
CB–Note 124/Revised

LEAR Crystal Barrel Experiment, PS197

Z–Calibration of the JDC

JDC Calibration Version 1.50/00

Curtis A. Meyer

Carnegie Mellon University

22 July, 1995

0

Contents

1 Introduction 1

2 Z–Calibration Software 1

2.1 User Code for Z–Calibration . 1

2.2 The External Calibration Code . 2

3 Running of the Calibration Code 3

3.1 CBRAWS . 3

3.2 PLOT RAWS . 4

3.3 CBZFIT . 5

3.4 PLOT ZFIT . 9

3.5 FITZCAL . 10

3.6 FITZCAL INT . 11

3.7 PLOTZCAL . 13

3.8 MKTABL . 13

3.9 PRNTAB . 13

4 Z–Calibration of the JDC 14

4.1 Iteration 0 . 14

4.2 Iteration 1 . 14

4.3 Iteration n . 15

i

Z–Calibration of the jdc 1

1 Introduction

This note is a technical description on how the z–calibration of the jdc is performed. It is assumed

throughout this manual that the user is familiar with the Crystal Barrel Reconstruction Software [1]

and in particular the Chamber Reconstruction Software [2], [3]. It is also assumed that the user is

familiar with the minuit program [4] as well as hbook [5] and hplot [6] Finally, it is assumed that

the user is familar with cmz. This manual is not intended for the general users; rather it is meant

as a detailed guide for people wishing to perform a z–calibration of the jdc.

The z–coordinate of a wire in the jdc is obtained from the left and right amplitudes through

the formula,

zi = zi0 + zil ·
AL − αiAR

AL + αiAR
,

(see Calibration Data Banks in reference [2] for details). Each wire is then described by three param-

eters, z0, zl, and α. In the present version of the calibration, the first two can only assume discreet

values, while the third is a continuous number.

• z0 is the center in units of centimeters of the wire relative to the center of the jdc. It can

assume three possible values, −0.92, 0.00 and +0.92. These correspond to the four possible

crimp conditions on the wire.

• zl is the electrical length of the wire in the jdc, (including the resistance of the preamplifiers).

It could assume three possible values, but only two of these can be determined in this procedure,

(the number of wires in the third case is quite small, and the effects of using the wrong length

are probably negligible). The two values are 23.68cm and 22.76cm.

• α measures the relative gain between the two preamps. It is a continuous variable, but physi-

cally should be constrained between 0.91 and 1.10.

Before starting the calibration, it is necessary that the user have the correct version of locater.

The code should be generated using the *CALIB cradle as described in Building the LOCATER code

in reference [2].

2 Z–Calibration Software

There are several different programs used to perform the z–calibration of the jdc. The first is a set

of user subroutines which is linked with the Crystal Barrel Offline software. This generates several

output files which are then passed to later code. In addition to this user code is a plotting package

which examines the resolution seen in the chamber at every iteration. External to this user code,

is a set of programs to perform minuit fits to obtain the calibration, and to display the results of

these fits. This section describes how each of these programs are built. The running of the software

is then described in the next sections.

2.1 User Code for Z–Calibration

The user code for z–calibration is distributed as a cmz card file, user calb.car. This should be

made into a cmz file, user calb.cmz by the user. (Note, the cmz file contains all jdc calibration

programs. In principle, all needed card files, kumac files, and command files are stored in the cmz file,

however much of that information will be repeated here. In order to perform the z–calibration, the

user will need to create several programs from routines stored in the cmz file. There is a program to

determine the time offsets for the flash ADC crates known as cbraws, and a corresponding plotting

program. There is also the z–calibration code known as cbzfit, and its corresponding plot code.

2

In order to create an run these programs, the user will need a set of kumac files, and a set of

command procedures. These can be extracted from the cmz file for the user’s machine by doing the

following under cmz.

CMZ> file user_calb

user_calb> cd shell_script

user_calb> select machine_flag (ALT,IBM,SUN,VAX)

user_calb> set user_calb.kumac -D

user_calb> ctot -Y kuma_cod

user_calb> set plot_calb.kumac -D

user_calb> ctot -Y kuma_plt

user_calb> set calb.exec -D

user_calb> ctot -Y exec_cod

user_calb> set plot.exec -D

user_calb> ctot -Y exec_plt

user_calb> exit

This will have created the following files:

• user calb.kumac which is a generic kumac file for creating either the cbraws or cbzfit

program.

• plot calb.kumac which is a generic kumac file for creating either the plot raws or

plot zfit programs.

• calb.exec which is a command procedure for running either the cbraws or cbzfit programs.

• plot.exec which is a command procedure for running either the plot raws or plot zfit

programs.

In order to create the cbraws program, change the pilot to *rawscod in the user calb.kumac

file. To create the cbzfit code, then change the pilot to *zfitcod. To create the plot raws code,

change the pilot to *rawplt0 in the plot calb.kumac file, and to create the plot zfit program,

change the pilot to *zfitplt in the plot calb.kumac file. The programs are then created by

excuting the kumac files from within cmz

CMZ> exec user_calb.kumac

CMZ> exit

2.2 The External Calibration Code

In addition to the programs described in the previous section, there is a second file which is used

for z–calibration. This is available as a cmz card file, fitzcal.car, which should be converted to a

cmz file, fitzcal.cmz. This file is used to generate several programs, all of which may be needed

for the z–calibration. As before, these are selected using pilots in the files. The possibilities are

given as follows:

• *fitzcal. This generates a program which will read in the calibration file generated by the

cbzfit program, as well as the gain file used in running that program, and perform as minuit

fit on every wire in the jdc. This program is referred to as fitzcal.

• *intera. This is an interactive version of the previous program which allows the user to

selectively fit individual wires, and to vary parameters of the fit. This program is referred to

as fitzcal int.

Z–Calibration of the jdc 3

• *pltzcal This is a plotting program for comparing two different gain file. Normally a reference

file, and the one generated by either of the two previous programs. This program is referred

to as plotzcal.

• *mktabl This is a stand–alone program which will generate a initial gain file for calibration

purpose. This program is referred to as mktabl, and needs no external libraries in linking.

• *prntabl This is a stand–alone program for printing out calibration tables in a readable

format. It needs no external libraries in linking.

In cmz, do the following:

select machine_flag

pilot *...

ctof -P

The resulting code is linked with the kernlib, packlib, and graflib parts of the CERN library.

3 Running of the Calibration Code

The process of calibration is an iterative procedure which consists of running through the previous

programs several times. In order to perform a calibration, a sample of field–off , (B = 0) data

consisting of 70000 to 100000 events is needed. The first pass through the data is to identify

which wires need to be turned off, (see the TJWR data bank and the /tjwire/ common block in

reference [2]). These are then removed from the calibration by deselecting them in the first program,

and the calibration begins in earnest.

This section will describe how to run each of the programs needed for calibration. It will not

describe how the calibration is performed; that will be described in the next section. What is

detailed is the input for each calibration program, the important output from each program, and a

shell script for running each program. All shell scripts are written in C–shell; the user will need to

provide similar scripts for other machines.

3.1 CBRAWS

The cbraws program runs like any normal cboff program. Use the following card file to direct

the job.

WRIT 4 ! Write to the log file.

LIST ! Make a copy on the log file.

FZIN ’XT’ 0 ! Initialize FZIN.

XTAL ’NONE’ ! Turn off Crystal Reconstruction.

GLOB ’NONE’ ! Turn off global tracking.

CHAM ’TRAK’ ’RTRK’ ’RAWS’ ’PATT’ ! Only do through pattern recognition.

USER 6=10000 ! Set the total number of events.

STOP

STOP <===== READING STOPS HERE ========

USER(1) Number of events per run to analyze.

USER(2) First event to analyze.

USER(3) Event to turn on Debug.

USER(4) First run to analyze.

USER(5) Last run to analyze.

USER(6) Total number of events t analyze.

4

Then use the following jdc card file to steer locater.

WRIT 4

LIST

DEBG F F F F F F F F F F

NDBG 0

PREC ’OLPT’ ! Select the old pattern recognition.

OJDC F T ! Select the new jdc

DELZ 23*0.90 24=1.

SY02 2.00E-4

SYDF 2.00E-4

ANGL 84.00 1.0

IAMP 400 1

BMAG -15.0 1.0

ITFC 16*0 17=1

STOP <======= READING STOPS HERE ====

DEBG(1) : Overall debug control

DEBG(2) : Debug unpacking raw data.

DEBG(3) : Debug pattern recognition.

DEBG(4) : Debug circle fits.

DEBG(5) : Debug helix fits.

DEBG(6) : Debug vertex fits.

Both of these card files can be extracted from the cmz file by doing the following:

CMZ> file user_calb.cmz

user_calb> cd raws_instruct

user_calb> set card_raws.crd -D

user_calb> ctot card_crd

user_calb> set card_raws.jdc -D

user_calb> ctot card_jdc

user_calb> exit

3.2 PLOT RAWS

The plot raws program will read in the hbook file created by cbraws, and produce both pictures,

and a starting calibration table for the cbzfit program. The program is run on the Alliant FX/8

in Zürich using the following shell script.

#

Assign logical unit 003 to the histogram file.

Assign logical unit 081 to the output gain file.

#

setenv FOR003 raws.hist

setenv FOR081 jdc_gain_ref.tbl

#

Run the plotting program.

Z–Calibration of the jdc 5

#

plot_raws

#

Deassign the unit

#

unsetenv FOR003

unsetenv FOR081

#

exit(0)

3.3 CBZFIT

In order to run cbzfit as a calibration program, (and not as a general reconstruction program),

one needs to tell the cboff code what is going on. This is done by using the following card file for

cboff, (see Data Cards in reference [1]). (Note: you need to strip off the comments before using.)

WRIT 4 ! Write to the log file.

LIST ! Make a copy on the log file.

FZIN ’XT’ 0 ! Initialize FZIN.

XTAL ’NONE’ ! Turn off Crystal Reconstruction.

CHAM ’TRAK’ ’RTRK’ ’RAWS’ ’PATT’ ! Only do through pattern recognition.

USER 4=1403 5=1434 ! Select run range.

STOP

STOP <===== READING STOPS HERE ========

USER(1) Number of events to analyze.

USER(2) First event to analyze.

USER(3) Event to turn on Debug.

USER(4) First run to analyze.

USER(5) Last run to analyze.

Next, one has to direct locater to perform a calibration. This is done using the following card file,

which is assigned to logical unit 81. (Note: you need to strip off the comments before using.)

WRIT 4 ! Direct a copy to the log file.

LIST ! Make a list on the log file.

DEBG F F F F F F F F F F !

NDBG 0 ! No event to debug.

PREC ’OLPT’ ! Select the old pattern recognition

OJDC F T ! Selcet the new JDC

BXPR 716.0 1.0 ! Give the program a default pressure.

LGT2 T ! Allow bigger errors in r-phi.

SY02 6.25E-4

SYDF 9.00E-4

ANGL 84.00 84.00 ! Rotate the JDC into position.

BMAG 0.0 -15.0 ! Turn off the magnetic field.

ZOFF -0.50 1.00 ! Set nominal z-vertex.

JDCL T ! Turn on Calibration

ICAL 4 ! Calibration mode 4, CJGLOZ.

6

LGWR 1 ! Prevent the list of dead wires from being

! erased by TJTIMI.

ITDF 250 ! Loosen pattern recognition cuts

CLMB 12.0

XSQR 0.060

TMIN 0.020

JGAP 5

DELZ 23*1.50 24=1.0 ! 1-sigma z-errors.

LYVX 8 ! Outermost inner layer of a track.

MTRK 3 ! Minimum number of tracks.

MHIT 9 ! Minimum hits per track.

ZPOS 20.00 ! limit z to +/- 20cm.

ZCUT 6.00 ! Tracks must project to this window.

ZCTT 3.00 ! Fit vertex must be in this window.

ZRIN 0.000 ! r_xy must be larger than this.

ZROT 1.500 ! r_xy must be smaller than this.

ZXYR 0.50 ! Maximum distance of track from x-y vertex.

ZPRB 0.02 ! Fit probability cut.

ZMOV 3.50 ! Maximum allowed shift in z on a wire.

ZAMP 1000.0 ! Minimum amplitude of a hit to be written.

STOP

STOP <======= READING STOPS HERE ====

DEBG(1) : Overall debug control

DEBG(2) : Debug unpacking raw data.

DEBG(3) : Debug pattern recognition.

DEBG(4) : Debug circle fits.

DEBG(5) : Debug helix fits.

DEBG(6) : Debug vertex fits.

DEBG(7) : Debug calibration code.

Both of these card files can be obtained from the cmz file by the following:

CMZ> file user_calb.cmz

user_calb> cd raws_instruct

user_calb> set card_zfit.crd -D

user_calb> ctot card_crd

user_calb> set card_zfit.jdc -D

user_calb> ctot card_jdc

user_calb> exit

Finally, the user will need a starting guess to the z–calibration table. This should have been

generated by the plot raws program, (jdc gain ref.tbl).

The following C–shell script is used to run the z–calibration code on the Alliant FX/8 in Zürich.

Filename: cbcalb_run

Language: Berkeley Unix, C-shell

Author: Curtis A. Meyer

Creation date: 10 February, 1990

Z–Calibration of the jdc 7

References:

Description: This file will run the cbzfit code.

#

Input: card_zfit.crd Steer CBOFF

card_zfit.jdc Steer LOCATER

ref_gain.tbl JDC Gain Table.

FOR021 Raw Data Tape

#

Output: zfit.log Status of the run.

zfit.dbg Possible debug output.

zfit.err Errors encountered in running.

zfit.hist Histogram output, (input to plot_zfit).

CALGLOBZ.DAT Calibration data written by the program,

(input to fitzcal and fitzcal_inter).

#

###

#

Assign the output files.

#

setenv FOR004 zfit.log

setenv FOR007 zfit.dbg

setenv FOR008 zfit.err

setenv FOR010 zfit.hist

#

Assign the input card files, (cf FFREAD).

#

setenv FOR005 card_zfit.crd

setenv FOR081 card_zfit.jdc

#

Assign the jdc_gain file.

#

setenv FOR082 jdc_gain_ref.tbl

#

Assign the raw data tape.

#

setenv FOR021 /dev/exabyte1

#

Run the program

#

cbzfit

#

Deassign all units:

#

unsetenv FOR003

unsetenv FOR004

unsetenv FOR007

unsetenv FOR008

unsetenv FOR010

unsetenv FOR011

8

unsetenv FOR020

unsetenv FOR080

unsetenv FOR081

unsetenv FOR082

#

exit(0)

During the calibration, it will probably be necessary to deselect wires in the jdc. At present, this

has to be done by modifying the user zfit code. The user will have to edit the usinit subroutine,

and modify the section of code which looks like the following. Note that there are a group of wires

in this code which should always be turned off. Leave them alone!

* Turn off bad wires in the chamber:

*

DO 70 ISEC = 1,30

DO 60 ILYR = 1,23

LGWIRE(ILYR,ISEC) = .FALSE.

60 CONTINUE

70 CONTINUE

*

* The following wires are known to be bad from Hardware!

* They should always be turned off.

*

LGWIRE(21, 6) = .TRUE.

LGWIRE(23, 6) = .TRUE.

LGWIRE(16, 9) = .TRUE.

LGWIRE(23,15) = .TRUE.

LGWIRE(11,16) = .TRUE.

LGWIRE(21,16) = .TRUE.

LGWIRE(6,17) = .TRUE.

LGWIRE(21,20) = .TRUE.

LGWIRE(4,24) = .TRUE.

LGWIRE(6,27) = .TRUE.

LGWIRE(16,27) = .TRUE.

*

* Put the bad Wires for the present run period here.

*

*

The first index of lgwire is the layer number, and the second index is the sector number. A wire

is deselected by setting lgwire to .true. for the wire.

There are three important output files from cbzfit. The first is the file calglobz.dat which is

used as input to the fitzcal and fitzcal int programs. This is a packed file containing the wire

number, amplitudes, and fit z–coordinate for all accepted hits. The next file is zfit.log, the log

file from this program. In particular, near the end of this file are statistics on every wire in the jdc.

These can be used to decide which wires are not working. Finally, there is a file zfit.hist, which is

the output from hbook. This file is read in and examined by the plot zfit program.

In running cbzfit on the Alliant FX/8 in Zürich, a data sample triggered on two prongs takes

about 125 ms per event. (NOTE: this is by no means the optimum data sample for z–calibration,

rather the more tracks the better. If one has available a data sample triggered on more tracks, or

Z–Calibration of the jdc 9

even minimum bias, then the calibration will produce much better results if only events with more

than two tracks are used. This can be defined using the MTRK card.)

3.4 PLOT ZFIT

The plot zfit program reads in the zfit.hist file as generated by cbzfit, and fits a gaussian to

the resolution histograms for every wire in the jdc, (690). The results of these fits are then printed

to a file which can be used to decide which wires should be deselected. The program also draws

pictures of many of the histograms, as well as the resolution as seen in one sector, (the sector can

be selected with the parameter iisec in the start of the code). The following shell script is used to

run the program on the Alliant FX/8.

#

Assign logical unit 003 to the zfit.hist file.

#

setenv FOR003 /users/cmeyer/CB/cboff/zfit.hist

#

Run the plotting program.

#

plot_zfit

#

Deassign the unit

#

unsetenv FOR003

#

exit(0)

The program also produces three additional output files, metafile.out, hist.log and hist.dat. The

first is a metafile containing the pictures plotted by the program. The second is an output file for

hbook, and mostly contains stuff from minuit. The final file, hist.dat contains a summary of what

happened on every wire, and in particular, which wires were poorly it. By looking for irregularities

in the data in this file, wires can be deselected. An example output from this file is:

Sector 1 Layer 1 has 1695 entries.

Sector 1 Layer 2 has 2013 entries.

Sector 1 Layer 3 has 1982 entries.

.

Sector 2 Layer 23 has 419 entries.

Mean 0.02978 Sigma 1.60150 Chisq 0.86515E+00

0.08365 0.08281

Sector 3 Layer 1 has 1381 entries.

Mean -0.60100 Sigma 0.88106 Chisq 0.58754E+01

0.02887 0.03152

.

Sector 30 Layer 22 has 0 entries.

Channel not fit due to insufficient data.

Sector 30 Layer 23 has 655 entries.

The quantity plotted as ∆z is defined as:

∆z = zfit − zmeasured,

10

where zfit is the fit value of z on the wire, and zmeasured is the value of z computed with the two

amplitudes and the present gain table.

3.5 FITZCAL

The fitzcal program reads in the calglobz.dat file written by cbzfit, and performs a minuit

fit on every wire to obtain the calibration constant α. During the fit, the program will produce a

file badwires.dat, which is a list of poorly fitted wires, and a new calibration table, new gain.tbl.

At the start of the program, the user is asked to enter the allowed range in α for a wire not

to be written to the badwires.dat file. The nominal values are printed by the program; if they are

acceptable, then the user should enter a negative number for the new value.

Auto-update boundaries on alpha

0.9100 <= ALPHA <= 1.10

Please enter new bounds, (hold=negative) : -1.,1.08

The above input will cause the lower bound to be retained, and the upper bound to be changed to

1.08. If a value of α is found which is outside of this range, then the program will try to improve it

by shifting the center and wire–length to other allowed values. The fact that the program has tried

to shift things will also be printed in the badwires.out file. The following shell script is used to run

the fitzcal program on the Alliant FX/8 in Zürich.

Filename: fit_z.sh

Language: Berkeley Unix, C-shell

Author: Curtis A Meyer

Creation date: 4 July,1989

References:

Description: This shell script will run the non-interactive

z calibration program.

#

Input: CALGLOBZ.DAT Data file written by CBZFIT.

ref_gain.tbl The gain file used by CBZFIT.

#

Output: fit.log The logfile from the program.

fit.out The output file from MINUIT.

debug.out Output from debug prints.

badwires.out List of all poorly fit wires.

new_gain.tbl The new gain table.

#

##

#

Where are we?

#

set Home=‘pwd‘

#

Set up the input files:

#

setenv FOR015 /users/cmeyer/CB/cboff/ref_gain.tbl

setenv FOR034 cbdata/CALGLOBZ.DAT

#

Set up the output files:

Z–Calibration of the jdc 11

#

setenv FOR003 fit.log

setenv FOR004 fit.out

setenv FOR013 $Home/debug.out

setenv FOR014 $Home/badwires.out

setenv FOR016 $Home/new_gain.tbl

#

Run the program

#

/users/cmeyer/CB/cbcalb/fitzcal

#

exit(0)

The following is an example of a badwires.out file. The s/l/n code refers to the sector, layer and

number of data points. The f and f/n are the χ2 and χ2/n of the fit from minuit and alp, z0 and

zl are the three wire parameters, (recall that only α is fit). Note that the program successfully

improved one of the bad fits, (on sector 3, wire 3), but that the other two poor fits were already at

the limits of the center and length, so no improvement was tried. If the user would want to change

any of these wires, or others that one considers poorly fit, then it is necessary to run the interactive

version of this program.

s/l/n 3 3 420 f 231.606 f/n 0.5514

alp 1.1138 z0 0.000 zl 23.680

Fixing s/l 3 3 to -0.9200 22.76

Sector 14 Layer 14 Data 0 NOT FIT !

s/l/n 14 16 298 f 286.288 f/n 0.9607

alp 1.1315 z0 -0.920 zl 22.760

s/l/n 29 13 461 f 383.022 f/n 0.8309

alp 1.1184 z0 -0.920 zl 22.760

Sector 29 Layer 22 Data 0 NOT FIT !

3.6 FITZCAL INT

The fitzcal int program allows the user to try to improve the fits on those wires listed in the

badwires.out file by changing the length and center of individual wires. In principle, it should

not be necessary to run this program. The fitzcal program tries to do what this program does;

however, if the user feels that some of the data is poorly fit, or is unsatisfied with the results of the

previous program, then this program could be used. The program is run using the following shell

script.

Filename: fit_z_i.sh

Language: Berkeley Unix, C-shell

Author: Curtis A Meyer

Creation date: 4 July,1989

References:

Description: This shell script will run the non-interactive

z calibration program.

#

Input: CALGLOBZ.DAT Data file written by CBZFIT.

ref_gain.tbl The gain file used by CBZFIT.

#

12

Output: fit.log The logfile from the program.

fit.out The output file from MINUIT.

debug.out Output from debug prints.

badwires.out List of all poorly fit wires.

new_gain.tbl The new gain table.

#

##

#

Where are we?

#

set Home=‘pwd‘

set cboff=’/users/cmeyer/CB/cboff’

#

Set up the input files:

#

setenv FOR015 new_gain.tbl

setenv FOR034 cbdata/CALGLOBZ.DAT

#

Set up the output files:

#

setenv FOR003 fit.log

setenv FOR004 fit.out

setenv FOR013 $Home/debug.out

setenv FOR014 $Home/badwires.out

setenv FOR016 $Home/fit_gain.tbl

#

Run the program

#

/users/cmeyer/CB/cbcalb/fitzcal_int

#

exit(0)

The program will start by asking the user which data set to fit. The two choices are 0 and 1. Any

other entry will cause the program to write out the gain file and stop. 0 is for sectors 1 to 15, while

1 is for sectors 16 to 30. The program will then read in the calglobz.dat file, and store the data

on the selected sectors. This normally takes a few minutes simply because the calglobz.dat file

is so big. After the data have been loaded, the program will ask for sector and layer numbers. If

either of these is out of range, (sector 1–30, layer 1–23), the program will jump back and inquire

on the data sets. Here the user enters the sector and layer number of a bad wire. In the example

badwires.out file in the previous section, take sector 3, layer 3 with α = 1.1138. Here enter:

3,3 <CR>

The program will then ask to make sure the numbers are correct. If so then it will ask for the new

values of z0 and zl. The nominal set of data is z0 = 0.00 and zl = 21.60. However, if α is larger

than 1.10, then we enter:

-0.667,23.934 <CR>

and if α is smaller than 0.910, we use:

+0.667,22.934 <CR>

Z–Calibration of the jdc 13

The program will then refit this wire, and give the new value of α. If this value is better than

the previous one, (in the range 0.91 to 1.10), then one tells the program to save it, otherwise the

program forgets what it has done, and asks for another wire. After all wires in the selected data set

have been refit, one should enter a sector and layer combination which is out of range, for example:

-1,-1 <CR>

The program will then inquire if it should read in a new data set. If this is not desired, then enter

any integer except 0 or 1, and the program will write of the new gain file fit gain.tbl and stop. This

fit gain.tbl file can then be used as the input for the next iteration of cbzfit.

3.7 PLOTZCAL

The plotzcal program is used to measure the change between calibration tables from adjacent

iterations. It reads in two gain files, and makes a graphical comparison of the two. The pictures

drawn are written to the file metafile.out. The following shell script runs the program:

#

Assign the new table to unit 003

#

setenv FOR003 fit_gain.tbl

#

Assign the old table to unit 004.

#

setenv FOR004 old_gain.tbl

#

Run the program

#

plotzcal

#

#

unsetenv FOR003

unsetenv FOR004

#

exit(0)

3.8 MKTABL

The mktabl program is a stand–alone program which will generate a starting table for the calibra-

tion. Be sure to select real data and not Monte Carlo data before compiling the code (Two similar

parameter statements in the code. If one forgets, then the program will not compile.) In order to

do a calibration, one should always start with the table generated by this program. Starting from

an old table can give bizarre results.

3.9 PRNTAB

The prntab program will print out a gain table is a human readable for. With this output, one

can look for deviations in one sector, or over several adjacent layers in the table.

14

4 Z–Calibration of the JDC

This section describes the steps involved in performing a z–calibration of the jdc. The section

is divided into units called iterations, where each iteration will involve running some or all of the

previous code.

4.1 Iteration 0

As the name implies, iteration zero is what has to be done before calibration can really begin. In

this iteration, one wants to identify the bad wires in the jdc, and turn them off so they will not

destroy later iterations.

Step 1:

Run the cbraws and plot raws programs to generate a starting calibration table for the jdc.

Step 2:

Edit the user zfit code and modify the usinit subroutine so that all wires are allowed. If any

wires are known to be bad, then turn them off. Then create a version of the cbzfit code.

Step 3:

Run the cbzfit code with the gain file created in step one assigned to logical unit 82. This step

takes about 125 ms per event on the Alliant FX/8, so with roughly 100000 events, expect about 3

to 4 cpu–hours. During this step, the user should write a dst tape, and the dst tape can then be

used for all later calibration steps. This reduces by a factor of roughly four the cpu time needed in

later steps.

Step 4:

Run the histogram file from cbzfit through the plot zfit program. The desired output here is

the hist.dat file. In this file one wants to identify all wires which have either a very large σ, (larger

than 2.5 cm), or whose centers are shifted by more than three centimeters. These wires are then

turned off in step 2. One can also look at individual wires by looking at the plot zfit program.

Examples are given on how to plot the ∆z distributions of any wire. It is advisable to repeat steps

2 through 4 at this point to make sure that no wires were missed. Note that all of these iterations

should use the nominal gain table as generated in step 1. In figure 1 is shown what a poorly fit wire

looks like, while figure 2 shows a well fit wire.

4.2 Iteration 1

This step produces the largest improvement in the calibration table. It essentially adjusts all of the

α’s such that all distributions will be centered at zero.

Step 1:

Create a version of the cbzfit code with all bad wires as found in Iteration 0 turned off. Then run

this code using the nominal gain table as generated in the previous iteration. This step will take

between 3 and 4 cpu hours.

Step 2:

Run the calglobz.dat file through the fitzcal program. One should then examine the bad-

wires.out file to make sure that all wires were shifted correctly. On this iteration, this should not

be a problem. Also, when running the fitzcal program, the nominal limits on α are the correct

limits.

Step 3:

Run the plot zfit program to see what the vertex and probability distributions look like. An

example of the generated pictures are shown in figures 3 to 7.

Step 4:

Compare the new calibration table as generated by fitzcal with the starting table by running the

Z–Calibration of the jdc 15

plotzcal program. Also, from this program, one should get an idea of what the limits on α should

be for the next iteration. Example pictures are shown in figure 8.

4.3 Iteration n

This iteration can actually be several iterations, but all are now identical, so they are described as

only one iteration. These iterations all use the cbzfit code from iteration one.

Step 1:

As always, the first step is to run cbzfit. However before starting, one should tighten up some of

the cuts. The following cards, as well as any others deemed necessary, can be changed. Then the

cbzfit code is run.

DELZ 23*1.10 24=1.0 ! 1-sigma errors in z.

ZOFF ! It may be necessary to move the nominal z0.

ZCTT 1.50 ! Z-vertex window, (set from the z-vertex).

ZMOV 2.75 ! Don’t allow the data to be shifted by as much

ZAMP 750.0 ! Take data down to lower amplitudes.

Step 2:

Run the calglobz.dat file through the fitzcal program to generate a new table. If there are

problem wires, the user may have to employ fitzcal int as well.

Step 3:

Compare the input and output tables using the plotzcal to see if we have converged. Has α

stopped varying by much? If so, then we are done, otherwise we need to repeat this iteration.

16

Figure Captions

Figure 1: The ∆z, fit error and pull distributions of a poorly fit wire in the jdc. This wire will

need to be turned off before calibration can proceed. The plotted quantity is the fit value of z minus

the value of z computed from the two amplitudes, and the present gain table. The numbers at the

top of each figure come from a gaussian fit to the distribution. The first is the mean of the fit, and

the second is the sigma.

Figure 2: The ∆z, fit error and pull distributions of a well fit wire in the jdc.

Figure 3: a: The distribution of all σ’s and b: the center of each gaussian fit as per figures 1 and

2. This picture was made after iteration 1. The units are in centimeters.

Figure 4: a: and b: are as in the previous figure. This plot is from after iteration 3.

Figure 5: a: The x and b: y vertex distribution of the fit.

Figure 6: a: The z and b: rxy vertex distribution of the fit. The z distribution plot is used to

assign new values to the ZOFF and ZCTT cards.

Figure 7: a: The χ2 of every fit, and b: the corresponding probability distribution. The input

errors of 1.5cm are clearly too large, and can be lowered in the next iteration.

Figure 8: This figure shows ∆z, (zfit−zmeas), the fit error in z and the pull of the quantity for one

layer in the jdc. This is made after iteration 1. The two numbers printed at the top of each figure

are the mean and sigma of the fit gaussian. Note that the centers are not at zero, this iteration

essentially will shift them there, and later iterations will make only small improvements.

Figure 9: The same as figure 8, except after iteration 3.

Figure 10: This figure shows the distribution in α, zl and z0, and the change in these quantities

after the first iteration.

Figure 11: This is the same as figure 10, except it is after the third iteration. Note that α has

stopped varying.

References

[1] Gunter Folger, CB–Note 121, Offline Reconstruction Software.

[2] Curtis A. Meyer, CB–Note 93, Chamber Reconstruction Software.

[3] Curtis A. Meyer, CB-Note 123, Users Guide for Locater.

[4] F. James and M. Roos, MINUIT, Function Minimization and Error Analysis, Release

89.03, CERN Computer Center Program Library Long Write–Up D506.

[5] R. Brun and D. Lienart, HBOOK User Guide, Version 4, CERN Computer Center Pro-

gram Library Long Write–Up Y250

[6] R. Brun and N. Cremel Somon, HPLOT User Guide, Version 5, CERN Computer Center

Program Library Long Write–Up Y251

[7] H. J. Klein and J. Zoll, PATCHY Reference Manual, CERN Program Library.

[8] M. Brun, R. Brun and F. Rademakers, A Source Code Management System, CMZ,

User’s Guide & Reference Manual.

[9] F. H. Heinsius and T. Kiel, CB–Note 92, Crystal Data Reconstruction Software.

