
CB-Note 138

LEAR Crystal Barrel Experiment, PS197

Kinematic Fitting Software Ver. 3.11/00

Pal Hidas, Gyorgy Pinter

KFKI , Budapest

April 16

th

, 1997

0

Contents

1 Introduction 1

2 Initialization 1

2.1 Hypothesis input . 2

3 Missing particles, bad energy, merged particles 3

3.1 Missing photon . 3

3.2 Missing K long . 4

3.3 Missing neutron . 4

3.4 Missing proton . 4

3.5 Missing neutral particle with mass reset (old) 4

3.6 Missing neutral particle with mass reset (new) 5

3.7 Neutron with bad energy . 5

3.8 Klong with bad energy . 5

3.9 Neutral particle with bad energy and mass reset 6

3.10 Merged pions and etas . 6

3.11 Using photon covariances . 6

4 Vertex �t 7

4.1 Main vertex �t - vertex is unmeasured parameter 7

4.2 Main vertex �t - vertex is measured parameter 7

4.3 Neutral K

�

short

vertex �t . 8

4.4 Neutral K

�

short

vertex �t - 2 vertices . 8

4.5 Charged K

�

short

vertex �t . 9

4.6 Neutral K

�

short

vertex �t with missing K

long

. 9

4.7 Neutral K

�

short

vertex �t with bad K

long

. 10

4.8 Neutral K

�

short

vertex scan . 10

5 Application of the user 10

5.1 Suppression of hypothesis looping . 11

5.2 Suppression of combinatorics . 11

6 Setting beam and target conditions 11

6.1 Fit of reactions in
ight . 11

6.2 Fit of reactions with deuterium target . 11

6.3 Fit of events coming from the collider option 12

7 User Routines 12

7.1 Subroutine CFUSRD . 12

7.2 Logical function CFUSCO . 12

7.3 Subroutine CFUSOU . 14

i

8 Description of routines 15

8.1 Calling sequence of the software . 15

9 Kinematic �t output bank format 15

9.1 The KRES Bank . 15

9.2 The Sub-banks to KRES . 18

10 Particle IDs 20

11 Debugging 20

A An Example Using CBKFIT 20

ii

1 Introduction

CBKFIT is a kinematic �tting package with automatic hypothesis handling and generation

of combinatoric cases of identical particles in the input which reads the Global Tracking

Particle Banks. The user can call it (CALL CFDOFI) from the USER routine of CBOFF

several times in an event. To select the measured particles, suppress some combinations,

make mass preselection and take out the result. There are nontrivial but rewritable user

routines. For old DST-s the user must call the new BCTTKS routine to each PED-s which

imposes energy dependent errors on �t parameters.

The cmz �le consists of four patches. CFCOMMON contains the sequence de�nitions,

see it for the description of variables, CBKFIT contains the �t routines, CBHYPO does

the hypothesis handling and CFUSER yields some examples how to write the user routines.

See the cmz �le for the description of routines as well.

This package can handle 25 particles in the hypothesis 20, 5 and 5 of which are allowed

to be photons, positive and negative tracks respectively.

The output is written in the KRES top bank and its KSUB sub-banks. It is highly

recommanded to use the reference links of both banks to access to the hypothesis words

and particles respectively, because then you can avoid rewriting your code when the leading

part of the banks are changed. These changes are sometimes necessary, e.g. when extra

vertices are introduced.

2 Initialization

To initialize a run one has to

� call CFINIT(n) from USINIT

� include +SEQ,CFCOMS. in all the user routines, no other commons are needed

� add COMMON /CFCSTR/ ICMBPR(n) to USINIT

� put hypothesis input cards on LUN=LHYP (LHYP=32 recently)

� overwrite defaults and set logical variables according to the di�erent cases (see sections

3, 4, 5 and 6) of the �t in USER or after the CFINIT call in USINIT

� for deuterium target set the logical variable CFDEUT to be true in USINIT (after

CFINIT)

� event by event you should �ll the integer array MEASCO with the TTKS ids of

particles which you want to �t (see subsection 7.1)

� call the logical function CFMPRE in the CFUSCO routine as it is also given in the

appendix (the example)

To get a compound statistics one has to

1

� call CFLAST from USLAST

Here n should be greater than the number of particles times the number of combinatoric

cases of all the hypotheses of one event type. It allows to create a lookup table of combi-

natorics at the beginning of a run. For example if you analyze 5 gamma events and try 3

hypotheses as following

ETYP 0 0 0 0 5 0

HYPO G G G G G

HYPO PI0 PI0 G

...

HYPO ETA PI0 G

...

then you have 1 combinatorial case of the �rst hypothesis, 15 cases of the second one

and 30 cases of the third one. You have 46 combinatorial cases and 5 particles so you must

set n to be greater than 230.

2.1 Hypothesis input

There are four types of hypothesis input cards

ETYP event type card :

ETYP i1 i2 i3 i4 i5 i6

where i2, i4 and i6 are not yet used, but must be set to 0 and i1 is the number of

positive tracks, i3 is the number of negative tracks and i5 is the number of photons

in the �nal state to be investigated. One has to start writing one's input with one

of these cards and can study several parallel channels repeating it later with dif-

ferent arguments. i1-i6 are of type CHARACTER*1 in the range 1-9,A,B,C where

A=10,...,C=12.

HYPO hypothesis card :

HYPO par1 par2 ...

where par1, par2, ... are names of particles in the intermediate state (see routine

CFLKUP for de�nitions). You can also use Subroutine CFGTUP(IGEANT,CNAME)

to receive the character variable CNAME used as par1, par2, ... where the input pa-

rameter IGEANT is the integer Geant particle code. Particles can be stable particles

or resonances which decays through several steps into the �nal state. If you have res-

onances on your hypothesis card (see array RBUF in routine CFLKUP) then resolve

them by RES1 resonance cards in the order of appearance.

RES1 �rst level resonance card

RES1 par1 -> par2 par3 ...

2

which resolves resonance par1 appeared in the previous hypothesis card.

RESn nth level resonance card

RESn par1 -> par2 par3 ...

if you still have resonances on a certain level of resonance cards you have to resolve

them in the order of appearance but not mixing di�erent levels until you get to the

�nal state.

END end card must be the last one of the hypothesis input.

You can write several event type cards on your input and you can also write several

hypothesis cards after each of them but the �rst one must be the phase space (the �nal

state without resonances). Do not separate identical particles by another one, if possible,

otherwise you can get combinatorical multiplications. If you want to comment out a line,

use 'C' as the �rst character of the line followed by a blank one.

Example :

ETYP 0 0 0 0 5 0

HYPO G G G G G

HYPO ETA PI0 G

RES1 ETA -> G G

RES1 PI0 -> G G

HYPO ETA OM

RES1 ETA -> G G

RES1 OM -> PI0 G

RES2 PI0 -> G G

ETYP 1 0 1 0 4 0

HYPO PI+ PI- G G G G

END

3 Missing particles, bad energy, merged particles

In the basic case (CASE=1) charged and neutral particles are �tted without vertex �t and

missing particles or energies. Resonance (mass) constraints are allowed.

3.1 Missing photon

In this case (CASE=2) both the momentum and the energy is missing. To do a �t like this

one has to

� set the logical variable MISGAM to be true

� include hypothesis cards of the new event type on the hypothesis input

3

3.2 Missing K long

In this case (CASE=2) both the momentum and the energy is missing. To do a �t like this

one has to

� set the logical variable MISSKL to be true

� include hypothesis cards of the new event type on the hypothesis input

The K long (KL) must be the last particle on the hypothesis card. Furthermore it must

not be included in any resonance cards. For the event type K long is regarded as photon.

3.3 Missing neutron

In this case (CASE=2) both the momentum and the energy is missing. To do a �t like this

one has to

� set the logical variable MISNEU be true

� include hypothesis cards of the new event type on the hypothesis input

The neutron (N) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards. For the event type neutron is regarded as photon.

3.4 Missing proton

In this case (CASE=2) both the momentum and the energy is missing. To do a �t like this

one has to

� set the logical variable MISPRO be true

� include hypothesis cards of the new event type on the hypothesis input

The proton (P) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards.

3.5 Missing neutral particle with mass reset (old)

This is a generalization to do �ts with missing neutral particle with a mass set by the user.

Please be careful with the mass set and always check the error message �le. The mass

should be di�erent from any of the particle masses in CFLKUP. If not so just change the

value of sixth digit. In this case (CASE=2) both the momentum and the energy is missing.

To do a �t like this one has to

� set the real variable CFMISM to have the required mass what should be di�erent

from zero

� to name the particle as X on the hypothesis cards

4

� include hypothesis cards of the new event type on the hypothesis input

The particle (X) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards.

3.6 Missing neutral particle with mass reset (new)

This is a generalization to do �ts with missing neutral particle with a mass set by the user.

Please be careful with the mass set and always check the error message �le. The mass

should be di�erent from any of the particle masses in CFLKUP. If not so just change the

value of sixth digit. In this case (CASE=11) both the momentum and the energy is missing.

To do a �t like this one has to

� set the real variable CFMISX to have the required mass what should be di�erent from

zero

� set the real array CFMIER(1/3/6) to be the "error squared of the missing particle

parameters" the defaults are (1.e-3,1.e-3,3.) for (�,�,

p

(E))

� to name the particle as X on the hypothesis cards

� include hypothesis cards of the new event type on the hypothesis input

The particle (X) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards.

3.7 Neutron with bad energy

In this case only the energy is missing (CASE=3) but you know the direction of the mo-

mentum. To do a �t like this one has to

� set the integer variable BADNEU to the TTKS id of the neutron (typically 1 or 2

crystal PED with low energy)

� include hypothesis cards of the new event type on the hypothesis input

The neutron (N) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards. For the event type neutron is regarded as photon. Also

in MEASCO the TTKS id of the neutron should be the last.

3.8 Klong with bad energy

In this case only the energy is missing (CASE=3) but you know the direction of the mo-

mentum. To do a �t like this one has to

� set the integer variable BADKL to the TTKS id of the Klong

� include hypothesis cards of the new event type on the hypothesis input

5

The Klong (KL) must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards. For the event type Klong is regarded as photon. Also

in MEASCO the TTKS id of the Klong should be the last.

3.9 Neutral particle with bad energy and mass reset

In this case only the energy is missing (CASE=12) but you know the direction of the

momentum. To do a �t like this one has to

� set the integer variable BADXCF to the TTKS id of the badly measured particle

� set the real variable CFMISX to have the required mass what should be di�erent from

zero

� to name the particle as X on the hypothesis cards

� include hypothesis cards of the new event type on the hypothesis input

The particle X must be the last particle on the hypothesis card. Furthermore it must not

be included in any resonance cards. For the event type X is regarded as photon. Also in

MEASCO the TTKS id of the X should be the last.

3.10 Merged pions and etas

You can directly �t �

�

s and �s found by PI0FND. To do this one has to

� set the integer variable NPI0CF to the number of merged �

�

s and �s used

� �ll the TTKS ids of merged �

�

s and �s to the integer array MERPI0(NRMAX)

� include these ids also in MEASCO as all other measured particles.

� exclude from MEASCO the ids of photons coming from these pions

The merged �

�

s and �s should be the last particles on the hypothesis input, also in

MEASCO with the same ordering as in MERPI0. You can include these particles also in

resonances. Combinatorics is not yielded for them by the �tter, the user is supposed to do

it by repeating hypotheses on the hypothesis input or simply permutating MEASCO and

MERPI0.

3.11 Using photon covariances

Originally covariances of photons were not used in the �tter, but you can use them now in

CASE=1,2,3,6. To do this

� set the logical variable CFGCOV be true

6

4 Vertex �t

In version 3.00/00 new main and secondary vertex �ts were introduced. Formerly in

CASE=4 and 5 the vertex coordinates were regarded as unmeasured parameters (e.g. their

error was in�nite) and only the square root of energy of the particles was �tted. This

resulted in an incorrect vertex distribution because the vertex was also corrected when the

angular variables should have been done. In the z-vertex �t the problem even appeared

in the con�dence level, because the �tter could not improve the bad � measurement by

the vertex move along the z-axis. So from the version mentioned above � also used in the

CASE=4 z-vertex �t. This improves the con�dence level a lot.

Introducing � in this method leads to singularity, because a vertex shift or a simulta-

neous � shift has the same result on the constraints. This problem can be avoided using

the vertex coordinates as measured variables (e.g. introducing them into the covariance

matrix). For the x and y coordinates we have a real measurement, because we set the

beam (of course with an error) at x=y=0. For z the �tter does �rst a Newton- iteration,

which "eats" one (the P

z

) constraint, e.g. decreases the number of constraints by one.

The CASE=6 and 7 vertex �ts uses then all measured parameters and handles the vertex

coordinates as measured. The result is a realistic vertex distribution and a somewhat more

smooth con�dence level distribution.

The users are recommended to avoid using CASE=5 (use CASE=7 instead) and to

prefer CASE=6 instead of CASE=4, but in this case do a comparison test �rst.

4.1 Main vertex �t - vertex is unmeasured parameter

For CASE=4 only the z coordinate, for CASE=5 all x, y and z coordinates are �tted and

resonances are not allowed, but subsequent high constraint �ts are done with the vertex

found by this �t. The vertex coordinates are parameters with in�nit error and one or

three momentum constraints are used to calculate them so these �ts are 3C and 1C �ts

respectively. For CASE=5 only the square root of energy is used as �t parameter, so

angular pulls are unavailable. For CASE=4 phi also used. Resonance (mass) constraints

and charged particles are not allowed in neither CASE=4 nor CASE=5. To do a �t one

has to

� set the logical variable CFVRTZ be true for CASE=4

� set the logical variable CFVERT be true for CASE=5

4.2 Main vertex �t - vertex is measured parameter

For CASE=6 only the z-coordinate, for CASE=7 the full vertex is �tted. The vertex

parameters are regarded as measured parameters. The x and y coordinates are really

measured variables, because we know where the beam is. In addition a newton iteration

is made to �nd an initial value for the vertex z-coordinate. This uses the really measured

momenta, so the z-vertex measurement is not independent from the measurement of the

7

particle parameters, but uses the z-momentum constraint to "measure". That is why both

CASE=6 and 7 are 3C �ts. All the measured particle parameters (phi, theta, square root

of energy) are �tted. The angular parameters counted with respect to the origin of the

coordinate system, but not to the �tted vertex. Resonance (mass) constraints are allowed,

but charged particles are not. To do a �t one has to

� set the logical variable CFVERZ to be true for the z-vertex �t, or

� set the logical variable CFVERA to be true for the full vertex �t

� set the real array CFVTER(1/2/3) to be the error squared of the "vertex measure-

ment", the defaults are 0.03 for all of them

4.3 Neutral K

�

short

vertex �t

This is CASE=8 which �ts the K

�

short

! �

0

�

0

hypothesis with the secondary vertex pa-

rameters and any other particles coming from the �xed main vertex. Before the �t a 3

parameter newton iteration is made to �nd an initial value for the vertex coordinates using

the momentum conservation for the K

�

short

decay vertex. All the measured particle param-

eters (phi, theta, square root of energy) are �tted. The angular parameters counted with

respect to the origin of the coordinate system, but not to the �tted vertex. Resonance

(mass) constraints and charged particles are allowed, but missing particles are not. The

K

�

short

which decays in the neutral mode should be the last particle on the hypothesis card.

Keeping e.g. �

0

K

�

short

K

�

short

in mind, where the �rst kaon decays into two charged pions

correction of the momenta of these two particles is made with respect to the vertex found

by LOCATER. To do a �t one has to

� set the logical variable CFKS00 to be true

� set the real array CFVTER(1/2/3) to be the error squared of the "vertex measure-

ment", the defaults are 1.0 for all of them

� set the logical variable CFCHCR to be true if you want to switch the charged correc-

tion on

� write a hypothesis card with a last KSH decaying into the neutral PI0 PI0 mode

(another "charged KSH" is allowed

4.4 Neutral K

�

short

vertex �t - 2 vertices

This is CASE=13 which based on CASE=8 The two K

�

short

s should be the last particles on

the hypothesis card. To do a �t one has to

� set the logical variable CFKSKS to be true

� set the real array CFVTER(1/2/3) to be the error squared of the "vertex measure-

ment", the defaults are 1.0 for all of them

8

� set the logical variable CFCHCR to be true if you want to switch the charged correc-

tion on (for the �xed main vertex)

� write a hypothesis card with two last KSHs decaying into the neutral PI0 PI0 mode

4.5 Charged K

�

short

vertex �t

Well this is not really true. Charged vertices always should be �tted by LOCATER. Parallel

with this version a new TCVERT routine is written for LOCATER to �t not only the main,

but also secondary vertices. Untill it is not an o�cial part of LOCATER, you can �nd it

in //CBKFIT/CFSTOR, from which you can copy it in your analysis �le, but please never

compile this patch when you create an object library (e.g. you should not include this

patch name in your kumac �le). For CBKFIT this is a normal CASE=1 �t, but it uses

the information yielded by LOCATER if you use the CFCHCR option. You can �t here X

K

�

short

K

�

short

, where X can be any group of particles and resonances. To do a �t one has to

� set the logical variable CFKSCC to be true

� set the logical variable CFCHCR to be true if you want to switch the charged correc-

tion on (this you can set parallel with any options and cases of CBKFIT, not only for

the CFKSCC case)

� �ll the integer IDRVCF array with the TCVX numbers of (maximum of 10) vertices,

which you want to drop, e.g. do not want a charged correction for them (this is

necessary when there are several vertices found which contain the same tracks)

4.6 Neutral K

�

short

vertex �t with missing K

long

This is CASE=9 which combines the CASE=8 secondary vertex �t with the CASE=11

missing particle �t. The K

�

short

which decays in the neutral mode should be the next to

last particle on the hypothesis card, and the K

long

should be the last one. To do a �t one

has to

� set the logical variable CFKSKM to be true

� set the real array CFVTER(1/2/3) to be the error squared of the "vertex measure-

ment", the defaults are 1.0 for all of them

� write an appropriate ... KSH KL hypothesis card

� set the real array CFMIER(1/3/6) to be the "error squared of the missing particle

parameters" the defaults are (1.e-3,1.e-3,3.) for (�,�,

p

(E))

9

4.7 Neutral K

�

short

vertex �t with bad K

long

This is CASE=10 which combines the CASE=8 secondary vertex �t with the CASE=12

missing energy particle �t. The K

�

short

which decays in the neutral mode should be the

next to last particle on the hypothesis card, and the K

long

should be the last one. To do a

�t one has to

� set the integer variable KSKBCF to be the TTKS id of the K

long

, in MEASCO this

id should be the last one

� set the real array CFVTER(1/2/3) to be the error squared of the "vertex measure-

ment", the defaults are 1.0 for all of them

� write an appropriate ... KSH KL hypothesis card

� set the real array element CFMIER(6) to be the "error squared of

p

(E) of the K

long

", the default is 3.

4.8 Neutral K

�

short

vertex scan

This is a CASE=1 basic �t which includes some tuning of the data to the presumed neutral

secondary vertex. No missing particle is allowed here, i.e. there must be another charged

K

�

short

in the event, whose charged pion paparmeters you can also tune to that second

secondary vertex (called charged correction in section 4.5). To do a �t like this one has to

� set the logical variable CFSCAN to be true

� set the real array VRTKCF(1/2/3) to be the presumed

� put the neutral KSH as the last particle on the hypo card

I also propose to supress the combinatorics (see section 5.2).

5 Application of the user

Following the instructions of this section you may re�ll the commons in the same event. If

so you must

� set the logical variable CFORCE to be .TRUE.

which forces CBKFIT to re�ll the commons from the TTKS bank for every CFDOFI call.

The default is to �ll them once for each event.

10

5.1 Suppression of hypothesis looping

If you do not want the �tter to loop over all the hypotheses you can select an individual

hypothesis

� setting the integer variable CFTAKH to the hypothesis number according to the

ordering on the hypothesis input.

This is the hypothesis number of the actual event type. If CFTAKH=0 (default) then

the �tter loops over all the hypotheses. You can change the value of CFTAKH and call

CFDOFI several times in an event.

5.2 Suppression of combinatorics

If a hypothesis has plenty of combinatoric cases then it may be economic to preselect

them by the user. To select individual ordering of particles and so suppress the automatic

generation of the combinatoric cases one has to

� set the logical variable CFSUPC to .TRUE.

� set the integer array NXTCMB to the expected order of particles

See subsections 7.1 and 7.2 of this manual for the meaning of the NXTCMB, BASEC and

MEASCO arrays.

6 Setting beam and target conditions

The default is a beam stopped in hydrogen e.g. neutrons missing from the target.

6.1 Fit of reactions in
ight

If you want to �t events with a beam of nonzero momentum then you have to

� set the real variable CFBEAM to the beam momentum

You can use all the other options as you like.

6.2 Fit of reactions with deuterium target

If this case you must

� set the logical variable CFDEUT to be .TRUE.

You can use all the other options as you like but you need either MISNEU or MISPRO

which restrict this freedom.

11

6.3 Fit of events coming from the collider option

� set the logical variable CFCOLL to be .TRUE.

� set the logical variable CFBEAM to the momentum of the proton and antiproton

beam (if it is zero you have annihilations at rest)

You can use all the options of CBKFIT.

7 User Routines

You can call the main �t program CFDOFI several times for an event which calls user

routines to allow for control. Simple examples are given the CMZ �le. It loops over all

the hypotheses of the event type set by the user particle selection routine CFUSRD. If you

want to reselect particles then call CFDOFI again and in CFUSRD change MEASCO, the

event type, etc.

cfusrd particle selection

cfusco combinatorics control, mass preselection

cfusou take output after a succesful �t

7.1 Subroutine CFUSRD

Arguments: IRET

This routine is called once for each CFDOFI call by the routine CFREA which takes

particles from CBBANK to �t common blocks. You can select particles �lling up the array

MEASCO with the accepted particle numbers of the TTKS bank. You may reorder the

particles if you wish. Set NPOS, NNEG and NNE to the number of positive, negative and

neutral particles accepted from the TTKS bank. NPOS should be equal to NNEG or in the

case of annihilation with neutron NNEG-1. Set IRET to be negative if you do not want to

analyse this event and zero if yes.

For example if ttks contains 8 particles of particle ids 1 to 8 and you want to drop 2

particles namely particle 3 and 7 then you have to �ll the following numbers to MEASCO

: 1, 2, 4, 5, 6, 8, and the number of particles will be set to 6 automatically.

7.2 Logical function CFUSCO

Arguments: IHY

This routine is called once for each combinatorial case generated automatically by the �tter

from the hypothesis input. IHY is the hypothesis sequence number of the actual event type

in the input. Set CFUSCO to false if you want to drop the combination which appears in

the array NXTCMB.

12

It is recommended to do here a mass preselection calling the function CFMPRE. See

the example in appendix A. If you do not want to be an exceptional expert of CBKFIT,

you can skip the rest of this subsection.

The particle ids are reordered according to the actual hypothesis what basic combina-

tions are stored in the array BASEC(I,IHY) in order of appearance on the hypothesis card.

BASEC refers to the content of MEASCO. A resonance is replaced by the resonance card

but the order of particles remaines the same. Nontrivialities occur because of the di�erent

charge of particles. This array is �lled up by CBKFIT but you must know the method if

you want to switch o� the combinatorics. First it takes the �rst particle of the �nal state,

say it is a negative particle. Then it looks for the �rst negative particle in MEASCO, say

it is the 4th. So the �rst element of BASEC is 4. Then it takes the second particle of the

�nal state, say it is a photon. Then it looks for the �rst photon in MEASCO, say it is the

�rst. So the second element of BASEC is 1. Then it takes the third particle of the �nal

state, say it is a negative particle again. Then it looks for the second negative particle in

MEASCO, say it is the 5th. So the third element of BASEC is 5. And so on. Follow this

method to set up NXTCMB if you switch o� combinatorics as described in 5.2 .

Example 1: if the hypothesis is

HYPO G G G G G

then BASEC contains 1, 2, 3, 4, 5

Example 2: if the hypothesis is

HYPO OM OM

RES1 OM -> PI0 G

RES1 OM -> PI0 G

RES2 PI0 -> G G

RES2 PI0 -> G G

then BASEC contains 1, 2, 3, 4, 5, 6

Example 3: if the hypothesis is

HYPO RO+ RO-

RES1 RO+ -> PI+ PI0

RES1 RO- -> PI- PI0

RES2 PI0 -> G G

RES2 PI0 -> G G

and MEASCO contains ttks ids which have charges of +, -, 0, 0, 0, 0 then BASEC contains

1, 3, 4, 2, 5, 6 because the hypothesis in the �nal state is PI+ G G PI- G G

The array NXTCMB(I) contains the next combination of the BASEC content so if

you want to reach ttks ids then take MEASCO(NXTCMB(I)). In the third example

MEASCO(NXTCMB(2)) and MEASCO(NXTCMB(3)) give the ttks id of photons coming

from the �

�

of the �

+

.

13

The arrays FITMAS(I,IHY) and FITCHA(I,IHY) contain the masses and the charges

of particles used by the �t in the same order as they are stored in BASEC and permutated

by NXTCMB.

The array RESMAS(I,IHY) containes the masses of resonances in order of appearance

on the hypothesis card. In this sense an ! resonance starts �rst itself then the �

�

coming

from it so the order of resonances in the second example will be ! �

�

! �

�

.

The array RDAUGH contains the daughter particles of resonances. RDAUGH(0,I,IHY)

gives the number of elements of the ith resonance in RESMAS. RDAUGH(I,J,IHY) gives

the NXTCMB/BASEC index of the jth element of the ith resonance that is the ttks ids

of the daughter particles of a resonance are MEASCO(NXTCMB(RDAUGH(I,J,IHY))) .

7.3 Subroutine CFUSOU

Arguments: IHY,GODNES

This routine is called once for each combinatoric case of each hypothesis, regardless whether

�t was tried or not, because of preselection, or the �t was succesful or not, to allow to take

the results. The integer variable CFCODE(100) in the common area CFTEST describes

the termination of the �t :

element :

1 = 1 : succesful fit, 0 : fit not tried, -1 : unsuccesful

2 = 0 : , -1 : GODNES < CUTCL

3 = 0 : , -1 : dropped by CFMPRE

4 = last iteration step started

5 = iteration stop parameter * 10^9 (should be < 1000)

6 = chisquared * 1000

...

long term parameters

14 = number of combinations generated

15 = number of high probability fits (with respect to CUTCL)

16 = number of low probability fits (with respect to CUTCL)

17 = number of unsuccesful fits

18 = number of fits tried

19 = 0 : track errors are taken from TTKS else : not

20 = 0 : PED errors are taken from TTKS else : not

21 = number of low c.l. fits 1st hyp. no missing particle

22 = number of high c.l. fits 1st hyp. no missing particle

23 = number of low c.l. fits 2nd hyp. no missing particle

24 = number of high c.l. fits 2nd hyp. no missing particle

25 = number of low c.l. fits 3rd hyp. no missing particle

26 = number of high c.l. fits 3rd hyp. no missing particle

27 = number of low c.l. fits 4th hyp. no missing particle

28 = number of high c.l. fits 4th hyp. no missing particle

14

29 = number of low c.l. fits 1st hyp. missing particle

30 = number of high c.l. fits 1st hyp. missing particle

31 = number of low c.l. fits 2nd hyp. missing particle

32 = number of high c.l. fits 2nd hyp. missing particle

33 = number of low c.l. fits 3rd hyp. missing particle

34 = number of high c.l. fits 3rd hyp. missing particle

35 = number of low c.l. fits 4th hyp. missing particle

36 = number of high c.l. fits 4th hyp. missing particle

the rest has not been �lled yet.

IHY is the hypothesis sequence number at the actual event type. GODNES is the

goodness of the �t. All the other parameters are found in the common blocks. See CFUSCO

for the description of arrays. If you want to save this succesful �t into a kres subbank then

set FPUTZ=.TRUE. in this routine. If you want to reject �ts having a con�dence level less

than a certain value then set CUTCL to this value.

8 Description of routines

8.1 Calling sequence of the software

See �gure 1.

9 Kinematic �t output bank format

The results of the kinematic �tting are stored in a zebra structure. The name of the top

bank is kres, the link pointing to it is lkres. The di�erent hypotheses are stored in the

data part of the header bank. Each hypothesis has a reference link pointing to it. If the

logical variable FPUTZ is set to be .TRUE. in the user output routine CFUSOU then the

actual �t results are stored as ksub subbanks to kres, i.e. structural link 1 points to the

the �t results for hypothesis 1. If there are several good �ts for one hypothesis, the banks

for these �ts form a linear chain.

9.1 The KRES Bank

This bank stores all hypotheses in the data part, and links to the results as structural links.

Reference links point to the di�erent hypotheses within the data part of this bank.

The hypotheses are stored in a compact but still readable format. There is one word

per particle, including decaying particles. Each particle is identi�ed by its geant particle

id. Decaying particles create a 'vertex' with an id. Also each particle is created at a vertex

with a given id. The �rst vertex is called 0. The word describing one particle has these

three numbers added together

id + 100 � (vertex id) + 10; 000 � (id of decay vertex)

15

CFINIT

q

-

CFZINI

q

-

CFNINI

-

CFNEXT

-

CFHYPR

CFDOFI

q

-

CFREA

q

-

CFUSRD

-

CFFILC

-

CFPINI

-

CFDOHY

q

-

CFPINH

-

CFPECO

q

-

CFDOPE

-

CFUSCO

-

CFINI2

-

CFRESn

-

CFSELE

-

CFNSQD

q

-

CFKINI

-

CFUPD

-

CFUSOU

-

CFZOUT

Figure 1: Calling sequence of the kinematic �tting software

16

Using this convention, stable particles are easily identi�ed by having a hypothesis word less

than 1000. For example:

�pp! �

+

�

�

! ! �

+

�

�

�

�

 ! �

+

�

�

would have for the 6C �t (�

�

, ! used as constraints) the following hypothesis :

8 �

+

9 �

�

10060 !

20107 �

�

, from !

101
, from !

201
, from �

�

201
, from �

�

Where the ! has id 60, comes from vertex 0 and created vertex 1, the �

�

has id 7, was

creted at vertex 1, and creates vertex 2, the
 has id 1, the �rst one originates from vertex

1, the next two from vertex 2, �nally �

+

has id 8, and �

�

has id 9, and they both come

from vertex 0.

The order of hypothesis words so corresponds to the order of appearance on the HYPO

and RES1,RES2,... cards, i.e. resonances and stable particles are mixed, but "follow time

evolution".

The kres bank has a leading part and a trailing part (see the zebra manual for def-

initions). You can acces to the Ith word of the leading part in the usual IQ(LKRES+I)

way, then the trailing part is repeated according to the number of hypotheses. To make it

easy to acces to the trailing part, i.e. the hypothesis words, use the reference links. There

are as many reference links as the number of hypotheses you wrote on the hypothesis input

(number of HYPO cards).

You can acces to the Jth hypothesis, i.e. the �rst word of the Jth cycle of the trailing

part as IKRES=IQ(LQ(LKRES-IQ(LKRES-2)-J)), and then for this hypothesis :

� IQ(IKRES) is the number of degrees of freedom

� IQ(IKRES+1) is the number of stored �ts

� Q(IKRES+2) is the con�dence level cuto�

� IQ(IKRES+3) is the number of particles (including resonances and missing particles

i.e. it is NPART+NRES), i.e. the number of hypothesis words

� IQ(IKRES+4) is the �rst hypothesis word

� IQ(IKRES+3+I) is the Ith ...

The kres bank has then the following as given in table I.

17

9.2 The Sub-banks to KRES

The subbanks of kres (called ksub) store the results for the �ts. There is exactly one

bank per �t. The con�dence level CL and the �

2

are available for every �t. For each �nal

state particle the four momentum and the pulls for the measured variables are kept. For

resonances pulls are set to be zero. The ordering of the particles is identical to that is the

hypothesis description in the bank kres. The details of the bank contents are given in

Table II.

The address of the sub-bank chain containing the results of the Jth hypothesis is

LQ(LKRES-J), the number of the elements in the linear chain (e.g. the number of combi-

natorial cases which yield good CL for this hypothesis) is IQ(LQ(LKRES-IQ(LKRES-2)-

J)+1). If there are more than one succesful �ts for this hypothesis, then the next link of

the �rst bank (LQ(LQ(LKRES-J))) di�ers from zero.

You can loop over the good �ts of the Jth hypothesis with the following code :

NGF(J)=IQ(LQ(LKRES-IQ(LKRES-2)-J)+1)

JKRES=LQ(LKRES-J)

DO 10 K=1,NGF(J)

.

.

.

here the address of the bank containig the �t results is JKRES

.

.

.

JKRES=LQ(JKRES)

10 CONTINUE

and you can check that after the DO loop JKRES=0 .

The KSUB bank has a leading and a trailing part (see the ZEBRAmanual for de�nitions.

You can access the Ith word of the leading part in the usual Q(JKRES+I) way, i.e.

� Q(JKRES+1) is the con�dence level of this �t

� Q(JKRES+2) is the chisquared

� Q(JKRES+3) is the �tted vertex x-coordinate

� Q(JKRES+4) ...

� Q(JKRES+9) is number of particles (identical to IQ(IKRES+3) of the previous para-

graph describing the KRES top bank)

18

Inside the KSUB bank you can loop over the particles with the help of the reference

links of this bank. There are no structural links in this bank (because there are no sub-

banks to it) so you can acces to the Ith particle (to the word preceeding its TTKS id) as

KKRES=IQ(LQ(JTTKS)-I), therefore

� IQ(KKRES+1) is the TTKS id of the particle

� Q(KKRES+2) is the mass

� Q(KKRES+3) is the energy

� Q(KKRES+4) is p

x

� Q(KKRES+5) ...

The Ith particle here corresponds to the Ith hypothesis word of the previous subsection

(i.e. to IQ(IKRES+3+I)) describing the KRES top bank.

19

10 Particle IDs

I give here a list of the particles id's, which are used to describe the hypothesis for the �ts.

These follow the geant convention including Crystal Barrel extensions.

1
 G

2 e

+

E+

3 e

�

E�

4 �

5 �

+

MU+

6 �

�

MU�

7 �

�

PI0

8 �

+

PI+

9 �

�

PI�

10 K

�

long

KL

11 K

+

K+

12 K

�

K�

13 n N

14 p P

15 �p PB

16 K

�

short

KSH

17 � ETA

57 �

�

(770) RO0

58 �

+

(770) RO+

59 �

�

(770) RO�

60 !(785) OM

61 �

0

(957) ETAP

? �(1020) FI

11 Debugging

You can set some logical variables to be true anywhere in your user program, globally or

selectively and you get some more information about the happenings is the �tter

� CFTRSU yields one printed line per succesful �t

� CFTRHY traces the fait of all hypotheses and combinatoric cases

� CFDBUG yields a very detailed printout

A An Example Using CBKFIT

After many many questions to the Pal Hidas regarding cbkfit, I �nally got it running. I

would be the �rst to admit that the startup was rather painful, but the rewards are well

20

worth the trouble. The package is a very powerful tool, and in the end quite easy to use.

However, as my start up e�ort was so large, I felt it would be useful to append this to the

cbkift manual to save Pal the di�culty to responding to my questions again and again.

Any questions about this appendix should be addressed to Curtis, as I would be responsible

for any misinformation herin.

What I am going to describe here is a detailed example for �tting a mixed charged and

neutral �nal state. I am interested in the �nal state �

+

�

�

6
, and in particular in �

+

�

�

3�

�

.

The following will be a description of exactly how I use cbkfit.

First and formost, one needs the hypothesis cards, which should be assigned to logical

unit 32, (de�ned as lyhp in cbunit). For my case I �rst ask for the �

+

�

�

3�

�

hypothesis,

however, as a background I consider �

+

�

�

2�

�

�. Finally, I am interested in the results of

the simple 4{C �t to �

+

�

�

6
. To examine the three hypothesis, I use the following cards:

ETYP 1 0 1 0 6 0

HYPO PI+ PI- PI0 PI0 PI0

RES1 PI0 -> G G

RES1 PI0 -> G G

RES1 PI0 -> G G

HYPO PI+ PI- PI0 PI0 ETA

RES1 PI0 -> G G

RES1 PI0 -> G G

RES1 ETA -> G G

HYPO PI+ PI- G G G G G G

END

Following the input cards, it is necesary to properly initialize cbkfit. This is done by

calling the cfinit routine from my usinit routine. There is also one cmz keep which is

interesting at this point, +cde,cfcoms, and it is necessary to provide su�cient memory in

the /cfcstr/ common block. Su�cient memory is de�ned as the number of combinatorical

cases times the number of particles. I have eight particles, (�

+

�

�

6
). Also, for the three{�

�

hypothesis, there are 15 possible ways to form this. For the second, there are 30 ways to

form this, and for the third, there is exactly one. This gives 46 possible combinations. This

means we need to have at least 368 words in the common block. One other thing which can

be set here is the value of cutcl in the cfcoms keep. This is a probability cuto� that

determines which combinatorical cases get sent to the cfusou routine. As I would like to

examine the con�dence level of all �ts, I set this to zero. I will then make my con�dence

level decesion entirely in the cfusou routine.

SUBROUTINE USINIT

...

INTEGER NWRD

PARAMETER (NWRD=1000)

COMMON /CFCSTR/ ICMBPR(NWD)

+CDE,CFCOMS.

...

CALL CFINIT(NWRD)

21

CUTCL = 0.0

...

END

The next thing which I need to provide is the cfusrd routine. If I always wanted to

use all the particles in the TTKS banks, then this routine could be a dummy. However,

in my case I have some apriori information that certain of the unmatched photons should

really be treated as charged split{o�s, and ignored by cbkfit. We will also assume that

the list of valid global tracking numbers is passed through a common block in the variable

listus(8), (I always should have eight particles I need to use.)

These global tracking numbers need to be copied into the measco array. However, as

it is not true that I always use all the particles in global tracking, I �rst need to zero the

measco array. Also, because I have changed measco, it is also necessary to make sure that

the number of positive, negative and neutral particels in measco are recorded correctly in

the npos, nneg and nne variables.

SUBROUTINE CFUSRD(IRET)

...

COMMON /USJUNK/ LISTUS(8)

+CDE,CFCOMS.

...

CALL VZERO(MEASCO,NPMAX)

...

DO 100 I = 1,8

MEASCO(I) = LISTUS(I)

100 CONTINUE

...

NPOS = 1

NNEG = 1

NNE = 6

...

END

The next routine that I could provide is cfusco. However, as I do not want to supress

any of the combinatorical cases, I just have a dummy routine.

LOGICAL FUNCTION CFUSCO(IHY)

+SEQ,CFCOMS.

LOGICAL CFMPRE

CFUSCO = .TRUE.

IF(.NOT.CFMPRE(IHY)) THEN

CFUSCO=.FALSE.

RETURN

ENDIF

RETURN

END

22

Finally, I need to provide a cfusou routine to identify which combinatorical cases should

be saved in a kinematic �t bank. In my case, I want to save all cases of hypothesis one and

two which are larger than a cuto� p7ctus. I never want to save the third hypothesis, but

I want to histogram it. For every combination I want to save, I must set fputz .true.,

while for those that I want to reject, I set fputz .false..

SUBROUITNE CFUSOU(IHY,CL)

...

COMMON /USCUTS/ P7CTUS

+CDE,CFCOMS.

...

FPUTZ = .FALSE.

...

IF(IHY .EQ. 1) THEN

CALL HF1(1,CL,1.)

IF(CL .GE. P7CTUS) FPUTZ = .TRUE.

IF(IHY .EQ. 2) THEN

CALL HF1(2,CL,1.)

IF(CL .GE. P7CTUS) FPUTZ = .TRUE.

ELSE

CALL HF1(3,CL,1.)

ENDIF

END

I am now ready to use cbkfit. To do this, I will need to simply call cfdofi from

my user routine. However, before I do this, it may be desireable to modify the errors on

track or crystal quantities. The cbkfit routine takes its information directly out of the

TTKS bank. As such, If I want to change anything, I must do it in the TTKS before I

call cfdofi. I should also restore that information after I have called cbkfit so I don't get

into the nasty situation of applying the same correction twice.

In my case, it is known that the errors on the tracks need to be expanded. I will not

explain precisely what all the factors mean, but instead just expalin how this correction

needs to be done. I also want to say at this time that the �rst element in the listus array,

(see cfusrd) always points to the �

+

and the second element always point to the �

�

. I

will then provide a dummy loop for extracting the best combination of hypothesis one, just

to show how the data can be accessed.

SUBROUTINE USER

...

* ALPHUS : Scale the error in alpha :

* TGLMUS : Scale the error in tan{lambda} :

* PSIFUS : Scale the error in psi :

*

...

REAL ALPHUS,TGLMUS,PSIFUS

PARAMETER (ALPHUS = 2.00)

23

PARAMETER (TGLMUS = 1.50)

PARAMETER (PSIFUS = 3.00)

...

COMMON /USJUNK/ LISTUS(8)

+CDE,CFCOMS.

+CDE,CBLINK.

...

*

*---Fix the errors on the charged tracks.

*

DO 100 I = 1,2

*

JTTKS = LQ(LTTKS - IQ(LTTKS-2) - LISTUS(I))

*

Q(JTTKS+46) = Q(JTTKS+46) * (PSIFUS * PSIFUS)

Q(JTTKS+47) = Q(JTTKS+47) * (PSIFUS * ALPHUS)

Q(JTTKS+48) = Q(JTTKS+48) * (ALPHUS * ALPHUS)

Q(JTTKS+49) = Q(JTTKS+49) * (PSIFUS * TGLMUS)

Q(JTTKS+50) = Q(JTTKS+50) * (ALPHUS * TGLMUS)

Q(JTTKS+51) = Q(JTTKS+51) * (TGLMUS * TGLMUS)

*

100 CONTINUE

Now I will perform the kinematic �ts. I then want to restore the TTKS banks to the

state they were in before I did my �ts.

CALL CFDOFI

*

*---Unfix the errors on the charged tracks.

*

DO 200 I = 1,2

*

JTTKS = LQ(LTTKS - IQ(LTTKS-2) - LISTUS(I))

*

Q(JTTKS+46) = Q(JTTKS+46) / (PSIFUS * PSIFUS)

Q(JTTKS+47) = Q(JTTKS+47) / (PSIFUS * ALPHUS)

Q(JTTKS+48) = Q(JTTKS+48) / (ALPHUS * ALPHUS)

Q(JTTKS+49) = Q(JTTKS+49) / (PSIFUS * TGLMUS)

Q(JTTKS+50) = Q(JTTKS+50) / (ALPHUS * TGLMUS)

Q(JTTKS+51) = Q(JTTKS+51) / (TGLMUS * TGLMUS)

*

200 CONTINUE

*

Now I can examine exactly what came back from cbkfit. Initially I want to make sure

that there is a bank containing �t data. I then would like to know how many hypothesis

one and hypothesis two combinations were saved.

24

IF(LKRES .LE. 0) RETURN

*

*---Find out how many good fits for hypothesis one are stores.

*

JKRES = LQ(LKRES - IQ(LKRES-2) - 1)

N3PI = IQ(JKRES + 1)

*

*---Repeat for hypothesis two.

*

JKRES = LQ(LKRES - IQ(LKRES-2) - 2)

N2PIE = IQ(JKRES + 1)

*

At this point, I am only interested in the best combination for hypotheis number one.

In order to �gure out which one this is, I will need to sort all the stored combinations for

hypothesis one by their con�dence levels.

KKRES = LQ(LKRES - 1)

*

DO 600 I = 1,N3PI

*

PRBLA(I) = Q(KKRES + 1)

CHSQR(I) = Q(KKRES + 2)

INDX(I) = I

KKRES = LQ(KKRES)

*

600 CONTINUE

*

IF(N3PI .GT. 1) CALL SORTFL(PRBLA,INDX,N3PI)

CHSQ = CHSQR(INDX(N3PI))

PROBA = PRBLA(INDX(N3PI))

At this point I have indx(n3pi) pointing to the best con�dence level. I now need the

structural link to the corresponding subbank of KRES.

JKRES = LQ(LKRES-1)

IF(INDX(N3PI) .GT. 1) THEN

DO 900 I = 2,INDX(N3PI)

JKRES = LQ(JKRES)

900 CONTINUE

ENDIF

Because ot the form of my hypothesis cards, I know that there should be 11 particles

stored in this subbank. They are �

+

, �

�

, then 3�

�

's, and �nally the 6
's. The
's will

be sorted in such a way that the �rst two belong to the �rst �

�

, the third and fourth will

belong to the second �

�

, while the last two will belong to the third �

�

. I can now loop

through the eleven particles in this bank, and extract the needed quantities.

KKRES = JKRES + 15

25

DO 1500 I = 1,IQ(JKRES+15)

IF(IQ(KKRES+1).LE.0) THEN ! Check for pi-0

EPI0 = Q(KKRES + 3)

PXPI0 = Q(KKRES + 4)

PYPI0 = Q(KKRES + 5)

PZPI0 = Q(KKRES + 6)

ELSE

IF(Q(KKRES+2) .LT. 10.0) THEN ! Check for Photon.

EGAM = Q(KKRES + 3)

PXGAM = Q(KKRES + 4)

PYGAM = Q(KKRES + 5)

PZGAM = Q(KKRES + 6)

ELSE ! Charged pion.

EPIQ = Q(KKRES + 3)

PXPIQ = Q(KKRES + 4)

PYPIQ = Q(KKRES + 5)

PZPIQ = Q(KKRES + 6)

ENDIF

PULL1 = Q(KKRES + 7)

PULL1 = Q(KKRES + 8)

PULL1 = Q(KKRES + 9)

ENDIF

...

KKRES = KKRES + 9

1500 CONTINUE

END

26

O�set type Quantity

reference links

.

.

.

.

.

.

.

.

.

�2 link pointer to second hypothesis, ie. data word i

�1 link pointer to �rst hypothesis, ie. data word 17

structural links

.

.

.

.

.

.

.

.

.

�2 link link to bank for �t results for second hypothesis

�1 link link to bank for �t results for �rst hypothesis

data part of bank

+1 integer Version number of CBKFIT

+2 integer Number of words per particle in subbanks

+3 integer Number of hypotheses

+4 real Charged vertex x from locater (or 0)

+5 real Charged vertex y from locater (or 0)

+6 real Charged vertex z from locater (or 0)

+7 real Charged vertex x-momentum from locater (or 0)

+8 real Charged vertex y-momentum from locater (or 0)

+9 real Charged vertex z-momentum from locater (or 0)

+10 real Charged vertex x from locater (or 0)

+11 real Charged vertex y from locater (or 0)

+12 real Charged vertex z from locater (or 0)

+13 real Charged vertex x-momentum from locater (or 0)

+14 real Charged vertex y-momentum from locater (or 0)

+15 real Charged vertex z-momentum from locater (or 0)

+16 real Main vertex z coordinate (from Newton iteration)

repeat the next words for every hypothesis

+17 integer Number of degrees of freedom for this hypothesis, zero if no succesful �t

+18 integer Number of good �ts for this hypothesis = number of hypothesis words

+19 real Con�dence level cuto� for this hypothesis, zero if no succesful �t

+20 integer Number of particles �rst hypothesis

+21 integer hypothesis words

.

.

.

.

.

.

.

.

.

+i integer Number of degrees of freedom for the second hypothesis, zero if no succesful �t

.

.

.

.

.

.

.

.

.

Table 1: The data stored in the KRES top bank.

27

O�set type Quantity

reference links

.

.

.

.

.

.

.

.

.

�i link pointer to the word preceeding the TTKS id of particle i

.

.

.

.

.

.

.

.

.

data part of bank

+1 real Con�dence level cl

+2 real �

2

+3 real Vertex x

+4 real Vertex y

+5 real Vertex z

+6 real Pull of x

+7 real Pull of y

+8 real Pull of z

+9 real Vertex x

+10 real Vertex y

+11 real Vertex z

+12 real Pull of x

+13 real Pull of y

+14 real Pull of z

+15 integer N; number of particles

repeat the next words for every particle

+16 integer TTKS particle id; 0 if resonance; �1 if missingparticle

+17 real Mass used in fit

+18 real Energy from fit

+19 real p

x

momentum from fit

+20 real p

y

momentum from fit

+21 real p

z

momentum from fit

+22 real Pull for for charged tracks; � for showers;

0 if resonance or missing particle

+23 real Pull for 1=P

xy

for charged tracks; � for showers;

0 if resonance or missing particle

+24 real Pull for tan(�) for charged tracks;

p

(E) for showers;

0 if resonance or missing particle

.

.

.

.

.

.

.

.

.

Table 2: The data stored in the subbank of the KRES bank. Words 16 to 24 are repeated for

every particle

28

