. If r0 < 0, then the track’s point

of closest approach is between the center of the circle and the origin.

and ~ε = ~ηi − ~η0

χ2 = (B~ε)TGB(B~ε)

The covariance matrix, Cξ can be obtained from the Jacobian of the above transformation,

Tij = ∂ξi/∂xj .

Cξ = T CxT T .

The matrix T can be explicitly expressed as:

T =


−α · r0 0 −α 0 0

| α · r0 | · tanλ 0 α · tanλ | r0 | 1

−R · α3 0 1
2α

3 0 0

0 0 0 1 0

0 1 0 0 0



86 Chamber Reconstruction Software

- TCTRAK

t

- TPCNCT

- TCHELX - TCHXLD - TC2HLX

- TCMSCT

- TCVERT - TCVRTX

Figure 11: Flow of the chamber software; helix and vertex fitting

Chamber Reconstruction Software 87

5 Chamber Calibration Software

Calibration of the jdc involves several different procedures, all of which need to be iterated to yield

a final set of calibration constants. These can be divided into two classed of calibration, the first

to determine the physical position of the jdc and pwc relative to the target and crystals, and the

second to determine actual calibration constants of the jdc. With regard to these constants, there

are essentially three types. Conversion of drift time into r − φ position in the jdc, conversion of

amplitude difference into z position, and conversion of amplitude sums into dE/dx. This section

details the software available for performing these procedures.

During the calibration, it is necessary to have direct access to most of the tracking cuts defined

in chapter 2. To avoid having to recompile and relink the code for every change, a special calibration

card file which is read in on logical unit ljcal in the /cbunit/ common block needs to be provided.

This file uses the FFREAD program to input new values for most of the tracking parameters and

cutoffs, (see the CJINIT routine for a description of all available cards). Included in this are two

cards for steering the calibration of the chamber. The first allows the user to turn on and off

calibration, (the JDCL card), and the second identifies the calibration procedure to be performed,

(the ICAL card).

The purpose of the JDCL card is two–fold. First one may want to check analysis results after

a calibration step has been performed, which then means one does not have to recompile and relink

the code. The second is for debugging of the code. In this light, two additional cards, (the DEBG

nd NDBG cards) are provided for turning on and off debug output. If the user has built the locater

code using both the debug patches and the calibration patches, then the DEBG flag will turn on

and off the debugging of events. Secondly, if debug output is desired for only one event, then that

event can be specified with the NDBG card. The parameters steered by these cards are available

in the /tcdebg/ common block as described in the next section.

5.1 Description of the Chamber Calibration Common Blocks

5.1.1 CJCUTS

The /cjcuts/ common block contains cuts applied to the calibration code. All values in this

common block can be changed using the CJINIT subroutine.

DOUBLE PRECISION CXGZCJ

LOGICAL LSECCJ(30)

INTEGER MHITCJ,MTRKCJ,MCIRCJ

REAL CSMXCJ,DYMXCJ

REAL ZCUTCJ,ZPOSCJ,ZRINCJ,ZROTCJ,ZAMPCJ,ZPRBCJ

REAL ZCTTCJ,ZXYRCJ,ZMOVCJ,CFRACJ,CLIMCJ

COMMON /CJCUTS/ CXGZCJ,LSECCJ,MHITCJ,MTRKCJ,MCIRCJ,

& CSMXCJ,DYMXCJ,

& ZCUTCJ,ZPOSCJ,ZRINCJ,ZROTCJ,ZAMPCJ,ZPRBCJ,

& ZCTTCJ,ZXYRCJ,ZMOVCJ,CFRACJ,CLIMCJ

• cxgzcj is the convergence criteria used in the CJGZFT routine. It has a default value of 0.01,

but can be changed using the CXGZ card.

• lseccj is a logical array identifying which sectors are to be calibrated in the CJGZFT sub-

routine. Its default is all sectors on, however this can be changed using the CJGZ card.

• mhitcj is the minimum number of hits per track to use the track in the CJGZFT and CJZFIT

routines. It has a nominal value of 5, but can be modified with the MHIT card.

88 Chamber Reconstruction Software

• mtrkcj is the minimum number of tracks per event in the CJGZFT routine. It is set to 2,

but can be changed using the MTRK card.

• mcircj is the minimum number of points per track to fit a track using the CJITER routine.

It has a default value of 15, but can be changed using the MCIR card.

• csmxcj is the minimum value of cosα to write out a hit in CJUPDT. This has a default value

of cos(25), but can be changed using the CSMX card.

• dymxcj is the maximum deviation of a hit to be written out by the CJUPDT routine. This

has a default value of 0.05cm, but can be changed using the DYMX card.

• zcutcj is an acceptance window around zofftc in the z calibration of the jdc. Events that

do not trace back to this window will not be accepted. Its value can be set using the ZCUT

card. This has a default value of 10 cm.

• zposcj is used in the z calibration of the jdc. It defines the maximum range in z position on

the sense wires to be used in the calibration. Its value can be set using the ZPOS card. This

has a default value of 19 cm.

• zrincj is used in the z calibration of the jdc by CJGZFT. It defines the minimum radius in

x and y an event can have to be used. The default value is 0.00 cm, but can be changed using

the ZRIN card.

• zrotcj is used in the z calibration of the jdc by CJGZFT. It defines the maximum radius in

x and y an event can have to be used. The default value is 5.00 cm, but can be changed using

the ZROT card.

• zampcj is used in z calibration of the jdc by CJGZFT to decide if data on a particular wire

should be written to the calibration file. In order for a hit to be written out, the amplitudes

on both the left and right end of the wire must be larger than zampcj, which has a default

value of 200. This can be changed using the ZAMP card.

• zprbcj is used in z calibration of the jdc by CJGZFT to decide if a fit event should be

accepted. The probability of the event must be larger than zprbcj, which has a default value

of 0.00. This can be changed using the ZPRB card.

• zcttcj is used in z calibration of the jdc by CJGZFT to decide if a fit event should be

accepted. The fit z vertex of the event must be within zcttcj cm of zofftc, where the

nominal value is 5.00 cm. This can be changed using the ZCTT card.

• zxyrcj is used in z calibration of the jdc by CJGZFT to decide if an event should be kept.

All tracks in the event must be closer than zxyrcj cm from the fit vertex in x and y. The

nominal value is 0.50cm, but can be changed using the ZXYR card.

• zmovcj is the amount a point can be shifted in the CJGZFT routine, and still be used for

calibration. This has a default value of 4 cm, but can be changed using the ZMOV card.

• cfracj is used by CJFITR to discard outliers from tracks. If a track whose chisquare is

larger than climcj has a point which contributes cfracj of chisquare, then that point will

be dropped before fitting. This has a default value of 0.900, but can be changed using the

CFRA data card.

• climcj See the previous entry for the description. The default value is 150., and can be

changed using the CLIM card.

Chamber Reconstruction Software 89

5.1.2 CJEXFT

The /cjexft/ common block is used in dE/dx calibrations. No further documentation is available.

REAL ENERCJ(30,23),EMINCJ,TNERCJ(30,23)

INTEGER NENRCJ(30,23),NMINCJ

COMMON /CJEXFT/ ENERCJ,TNERCJ,NENRCJ,NMINCJ,EMINCJ

• enercj

• emincj

• tnercj

• nenrcj

• nmincj

5.1.3 CJFLAG

The /cjflag/ common block contains flags a control switches for steering the calibration of the

jdc. The values of these parameters can be controlled using the CJINIT routine.

LOGICAL JDCLCJ,LREFCJ

INTEGER ICALCJ

COMMON /CJFLAG/ JDCLCJ,LREFCJ,ICALCJ

• jdclcj This logical flag controls if calibration of the jdc is performed. If the calibration code

has been selected using PATCHY, then this value defaults to .true.. The existence of this

parameter allows one to turn off the calibration code if it has been included, which can be

done using the JDCL card.

• lrefcj Inhibits the updating of constants when slow control values change.

• icalcj This parameter identifies the type of calibration to be performed. It defaults to a value

of 0, but can be set to other values using the ICAL card.

0 Calibration of the jdc using pion tracks which cross sector boundaries in the jdc.

1 Calibration of the jdc using events pp→ π+π− and pp→ K+K−.

2 z–fit on a track–by–track basis for the gains of the preamps.

3 Energy gains in the jdc.

4 Global z–fit for relative gains of the preamps.

5.1.4 CJGAIN

The /cjgain/ common block is used as a storage area when calibrating the gains of the preamps

on the jdc.

INTEGER IFITCJ(690)

REAL ZFITCJ(690),EFITCJ(690),SMSQCJ(690)

REAL TIMXCJ(23,2)

COMMON /CJGAIN/ IFITCJ,ZFITCJ,EFITCJ,SMSQCJ,TIMXCJ

90 Chamber Reconstruction Software

5.1.5 CJGLOZ

The /cjgloz/ common block is used by the CJGZFT routine to pass information back to the USER

routine. It contains information on the hits which were fit. Not all of the possible information will

be available in all applications. It is necessary to consult the code to determine what information is

available.

INTEGER NTRKCJ,ITRKCJ(10),NPTSCJ(10)

INTEGER JTCHCJ(50,10),JLYRCJ(50,10),JSECCJ(50,10),JRESCJ(50,10)

REAL XPFTCJ(50,10),DXFTCJ(50,10),SXFTCJ(50,10),GXFTCJ(50,10)

REAL YPFTCJ(50,10),DYFTCJ(50,10),SYFTCJ(50,10),GYFTCJ(50,10)

REAL ZPFTCJ(50,10),DZFTCJ(50,10),SZFTCJ(50,10),GZFTCJ(50,10)

REAL TDRFCJ(50,10),ALFTCJ(50,10),ARGTCJ(50,10)

COMMON /CJGLOZ/ NTRKCJ,ITRKCJ,NPTSCJ

& ,JTCHCJ,JLYRCJ,JSECCJ,JRESCJ

& ,XPFTCJ,DXFTCJ,SXFTCJ,GXFTCJ

& ,YPFTCJ,DYFTCJ,SYFTCJ,GYFTCJ

& ,ZPFTCJ,DZFTCJ,SZFTCJ,GZFTCJ

& ,TDRFCJ,ALFTCJ,ARGTCJ

• ntrkcj is the number of tracks used in the global fit.

• itrkcj is a list of the tracks stored in this common.

• nptscj is the number of points in each of up to 10 tracks.

• jtchcj is an array of pointers to the TCHT banks for the hits.

• jlyrcj is the layer number of the hits.

• jseccj is the sector number of the hits.

• jrescj is the left–right resolution of each hit.

• xpftcj is the fit x or r position in centimeters for each hit. The value depends on which

calibration routines are used.

• dxftcj is the difference between the fit and computed x position in centimeters.

• sxftcj is the fit error in the x position, σ2
x.

• gxftcj is the origional error in the x–position, σ2
x.

• ypftcj is the fit y or φ position, for each hit.

• dyftcj is the difference between the fit and computed y position.

• syftcj is the fit error in the y position, σ2
y.

• gyftcj is the origional error in the y–position, σ2
y.

• zpftcj is the fit z position, in centimeters for each hit.

• dzftcj is the difference between the fit and computed z position in centimeters.

• szftcj is the fit error in the z position, σ2
z .

• gzftcj is the origional error in the z–position, σ2
z .

Chamber Reconstruction Software 91

• tdrfcj is the drift time of every hit.

• alftcj is the left or +z amplitude of every hit.

• argtcj is the right or −z amplitude of each hit.

5.1.6 CJPCAL

The common block is filled by the CJ4PRG subroutine. The data is from four–prong events that

are passed through a 4–C kinematic fit.

REAL PINICJ(3,4),PFITCJ(3,4),DELPCJ(3,4),CHSQCJ(4)

REAL CVINCJ(3,3,4),CVFTCJ(3,3,4),CHRGCJ(4),MASSCJ(4)

COMMON /CJPCAL/ PINICJ,PFITCJ,DELPCJ,CHSQCJ,CVINCJ,CVFTCJ,

& CHRGCJ,MASSCJ

SAVE /CJPCAL/

• pinicj contains the initial values of px, py and pz for each of the four tracks.

• pfitcj contains the fit values of px, py and pz for each of the four tracks.

• delpcj contains the change in px, py and pz.

• chsqcj contains the contribution to χ2 from each track.

• cvincj contains the initial 3 by 3 covariance matrix for each track.

• cvftcj contains the fit 3 by 3 covariance matrix for each track.

• chrgcj contains the charge of each track.

• masscj contains the mass of each particle.

5.1.7 CJSTAT

INTEGER ISTACJ(100),IESTCJ(100),IUPDCJ(23,2)

COMMON /CJSTAT/ ISTACJ,IESTCJ,IUPDCJ

5.1.8 RJSTAT

The /rjstat/ common block is included in the routines for processing the RJDF data when the

calibration code is installed. It is filled on an event by event basis, and is then available to the user

for monitoring the raw pulse information in the jdc.

INTEGER NHITRJ,ILENRJ(200),IMAXRJ(200,2)

COMMON /RJSTAT/ NHITRJ,ILENRJ,IMAXRJ

• nhitrj is the number of hits stored in the RJDF bank for the present event.

• ilenrj is the number of FADC channels needed for each hit.

• imaxrj contains the maximum pulse height on the left and right side for each hit in the RJDF

bank.

92 Chamber Reconstruction Software

5.1.9 TCDEBG

The /tcdebg/ common block is used to steer the debug print lines when they have been installed.

LOGICAL DBGGTC(10),DEBGTC

INTEGER NDBGTC

COMMON /TCDEBG/ DBGGTC,DEBGTC,NDBGTC

• dbggtc identifies which section of the code should be debugged. The meaning of each of the

ten elments is given below.

– Overall debug switch for the program. Must be .true. to print out any debug lines.

1 Print debug lines during processing of raw data.

2 Print debug lines during pattern recognition.

3 Print debug lines during circle fitting.

4 Print debug lines during helix fitting.

5 Print debug lines during vertex fitting.

6 Print debug lines during calibration.

7 Not yet used.

8 Not yet used.

9 Not yet used.

10 Print debug lines during slow control processing.

• debgtc When set to .true., then all installed debug print lines are enabled. The value of

this variable is steered in the TCTRAK routine depending on the values of dbggtc.

• ndbgtc When given a non–zero value, the TCTRAK routine will set debgtc .true. only

for event number ndbgtc. For all other events, it will print a one–line message that the event

has been processed, but the value if debgtc will be set to false.

5.2 Description of the Chamber Calibration Software

The following subroutines are found in the jdcalibr patch in the locater card file.

5.2.1 SUBROUTINE CJCALB

Author: Curtis A. Meyer

Creation Date: 20 September, 1988.

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, tclift and cjflag.

Subroutines Referenced: tcpatt, tccirc, tchelx, cjfitr, cjzfit, cjgzft, cj4prg and

cjdedx

zebra library: mzlift

This routine has the same function as the TCTRAK routine does for normal tracking. It is called by

TCTRAK to control the program flow when calibrating the jdc. The type of calibration performed

is controlled by the value of icalcj in the /cjflag/ common block. The present options are as

follows.

Chamber Reconstruction Software 93

-1 Calibration check using CJFITR and all tracks.

0 Calibrate the jdc using tracks which cross sector boundaries in the jdc.

1 Calibrate the jdc using CJ4PRG, 4C–Kinematic fit.

2 Calibrate the jdc z constants using the CJZFIT routine.

3 Calibrate the jdc dE/dx using CJDEDX.

4 Calibrate the jdc z constants using the CJGZFT routine.

5.2.2 SUBROUTINE CJDCAL

Author: Klaus Peters

Creation Date: 27 November, 1989.

References:

Call Arguments: None.

Common Blocks Used: cbbank, cblink, cbstop and cjexft.

Called by: cjdedx .

Subroutines Referenced: None.

No documentation available.

5.2.3 SUBROUTINE CJDEDX

Author: Klaus Peters

Creation Date: 20 December, 1989

References:

Call Arguments: None.

Common Blocks Used: /cblink/ and /cjexft/.

Called by: cjcalb.

Subroutines Referenced: tcoord, tcrhit and cjdcal.

cernlib: flpsor.

No documentation available.

5.2.4 SUBROUTINE CJFITR

Author: Curtis A. Meyer

Creation Date: 20 September, 1988.

References:

Call Arguments: None.

Common Blocks Used:cblink, cbbank, cbunit, tchits and cjstat.

Subroutines Referenced:tcload, cjiter, cjupdt, tcifix and tccnct.

This routine functions in the same manner that TCFITR does for the normal reconstruction. It

takes all the tracks located in the pattern recognition section, and selects those containing at least

15 points and which cross between sector boundaries in the jdc. Those that do not satisfy these

conditions have their TCTK data banks dropped using the TCCNCT routine. Other wise the

tracks are fit in a first pass using the CJITER routine.

After all tracks have been fit, the TCIFIX routine is called to correct the positions of the hits

based on the crossing angle through the jet cells, and then the tracks are re–fit using the CJITER

routine. The resulting coordinates of these hits are then passed to the CJUPDT routine for output.

94 Chamber Reconstruction Software

5.2.5 SUBROUTINE CJGZFT

Author: Curtis A. Meyer

Creation Date: 26 July, 1989.

References:

Call Arguments: (IOPT).

Common Blocks Used: cblink, cbbank, tclift, tcprms, cjcuts, cjgzft, cbunit and

tcdebg.

Called by: cjcalb.

Subroutines Referenced: cjzchk,

(cernlib: matin2

(zebra): mzwork and mzlift.

his routine will perform a global straight line fit to all tracks in the jdc to a common vertex. The

routine is called via calibration option 4 in the CJCALB routine. If the passed value of iopt is zero,

the routine will write out the fit data. Otherwise no data will be written. In order for this routine

to work, there must be at least mtrkcj tracks in the jdc which contain no fewer than mhitcj hits

each. The flow of the code is divided into three sections, each of which are detailed below.

In the first section, a search is made through the jdc for all tracks which have more than 5 hits,

and reside in a sector which has not been turned off in the lseccj array in the /cjcuts/ common

block. Up to 10 of these tracks are allowed, and when one is found the number of hits in the track,

the pointer to the TCHT bank for every hit, the layer number of every hit and the sector number of

every hit are stored in the /cjgzft/ common block. Also, the (r,z) coordinate of every hit is stored

in the Y vector as per the CJHXLD routine, and the errors , (σ2
r ,σ2

z) are stored in the GYINV

vector. At the same time this loading is done, the straight line fits:

z = tan(λ) · r + z0

cos(ψ) · y = sin(ψ) · x+ β

are made for each track. The fit values of sin(ψ), cos(ψ) and β for each track are then used to

determine the point (x0,y0) which minimizes the sum of the squares of the distances to each line.

This quantity is:

χ2 =

n∑
i=1

[cos(ψi) · y0 − sin(ψi) · x0 − βi]2 .

This is solved by inverting the matrix equation:(∑
cos2(ψi) −

∑
cos(ψi) · sin(ψi)

−
∑

cos(ψi) · sin(ψi)
∑

sin2(ψi)

)
·
(
x0

y0

)
=

(
−
∑

sin(ψi) · βi∑
cos(ψi) · βi

)
If after loading all tracks, there are still at least two tracks, and the radius of the (x,y) vertex is

smaller than 5.0 cm, then the routine passes into the fitting section.

In the next section, the N tracks located in the first section are assumed to satisfy the following

linear equations:

xj;k = X0 + cosλk · cosψk · αj;k
yj;k = Y0 + cosλk · sinψk · αj;k
zj;k = Z0 + sinλk · αj;k

where the index k runs over the N tracks, and the index j runs over the nk points in track k. The

first two of these equations are solved to yield α as:

αj;k =

sec(λk) ·
[
−(x0 ·cos(ψk)+y0 ·sin(ψk)) +

√
(x0 ·cos(ψk)+y0 ·sin(ψk))2 + r2

i − x2
0 − y2

0

]

Chamber Reconstruction Software 95

The remaining equations in z can then be written as
∑N
k=1(nk) equations of constraint. However,

before continuing, it is also necessary to define the set of measured coordinates, Yj;k, such that

Y2j−1;k = rj;k and Y2j;k = zj;k. We also define the fit vector Xl such that Xk = tan(λk), and

XN+1 = Z0, The equations of constraint are then:

fj;k = XN+1 − Y2j;k −XK ×[
−(x0 ·cos(ψk)+y0 ·sin(ψk)) +

√
(x0 ·cos(ψk)+y0 ·sin(ψk))2 + Y 2

2j−1;k − x2
0 − y2

0

]
We now have a system of 2 ·

∑N
k=1(nk) measurements,

∑N
k=1(nk) constraints and N + 1 unknowns

to solve.

The solution is obtained using the same iterative procedure as used in all other fitting routines.

The matricies A and B, and the vector C are defined such that:

Aij =
∂fi
∂Xj

Bij =
∂fi
∂Yj

Ci = fi

The matrix GB = (BTG−1
Y B)−1 is then computed, (where G−1

Y is the covariance matrix for the

measured quantities, Y .) This matrix turns out to be diagonal, and can be written simply as:

Gj;kB =
1

δ2Y2j;k + bj;k · δ2Y2j−1;k

where the quantity bj;k is defined to be:

bj;k =
Xk · Y2j−1;k√

(x0 · cos(ψk) + y0 · sin(ψk)2 + Y 2
2j−1;k − x2

0 − y2
0

.

Using the above matricies, the corrections to X and Y can be computed as,

Xi+1 = Xi − (ATGBA)−1ATGBC

Yi+1 = Yi − G−1
Y B

TBB(C−A(ATGBA)−1ATGBC)

Upon completion of the iteration, the covariance matrix for X is given as

CX = (ATGBA)−1.

The quantity χ2 is now computed as:

χ2 = (B~ε)TGB(B~ε)

with ~ε = ~y0 − ~yi, the difference between the initial value of ~y and its value at iteration i. The

iteration is then continued until one of the following conditions is met.

• The number of iterations exceeds 10. If this occurs, then the routine adds one to istacj(36)

in the /cjstat/ common block, and exits.

• The value of χ2 increases by more than 5% on an iteration. If this happens, one is added to

istacj(37), and the routine exits.

• The value of χ2 falls below cxgzcj in the /cjcuts/ common block. If this occurs, the routine

passes into the final section.

96 Chamber Reconstruction Software

• The value of χ2 changes by less than cxgzcj in one iteration. If this happens, the routine

passes into the final section.

In the final section of this routine, the fit z coordinates along the tracks, as well as the left and

right amplitude of each hit are used to compute what the z–calibration constant for each wire should

be.

gj;k = (aj;kr /aj;kl) · (zj;k − 20)/(zj;k + 20)

These values are then added into the arrays in the /cjgain/ common block. The fit values of z

are also stored in the TCHT and TJDC data banks, and the fit values of tan(λk) along with

their errors are stored in the TCTK data banks. Next a TCVX bank is created for the fit vertex.

Finally, the fit errors in z are computed as the (2j, 2j) diagonal elements of the fit covariance matrix

for the measurements:

CY = G−1
Y − G

−1
Y B

TGBBG−1
Y + G−1

Y B
TGBA(ATGBA)−1ATGBBG−1

Y .

These fit values of z, as well as the raw amplitudes are also written to the file CALGLOBZ.DAT.

This data is then read in by a more complicated fitting procedure to allow more parameters per wire.

This data is all packed into two integer words per hit. The first word contains the fit z coordinate

as iz = 25000 + 1000 · zfit packed into bits 1 through 22, and the wire number as w = (s− 1) · 23 + l

packed into bits 23 to 32. The second word contains the right or −z amplitude packed into bits 1

to 16, and the left or +z amplitude packed into bits 17 to 32.

At this point, the common block /cjgloz/ is loaded with the following data. The fit values of

z are copied into the zpftcj array, the difference between the initial and fit values of z are placed

in the dzftcj array, and the computed errors in z are stored in the szftcj array. These values are

thereby made available to the USER routines. The routine will also fill the TCTK data bank as

shown in table 16. Note, this is only done for those tracks used in the fit. As such, it is necessary to

use the /cjgloz/ common in conjunction with the TCTK banks. Also, the user service routines

are unable to process the fit data from these banks; it is necessary that the user unpack them by

hand.

5.2.6 SUBROUTINE CJINIT

Author: Curtis A. Meyer

Creation Date: 5 September, 1988.

References: FFREAD long write up.

Call Arguments: None.

Common Blocks Used: tccuts, tcprms, cjcuts and cjflag.

Subroutines Referenced:cjwipe.

(ffread:) ffinit, ffkey, ffset and ffgo.

This routine is called by the TCINIT routine to initialize the calibration part of the code. The main

purpose of this routine is to allow the user to change some of the fit parameters used in calibration.

The routine uses the FFREAD package to read in a card file from unit ljcrd. The allowed cards

are as follows:

ANGL sets the value of angltc, the rotation, in degrees, from the angle φ = 0◦ to the center

of jdc sector one. When using this card, there needs to be a second real number

which is non–zero.

BMAG sets the value of bmagtc, the magnetic field strength in the jdc. If this value is changed,

then the other parameters dependent upon this are also changed. When using this card,

there needs to be a second real number which is non–zero.

Chamber Reconstruction Software 97

Offset type Quantity

+1 integer Number of Hits

+2 integer Layer of Hit 1

+3 integer Hit number of hit 1

+4 integer Layer of Hit n

+5 integer Hit number of hit n

+6 integer Number of dE/dx hits

+7 integer Error code from fit

+8 real Charge

+9 real Mass [MeV]

+10 real dE/dx [MeV/cm]

+11 real σdE/dx [MeV/cm]

+12 real 0.0

+13 real ψ0 [radians]

+14 real cosψ0

+15 real sinψ0

+16 real x0 vertex point.

+17 real y0 vertex point.

+18 real 0.0

+19 real tanλ0

+20 real z0 vertex point.

+21 real 0.0
...

...
...

+27 real σ2
tanλ

+28 real 0.0

+29 real σ2
z0

+30 real χ2

Table 16: The data stored in the subbanks of the TCTK bank, (TCSG). There is one TCSG data

bank for each track found in the chambers.

98 Chamber Reconstruction Software

CCUT sets the value of ccuttc, the cutoff parameter used in TCITER and CJITER to define

when convergence has been reached.

CFRA sets the value of cfracj in the /cjcuts/ common block. The default value is 0.900.

CHCU sets the value of chcttc, a parameter for associating track segments in the TCASSC

subroutine.

CHDS sets the value of chdstc, a cutoff parameter for defining the error code in the CJITER and

TCITER routines.

CHLX sets the value of chlxtc, the convergence cutoff in the TCHELX routine.

CLIM sets the value of climcj in the /cjcuts/ common block. The default value is 150.

CLMB sets the value of clmbtc, the χ2 for associating tracks in tanλ in the TCSGMT subroutine.

CSMX sets the value of csmxcj in the /cjcuts/ common block. This is the minimum value of

cosα to be written out by CJUPDT. To use this card, enter the value of α in radians.

CXGZ sets the value of cxgzcj in the /cjcuts/ common block. This is a convergence criteria in

the CJGZFT routine.

CXSQ sets the value of cxsqtc, a parameter for associating hits in the TCSGMT subroutine.

DEBG sets the value of the debgtc flag in the /tcdebg/ common block. Assuming that the

code has been linked with the debug print lines, debgtc allows the user to turn them off. The

default value is .true., unless the PATCHY flag debfalse was used in building the code, in

that option the default will be .false..

DELT sets the value of delttj, the quadratic term in the error calculation.

DELY sets the value of delytj, the linear term in the error calculation.

DELZ sets the value of delytc in the /tcprms/ common block. This is the error in the z position

as assigned by the TJZPOS routine. If one uses this card, be sure to enter 23 values.

DMAX sets the value of dmaxtj in the /tjcuts/ common block. The default value is 0.130.

DMIN sets the value of dmintj in the /tjcuts/ common block. This value is used in the pattern

recognition routines. The default value is 0.028 .

DXSQ sets the value of dxsqtc in the /tccuts/ common block. This value is used in the TCRSRC

and TCFSRC routines.

DYMX sets the value of dymxcj in the /cjcuts/ common block. This is the maximum shift in

centimeters a point can have, and be written out by the CJUPDT routine.

IAMP sets the value of iamptj in the /tjcuts/ common block. This is used in the TJDCGT

routine to discard noise hits. When using this card, there needs to be a second number

which is non–zero.

ICAL sets the value of icalcj, the jdc calibration steering parameter. This defaults to a value of

0, (see the CJCALB routine for a description).

IGAP sets the value of igaptj in the /tjcuts/common block. This is used in the TCSGMT

routine do determine how large a gap a segment can have. It has a default value of 5.

Chamber Reconstruction Software 99

INTG sets the value of itimrj in the /rjprms/ common block. It is the integration time used in

the RJAFIT routine, and has a nominal value of 15 FADC channels.

ISEP sets the value of iseprj in the /rjprms/ common block. It is the minimum separation

between double pulses in RJAFIT.

ITFC sets the value of itfcrj in the /rjprms/ common block. It is a t0 offset for the fit pulses

in RJPROC coming from the DL307 Flash ADC’s. There are 16 values in the itfcrj array.

When using this card, the user should have 17=1 to cause the program to accept

these values.

ITMI sets the value of itmirj in the /rjprms/ common block. It is the minimum pulse separation

allowed in the RJPULS routine. It has a default value of 2.

IMAX sets the 23 integer values of itmxtj, the maximum drift time allowed in each layer of the

jdc.

JDCL sets the value of jdclcj, the jdc calibration flag in the /cjflag/ common block. It defaults

to .TRUE..

JGAP sets the value of jgaptj in the /tccuts/ common block. This is the maximum layer gap

allowed in TCFSRC and TCRSRC, and has a default value of 2.

LGPD sets the value of lgpdrj in the /rjprms/ common block. This tells the RJPROC routine if

it should compute the pedestals dynamically from the presample. The normal value is .false.

which means pedestals are computed dynamically.

LGT0 sets the value of lgt0rj in the /rjprms/ common block. This tells the RJPROC routine if

t0’s should be subtracted from the times it stores in the RJDC data bank. The normal value

is .false., which means that t0 subtraction is not performed.

LGT2 sets the value of lgt2tj, a logical to control how errors in the jdc are computed.

LGWR is entered with a non–zero value to prevent the TJTIMI routine from overwriting the dead

wire list. This is necessary during z calibrations.

LSEC is a card used to turn off sectors in the CJGZFT subroutine. The card can have up to 30

integer entries, which are the sector numbers to be turned off. If this card is not used, then

all sectors are assumed on.

MCIR sets the value of mcircj in the /cjcuts/ common block. This is the minimum number of

hits per track in the CJITER routine.

MHIT sets the value of mhitcj in the /cjcuts/ common block. This is the minimum number of

hits per track in CJGZFT and CJZFIT.

MTRK sets the value of mtrkcj in the /cjcuts/ common block. This is the minimum number

of tracks per event in the CJGZFT routine.

MXPL sets the value of mxplrj in the /rjprms/ common block. It is the maximum time sepa-

ration between the left and right FADC pulses to be considered the same pulse.

NDBG sets the value of ndbgtc, which, if it is not set to zero, turns on the debug print lines

for event number ndbgtc, and prints a simple message for every event processed. (Note: the

code must have been installed with the debug print lines for this to work, otherwise it has no

effect on the code.)

100 Chamber Reconstruction Software

NHLX sets the value of nhlxtc, the maximum number of iterations in the TCHELX subroutine.

NITR sets the value of nitrtc, the maximum allowed number of iterations in both the TCITER

and CJITER routines. The default value is 10.

NPUL sets the value of npulrj in the /rjprms/ common block. It is the minimum pulse height

required in the RJPULS routine to accept a hit in the RJDF data bank. It has a default

value of 6.

OPWC sets the values of opwctp(1) and opwctp(2), the angle, in radians, from φ = 0 to wire

number zero of pwc one and pwc 2. When using this card, there needs to be a third

number which is non–zero.

RJDD sets the value of the lgrjdd parameter in the /rjprms/ common block to .true.. This

forces the program to use online processed data.

RJDF sets the value of the lgrjdf parameter in the /rjprms/ common block to .true.. This

forces the program to perform Qt-analysis on the data, even if online processed data exist.

RSLV sets the value of the rslvtc parameter in the /tccuts/ common block.

SXDQ sets the value of sxdqtj in the /tjprms/ common block. The default value of this term is

zero.

SY02 sets the value of sy02tj in the /tjprms/ common block.

SYDF sets the value of sydftj in the /tjprms/ common block.

SYDQ sets the value of sydqtj in the /tjprms/ common block. The default value of this term is

zero.

TDIF sets the value of the tdiftj parameter in the /tjcuts/ common block. This is used for

merging hits in the TJDCGT routine.

TMIN sets the value of tmintj, the minimum time a hit can have, and still be resolved using

(t1 + t3)/2− t2. The default value is 0.080 .

VFRC sets the value of vfrctc in the /tccuts/ common block.

VPRB sets the value of vprbtc in the /tccuts/ common block.

XSQR sets the value of xsqrtc, a pattern recognition cutoff, (see the TCRAW1 subroutine).

YCUT sets the value of ycuttj in the /tjcuts/ common block. This is used in computing the

hit position in the TJTIME routine.

ZAMP sets the value of zampcj in the /cjcuts/ common. This is the minimum amplitude both

left and right must have for the hit to be written to the calibration file. It has a default value

of 200.

ZCTT sets the value of zcttcj in the /cjcuts/ common. This is the global z–vertex cut, and

has a default value of 5 cm.

ZCUT sets the value of zcutcj in the /cjcuts/ common. This defines a window around zofftc

along the z–axis, into which tracks must project if they are to be used in z–calibrations.

Chamber Reconstruction Software 101

ZMOV sets the value of zmovcj in the /cjcuts/ common. This is the amount a point can be

shifted in the CJGZFT routine, and still be used for calibration. It has a default value of 4

cm.

ZOFF sets the value of zofftc in the /tcprms/ common. This is used in computing tanλ in the

TJZPOS routine.

ZPOS sets the value of zposcj in the /cjcuts/ common. This sets the allowed range in z on all

wires to be used in z–calibration.

ZPRB sets the value of zprbcj in the /cjcuts/ common. This is a probability cut in CJGZFT

and has a default of 0.00.

ZRIN sets the value of zrincj in the /cjcuts/ common. This is an xy vertex inner cut, and

defaults to 0.00 cm.

ZROT sets the value of zrotcj in the /cjcuts/ common. This is an xy vertex outer cut, and

defaults to 5.00 cm.

ZVTX sets the value of zvtxtc in the /tccuts/ common block.

ZXYR sets the value of zxyrcj in the /cjcuts/ common. This is the minimum distance in the

xy plane all tracks must come to the xy vertex in order to accept the event. It defaults to 0.50

cm.

HH Finally, this routine will open the output files used by the various calibration routines for

printing calibration data. The name of the opened file is dependent upon the value of icalcj in the

/cjflag/ common block. For a value of zero, the file CALCIRCLE.DAT is opened; for the case

of two, the file CALZFIT.DAT is opened; and for the case of four, the file CALGLOBZ.DAT is

opened. (Note: these files are only opened if the vax or alt switch is used in the patchy cradle.)

5.2.7 SUBROUTINE CJITER

Author: Curtis A. Meyer

Creation Date: 19 September, 1988.

References: Datenanalyse by Siegmund Brandt, p. 271.

Call Arguments: (ITRK, *Y, *GYINV, *X, *COVR, *CHISQ,*IERR).

Common Blocks Used: cbbank, cblink, cjstat, tccuts, tchits, cbunit and tcangl.

Subroutines Referenced: zebra library: mzwork.

This routine accepts as input the track number, itrk, the measured quantities, y and their errors,

gyinv, and a guess to the fit parameters, x. The routine then iterates the equations as in the

TCITER routine, but unlike the TCITER routine, it also updates the measured coordinates along

the tracks. As in TCITER, the convergence criteria is controlled by the ccuttc parameter in the

/tccuts/ common block, and the returned error code is set using the chdstc parameter in the

/tccuts/ common block. The values of these variables can be set using the CCUT and CHDS

cards of the CJINIT routine.

Once convergence has been reached as in TCITER, the routine returns the fit parameters, x,

their covariance matrix, covr, the chisquare of the fit, chisq, an error code from the fit as per

TCITER, ierr and the new values for both the measured quantities, y and their errors, gyinv.

Also available is the rdevtc array in the /tcangl/ common block. This contains the deviation of

every point from the fit track.

102 Chamber Reconstruction Software

5.2.8 SUBROUTINE CJSLOW

Author: Curtis A. Meyer

Creation Date: 22 August, 1990.

References:

Call Arguments: None.

Common Blocks Used: sclink, cblink, cbbank, cjslcn.

Called by: TJSLOW

Subroutines Referenced:

This routine averages the slow control data measured during a run and writes it to an external file

that is later included in the rφ calibration work.

5.2.9 SUBROUTINE CJUPDT

Author: Curtis A. Meyer

Creation Date: 19 September, 1988.

Revised: 19 July, 1989.

References:

Call Arguments: (ITRK, ICODE, NPTS, Y).

Common Blocks Used: cblink, cbbank, cbunit, cjstat, tjprms, cjgain and tcprms.

Subroutines Referenced: TCRHIT.

This routine will take a vector y of npts fitted coordinates and write information to a claibration

file for use in jdc calibrations. The passed argument, itrk is the track number in either the TCTK

or TCTR bank, and the value of icode identifies if the data in y is from a circle fit or a helix fit.

For icode equal to zero, the data is assumed to be from a circle fit. Here the values in y are

npts (r,φ) pairs. For icode equal to one, the data is assumed to be from a helix fit. Here the data

in y is npts (x,y,z) triplets.

This routine will write the the file assigned to logical unit ljtout which is usually opend as

CALCIRCLE.DAT. There are two packed integer words per hit. In the first word, bit 1 identifies

left or right, (0 is left and 1 is right), bits 2 to 8 contain the layer number, bits 9 to 16 contain the

sector number, and bits 17 to 32 contain the drift time in units of 0.5 ns. In the second word, bits 1

to 15 contain the absolute value of x, bit 16 is the sign bit for x, bits 17 to 31 contain the absolute

value of y and bit 32 is the sign bit for y.

5.2.10 SUBROUTINE CJWIPE

Author: Curtis A. Meyer

Creation Date: 19 September, 1988.

References:

Call Arguments: None.

Common Blocks Used: cbunit, cjflag, cjstat and cjgain.

Subroutines Referenced: None.

This routine performs zeroing and initialization necessary before the start of a calibration run.

5.2.11 SUBROUTINE CJZCHK

Author: Curtis A. Meyer

Creation Date: 06 October, 1989.

References:

Chamber Reconstruction Software 103

Call Arguments: (ITRK, Y, GYINV, TGL, B).

Common Blocks Used: cjgloz.

Called By: cjgzft Subroutines Referenced: sm353.

This routine will examine the straight line track, itrk defined by the points in the double precision

variable y, and the errors in those points in the double precision variable gyinv, and determine if

any of these points are too far away from the line given by tgl(itrk) and b. This is determined by

computing the deviation of each point from the fit line, and then smoothing these deviations using

the SM353 routine. Those points that were shifted by more than 1.5 sigma in z are then dropped

from the track. The track is then refit and returned to the calling routine.

5.2.12 SUBROUTINE CJZFIT

Author: Curtis A. Meyer

Creation Date: 2 March, 1989.

References:

Call Arguments: None.

Common Blocks Used: cjgloz, cjgain, cbbank, tclift and cblink.

Subroutines Referenced: (zebra) mzlift.

This routine calibrates the czi constants for the jdc. These constants are used to determine the z

position on every wire, and contain the ratio of gains between the +z end and −z end preamplifiers.

The calibration is performed by fitting a line to all tracks found in the r–z plane, and then computing

the deviation in z from the fit track. With this deviation, (∆z), one can extract what the gain

constant should be as:

czi =

[
A+ · (20.+ ∆z)

A−(20.−∆z)

]
These constants are tallied in the zfitcj array of the /cjgain/ common block, and new values

are computed in the CJUPDT routine. Information on an event by event basis is available in

the /cjgloz/ common block. Also, a vertex bank is created for every track, which contains the

projection to r = 0. A track must have more than mhitcj hits to be used by this routine.

5.2.13 SUBROUTINE CJ4PRG

Author: Curtis A. Meyer

Creation Date: 22 April, 1990.

References:

Call Arguments: (*PROB3, *PROB4, LGHLX, LONG, LYR0, LYRN, LG3C).

Common Blocks Used: cblink, cbbank, cjpcal trkprm and cbunit.

Called by: cjcalb.

Subroutines Referenced: tckft3, tckft4, tchlds,

cernlib: prob.

This is a filter routine used to select events of the type

pp→ π+π−π+π−

and

pp→ K+K−π+π−.

The routine first requires that there be a vertex which has exactly four tracks. Then each of these

tracks is required to have at least long hits. Each track is also required to start no later than lyr0

104 Chamber Reconstruction Software

and end no earlier than lyrn. Then the routine requires that the charge at the vertex sum to zero.

If the value of lghlx is .true., the data is taken from the TCTR bank through the pointers in the

TCVP bank. If lghlx is .false., then the data is simply taken from the TCVP data bank. The

initial values of 4–momentum are then loaded into the /cjpcal/ common block, and then a 3–C

kinematic fit is performed, (see TCKFT3). The probability of this is then assigned to the variable

prob3. If the value of lg3c is set .true., then these 3–C values are returned. If not, then a 4–C

kinematic fit is performed, and the resulting momentum and covariance matricies are stored in the

/cjpcal/ common block. Then the probability of this fit is assigned to the variable prob4.

When the variable lghlx is given as .true., then the TCHLDS routine is used to obtain the

3–momentum, and the full 3 by 3 covariance matrix for each track. This routine doubles all errors

associated with the helix parameter ψ0 because no vertex constraint has been placed on the event.

When lghlx is .false., then the covariance matrix is simply diagonal, and taken from the TCVP

data bank. This routine then doubles the errors of all momenta, (quadruples the diagonal of the

covariance matrix).

Chamber Reconstruction Software 105

CBMAIN

t

- CBINIT - · · ·

- CBLOOP - CBPHYS - TCTRAK

t

- TJDCGT

- TPWPOS

- CJCALB

iA

- ZEND - TCDONE - CJDONE

Figure 12: The calling sequence for the calibration code.

106 Chamber Reconstruction Software

iA

t

- TCPATT - · · ·

ICAL=–1

- TCCIRC - · · ·

- CJFITR - · · ·

ICAL=0

- TCCIRC - · · ·

- CJFITR - · · ·

ICAL=+2

- CJZFIT - · · ·

ICAL=+3

- TCCIRC - · · ·

- CJDEDX - · · ·

ICAL=+4

- CJGZFT - · · ·

Figure 13: Flow of chamber calibration software.

Chamber Reconstruction Software 107

References and further Information

• S. Brandt, Datenanalyse .

• R.L. Gluckstern, NIM 24, 381, (1963).

• CERN Program Library F101, (matin2).

• R. Brun, et. al., FFREAD Users Guide. CERN Program Library I302, (1987).

• J. Zoll, Zebra Reference Manual, MZ. CERN Program Library Q100, (1987).

• J. Zoll, Zebra Reference Manual, FZ. CERN Program Library Q100, (1987).

• J. Zoll, Zebra Reference Manual, Dia. CERN Program Library Q100, (1987).

• R. Brun and D. Lienart, HBOOK User Guide, Version 4. CERN Program Library Y250,

(1987).

• G.J. VanDalen, Track fitting methods for the TPC Detector,

TPC–UCR–79–3, (1979).

• A. Weinstein, More SLCFND documentation, and status of tracking,

MARKII/SLC NOTE # 127, (1986).

• A. Weinstein, Yet more SLCFND documentation,

MARKII/SLC NOTE # 132, (1986).

• A. Weinstein, Technical note on tracking resolution for small angle tracks,

MARKII/SLC NOTE # 133, (1986).

• J. Olsson, et. al., NIM 176, 403, (1980).

