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Introduction

To determine the intermediate resonance structure in final states produced

for example in p̄p reactions we have employed so far the standard χ2 fits to

binned Dalitz plots. This method is not very practical for decays to more

than three particles. For example, a fit to the five-dimensional phase space

for 4 particles would require some 105 bins, with most of the bins empty.

Also many of the bins would be at the border of the phase space and would

thus need to be excluded from the fit.

The solution to this dilemma is to fit to individual events instead of binned

histograms. This is done with the standard likelihood technique, which is,

for example, described in the book by W.T. Eadie et al., North Holland 1971,

or by A.G. Frodesen et al., Columbia Univ. 1979. For a novice in this field I

recommend the book by L. Lyons, Cambridge Univ. 1986. In the following I

will list the relevant formulae and discuss three methods, of which one is not

easily found in the literature. For a discussion on how to include background

in likelihood fits, see the recent CBar note by C. Amsler.
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The Standard Likelihood Method

The standard definition of a likelihood function is

L =
N∏
i=1

µi (1)

where N is the total number of observed events and µ is the probability

density function (PDF) we want to fit to. In a fit to a Dalitz plot the PDF

contains complex amplitudes with interfere, µ = |∑k αkAk|2. The problem

arises from the fact, that such a PDF is not properly normalized, i.e. the

integral over all phase space
∫
µΩ. is not 1. But the PDF can easily be

normalized and we define

L =
N∏
i=1

µi∫
µΩ.

(2)

as our standard likelihood function, which has to be maximized. Since the

product consists of many small numbers, it is common to take the negative

of the logarithm,

− lnL = N ln
(∫

µΩ.

)
−

N∑
i=1

lnµi , (3)

which is to be minimized (typically with minimization packages like MI-

NUIT). I will show some easy examples below.

The Extended Likelihood Method

The standard likelihood method is typically used in fits to shapes of distri-

butions, where the absolute normalization is fixed to the number of observed

events (see also the discussion at the end of the next section). It is, however,

possible to also let the fit provide an estimate on the absolute normalization.

This can be achieved with the extended likelihood function, which is just the

product of the standard likelihood function with an extra factor to account

for the probability to obtain an event sample size N. This factor could be

2



a Gaussian or Poisson distribution. For example, the extended likelihood

function would be written as

L =
e−φφN

N!

N∏
i=1

µi∫
µΩ.

, (4)

where φ =
∫
µΩ. is the normalization which is allowed to vary according to

Poisson statistics around the measured number of events N. For Gaussian

statistics this factor would be exp(−(φ− N)2/2N.

The Generalized Likelihood Method

Another way to define a likelihood function is e.g.

L = exp(−
∫
µΩ. )

N∏
i=1

µi , (5)

which yields the following function to be minimized

− lnL =
∫
µΩ. −

N∑
i=1

lnµi . (6)

The difference with the ‘standard’ method is obvious. A justification for

this ansatz can be derived from Poisson statistics. Take the likelihood func-

tion used for a fit to a binned histogram which has small statistics, L =∏K
k=1 e−µkµnk/n! and decrease the bin size to zero and the number K of bins

to infinity. Then n (the number of events in bin k) will be either zero or

one. Therefore the likelihood can be written as L = exp(−∑k µk)
∏
k µk,

which is the desired form. In this formulation the PDF µ does not need to

be normalized; it is the integral, which takes care of the normalization. A

half page discussion of the generalized likelihood function can be found in

the book by A.G. Frodesen et al.

What is the difference between the standard and the generalized likeli-

hood functions? Using the standard likelihood function will force the normal-

ization to be strictly correct, i.e.
∫
µΩ. = N, where N is the total number of
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events. On the other hand, in the generalized maximum likelihood method

this is not necessarily true. Thus the generalized likelihood method could

give different estimates of parameters which, in principle, should be better.

This is similar to the use of multinomial or Poisson statistics in fits to binned

histograms. In the first case the total number of fitted events is rigorously

fixed to those measured, whereas in the latter case the number of fitted

events will fluctuate around the number of measured events according to

Poisson statistics. Note that the generalized likelihood method was derived

from Poisson statistics and thus will show the same behavior regarding the

number of fitted events.

Tests of the two Likelihood Functions

I have generated 200 events randomly distributed between 0 and 10. Added

to this distribution were two Gaussians centered at 2.5 and 7.5 with widths

of 0.2 and 150 events each, see Fig.1a. This distribution was then fitted to

the function

µ(x) =
A∫
x.

+
Bx∫
xx.

+
C e−(x−ν1)2/2σ2

1

√
2πσ1

+
D e−(x−ν2)2/2σ2

2

√
2πσ2

(7)

using the three likelihood methods discussed above.

Note that all terms are individually normalized, as needs to be done for

the amplitudes used in fits to Dalitz plots. The overall normalization
∫
µ(x) x.

is in this case simply A+B+C +D. However, such a normalization cannot

be evaluated analytically in the case of fits to Dalitz plots. Therefore I have

also included in the program the possibility to evaluate the normalization

integral with Monte Carlo methods. Note that in this case the sum over

weights needs to be multiplied with the total phase space volume Ω and

divided by the number of dialed Monte Carlo points M. This multiplicative

factor Ω/M is not crucial when fitting with the standard likelihood technique,
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Figure 1: The left histogram shows the data used in log-likelihood fits to
the unbinned data. The right histogram shows the result of a fit using the
generalized likelihood method.
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as it contributes only an additive constant to the log-likelihood function:

− lnL = N ln
(∫

µΩ.

)
−

N∑
i=1

lnµi (8)

= N ln

 M∑
j

µj

+ N ln(Ω/M)−
N∑
i=1

lnµi . (9)

However, it is crucial when using the generalized or extended likelihood meth-

ods. In the first case the factor is multiplicative in the log-likelihood and

thus cannot be omitted. In the latter case the normalization is needed in the

Gaussian factor exp(−(
∫
µΩ. − N)2/2N) in the likelihood.

Results of Fits

The results from the fits to the unbinned data as shown in Fig. 1a are sum-

marized in Table 1. First of all it is evident, that the standard log-likelihood

fit yields by design exactly the total number of events fitted. Note that in

this case D was calculated in the program as D = N− A−B − C and thus

has no error. Both, the extended and the generalized log-likelihood fits yield

a normalization of 491 events, short of the 500 events to be fitted. Using in

the latter fit the analytical form of the normalization yields 499 events. This

shows the dependence of the fit on the Monte Carlo sampling for the total

phase space. Note that I used only 1000 Monte Carlo events, just twice as

many as data events. In fact, using 10 times as many Monte Carlo events

yield fit results very similar to the ones obtained with the analytical nor-

malization. As an example I show in Fig. 1b the result of the fit with the

generalized likelihood method.

For a second example I generated 200 events distributed flatly between

0 and 10. On top were generated 300 events following an exponential decay

with decay time t = 1. Data and fit result (using the generalized likelihood

method) are shown in Fig. 2. The fit result was: y = (205 ± 20) + (300 ±
28)× exp(−(0.95± 0.09)t).
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Figure 2: The left histogram shows the data used in log-likelihood fits to
the unbinned data. The right histogram shows the result of a fit using the
generalized likelihood method.
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Table 1: Results from fits to the unbinned data shown in Fig. 1a. The
different fits are: SLL = standard log-likelihood fit (normalization calcu-
lated with Monte Carlo); ELL = extended log-likelihood fit (normalization
calculated with Monte Carlo); GLL1 = generalized log-likelihood fit (nor-
malization calculated with Monte Carlo); GLL2 = generalized log-likelihood
fit (normalization calculated analytically).

Parameter/Fit SLL ELL GLL1 GLL2
A 173.8± 31.3 170.8± 31.6 170.9± 31.4 152.7± 30.2
B 27.1± 28.3 26.6± 27.5 26.6± 27.4 44.4± 27.3
C 149.2± 11.7 146.6± 13.1 146.6± 13.1 156.0± 13.7
σ1 0.22± 0.02 0.22± 0.02 0.22± 0.02 0.23± 0.02
ν1 2.47± 0.02 2.47± 0.02 2.47± 0.02 2.50± 0.02
D 149.9± 0. 147.3± 13.5 147.3± 13.4 146.8± 13.4
σ2 0.22± 0.02 0.22± 0.02 0.22± 0.02 0.19± 0.02
ν2 7.46± 0.02 7.46± 0.02 7.46± 0.02 7.47± 0.02
A+B + C +D 500.0 491.3 491.4 499.1

In summary, all three likelihood methods work fine for unbinned data.

The question arises which one to choose. If the calculation of the total

phase space volume is no problem, I would suggest the generalized likelihood

method, which is the easiest and fastest method (fewer calculations of loga-

rithms). This method yields the same fit results as the extended likelihood

method. In case the total phase space volume is difficult to calculate, then

the standard likelihood method is appropriate. However, this method re-

quires to constrain all amplitudes to add to the total number of events. I did

this by calculating D = N− A− B − C and therefore get no error estimate

on D. Note that without this constraint the fit does not converge at all! I

also did some timing tests for all fits and found that the standard likelihood

method is the fastest: 13.6 (CERN accounting) seconds. This is due to the
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constraint N = A + B + C + D, which requires one less parameter to be

minimized. All other fits took about 16.2 sec. However, if I introduce in the

generalized likelihood fit this constraint as well, the time reduces to 13.4 sec.

Summarizing, there is no big difference in time consumption for 500 events.

The test program UNBINFIT FORTRAN and the input data UNBINFIT

INPUT can be found on my VM-disk.

Dalitz Plot Fits

We now turn to fits of Dalitz plots using the unbinned data. The probabil-

ity density function µ consists of a coherent sum of n complex amplitudes,

weighted by the density of states w in phase space and the detector efficiency

ε :

µ = εw

∣∣∣∣∣√f1eiφ1 A1√
N1

+ · · ·+
√
fneiφn

An√
Nn

∣∣∣∣∣
2

(10)

= εw
n∑
k=1

n∑
l=1

√
fkfl Re

{
ei(φk−φl)

AkA
∗
l√

NkNl

}
, (11)

where the relative fractions fn and the phases φn are varied in the fit. One

phase can of course arbitrarily be set to zero. The complex amplitudes An

are evaluated as usual with the helicity formalism or the Lorentz-invariant

(Rarita-Schwinger) formalism or the Zemach formalism. Nn are the normal-

izations of the squared amplitudes over phase space

Nn =
∫
AnA

∗
n Ω. , (12)

which can be obtained with standard Monte Carlo summation once before

the fit, Nn =
∑M
j=1AnA

∗
n Ω/M. This requires the knowledge of the total

phase space volume.

Since the efficiency ε and the weight w are multiplicative factors, they

can be factored out in the log-likelihood. Defining µ = εwµ̂ we obtain for
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the standard likelihood method and the generalized likelihood method the

following functions to be minimized:

− lnLS = N ln
(∫

µΩ.

)
−

N∑
i=1

ln µ̂i and (13)

− lnLG =
∫
µΩ. −

N∑
i=1

ln µ̂i . (14)

There is no need to know the efficiencies and weights of the real events!

The normalization
∫
µΩ. needs to be calculated in each iteration of MI-

NUIT. It is best done with Monte Carlo summation:
∫
µΩ. =

∑M
j=1 µj Ω/M.

Since µj contains the efficiency one either has to know the efficiency function

over the phase space or the events have to be passed through a complete

detector simulation. In the latter case the efficiency is either one or zero,

depending on whether the event pass or does not pass the cuts. In this case

the integral reduces to

∫
µΩ. =

M∑
j=1

w
n∑
k=1

n∑
l=1

√
fkfl Re

{
ei(φk−φl)

AkA
∗
l√

NkNl

}
Ω

M
. (15)

However, a complete detector simulation for tens of thousands of Monte

Carlo events may be too time consuming, and one may have to assume the

efficiency to be constant in phase space. Another possibility is to simulate

the detector efficiency by effective cuts, which can be applied at the 4-vector

level. Note that such cuts or a complete detector simulation needs to be done

only once before the fit; all what is needed is to store for events which pass

the cuts those variables which describe the position of the event in phase

space.
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