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Abstract

This document is a detailed description of the analysis of ip — 7t~ 7°7°7° — 7T 77 64.

This part deals with specific intermediate states. The branching ratios for pp — wn’x°® and

pp — nr°w° are determined to be:

(23.98 +0.59 +£0.75) - 107°
(6.10 £0.61 4+ 0.34) - 107

Br(pp — wr’x’

Br(gp — nr°x°)

The the branching ratio for fp — ¥ x~ is also discussed, and numbers are given in the text.
However, this ratio is found to be rather unstable. Finally, the 7t # " x°x°x° branching ratio is
estimated to be:

Br(pp — 7t x 7°x°n°) & 92..107°,

A more detailed analalysis of this will be available in part 2 of this document.
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1 Introduction

This document is intended to describe in detail the analysis of the 7t 7~ w°7°#° final state from
pp annihilation at rest. The data in this analysis come from the minimum bias data of November
1990. These data consist of approximately 3.8 million events on tape, which yield a final sample
of 38,266 7-C fitted 77~ 7°7w°7° events. In this document, only the wrm and npww intermediate
states are discussed. The full spin parity analysis of the 7t 7~ 7°7°n° final state will be treated in a
forthcoming CB-note, (part 2). All internally calculated numbers will normally be presented with
at least two digits which are not significant. Only in the final numbers, will the true number of
significant digits be quoted.

All errors on branching ratios are quoted as a statistical error and a systematic error. The
statistical error arises solely from the statistics of the event sample. It is usually the error from
MINUIT in estimating the number of events in a peak. The systematic error is composed of the
following items added in quadrature:

e Any errors in branching ratios used to determine the given ratio. For example, the fact that
w — wt 7~ 7° is given as 0.888 & 0.006 is considered a systematic error.

e Any errors in absolute normalization are considered systematic.
e Any statistical errors arising from the Monte Carlo statistics are considered as systematic.

Since the first version of this paper, several changes have occured. First, all Monte Carlo samples
have been increased to the point that the systematic errors are no longer significantly larger than
the statistical ones. The errors sacling for the Monte Carlo has also been studied in detail, and the
results are presented now. Because of this, the efficiencies have changed slightly. The numbers now
presented are ceratinly the more reliable.

Second, the error scaling for real data has been carefully studied. Even though the confidence
level distribution in the previous version was flat, it was clear from the pull distribution that ad-
ditional work was needed. In particular, the errors on the photons were underestimated. These
numbers have now been fine tuned, and I am now confident that they are good. With these new
numbers, the full kinematic fitting has then been repeated. One consequence of this is that I now
have about 15% more events than in the previous sample. This has caused all of the branching
fractions to rise correspondingly. During this refitting, several runs were rejected due to worrisome
comments in the logbook.

Finally, I have examined more carefully the nw¥ 7~ final state. I am still unable to get a reliable
number, but feel that I now know how to do this. However, I have not done it due to lack of time,
and do not plan to do it in the near future. Instead, I present my results and conclusions to help
others in extracting this branching ratio.

2 Event Selection

2.1 Skimming

The initial sample of 3,758,762 reconstructed events are first skimmed solely on information con-
tained in the event header. An event is retained for further analysis if it satisfies the following
criteria. For the charged tracks:

e There must be exactly 2 tracks connected to the found vertex. In order for a track to be
connected to the primary vertex, it must either contain a Pwc hit, or start no later than layer
5 in the iDC.
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e Both of these tracks must be long. The official definition of a long track is that the total
number of layers spanned by the track is greater than 9.

e The two tracks must be of opposite charge.

e Both tracks must have an error code smaller than 32

892,594 of the events satisfy these cuts. Assuming that all of the 3,758,762 are actually annihilations
on hydrogen, that 42% of all annihilations have two prongs, and that the solid angle for two tracks
described by these cuts is 0.7822 = 0.610, we expect that 25.6% of our data should survive. This is
in good agreement with the 23.7% which actually survive.

For the crystal data:

e Only unmatched PEDs of energy larger than 20 MeV are taken.

e There must be no fewer than 6 and no more than 12 unmatched PEDs.

1,085,305 events survive these cuts, and 328,240 events survive the combination of both of these
cuts. Assuming that 26% of the annihilations are ¥ 7~ na° with n > 2, and that the solid angle
for the detection of 6 photons is 0.97% = 0.833, we expect 11.7% of the signal to remain. This is in
reasonable agreement with the 8.7% which actually survive at this level. We have not considered
the case when one or more photons have energy less than 20 MeV, and certainly not all events are

°7°7° phase space events show that

annihilation on hydrogen. Monte Carlo studies of simple 777~ =
8.7% of the events have at least one photon whose energy is smaller than 20 MeV.

Finally, there has been no vertex cut placed on the data. I have assumed that the use of a 7-C
kinematic fit will alleviate the need for a hard vertex cut. The vertex distributions for those events

which survive the skimming are shown in figure 1.

2.2 Corrections
2.2.1 Real Data

At this point, there are several known problems with the November 1990 data that need to be
corrected. In reconstructing the crystals, the default vertex position was taken at (z = 0,y = 0,z =
0), while infact it is measured to be at (z = 0.000,y = —0.224,z = —0.433). This does not affect
the energy of the PEDs, but does affect both 8, and ¢,, which are corrected before proceeding with
the analysis. Also, the errors on the photon quantities are underestimated. The errors used in all
kinematic fitting need to be scaled as follows:

02(1.25)? 7oy5(1.25)(1.20)  0py(1.25)(1.25)
025, (1.20)(1.25)  02,(1.20)2 o /p,(1.20)(1.25)
040(1.25)(1.25) 0, /5(1.25)(1.20) 03(1.25)2

It is also seen in these data that the momentum of all charged tracks are too small by 5 to 6%.
This means that the a of all positive tracks in the TCTR and TTKS must be divided by 1.0600,

at — a™/1.0600,
while the alpha of all negative tracks must be divided by 1.0500,
a” — a” /1.0500.

Finally, the errors on several of the track quantities need to be scaled up by various factors. The 3
by 3 covariance matrix as used in all kinematic fits needs to be scaled as follows:

02(2.60)2 0ar(2.60)(1.10)  0ay(2.60)(0.80)(2.00)
o2 (2.60)(1.10) 02(1.10)? o2y (1.10)(0.80)(2.00)
ya(0.80)(2.00)(2.60) 0y(2.00)(0.80)(1.10) o2 (0.80)3(2.00)2



Crystal Barrel 3

2800 L
2400
2400
2000
2000
1600
1600
1200 -
800 500
400 400
0 0
1600 [
1400 F
1200
1000 F
800 E
600 F
400 E
200 £
O C
1

Vertex z [cml

Figure 1: The vertex distribution of events which survive skimming. (UL) shows the z distribution,
(UR) shows the y distribution, and (L) shows the z distribution.
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2.2.2 Monte Carlo Data

Similar to real data, there are also corrections which need to be applied to any Monte Carlo Data
used. The crystal errors appear to be underestimated, and need to be scaled by the following values:

02(1.28)? oy y5(1.28)(1.10)  0pp(1.28)(1.28)
0%9(1'10)(1'28) cr;"’/ﬁ(l.lO)2 a¢§¢(1.10)(1.28)
o0(1.28)(1.28) 0¢\/§(1.28)(1.10) 02(1.28)2
Also with the tracks, all charged momentum need to be scaled up by 5%.
at — ot /1.0500.

And the errors need to be tuned, but unlike the real data these factors are all rather close to one.

o2 (1.00)? 062 (1.00)(0.80)  Guy(1.00)(0.45)(2.00)
o2 (1.00)(0.80) 52(0.80)? 2y (0.80)(0.45)(2.00)
ya(0.45)(2.00)(1.00)  0x(0.45)(2.00)(0.80) o2 (0.45)3(2.00)2

2.3 Using USDROP

These 328,240 corrected events are then passed to the USDROP package [1] to locate candidates
for the final state #t7~6v. USDROP tries to maximize the signal in 777~ 6v by never dropping
additional photons if fewer than 6 would remain. An event with exactly 6 candidates would only be
fit as is, while one with 7 photons would only try to drop 1, and an event with 8 photons would only
try to drop 2. All events which satisfy the 4-C Confidence level from uspRoP at 1% and contain
exactly 6 resulting photons are retained. This sample consists of 115,985 events of these 62,936 have
zero dropped, 37,394 have one dropped, and 15,655 have two dropped. 16,660 of the events have
multiple solutions above 1% confidence level, however at this stage, only the most probable of these
is examined. The ratio of drop—0 to drop-1 to drop—2 is 4.0:2.4:1, while 14.4% of these data have
more than one solution above the 1% confidence level cut.

2.4 Using CBKFIT
2.4.1 Real Data

The 115,985 events which pass USDROP are then given to CBKFIT [2], and fit to the following
hypothesis:

e 4-C fit to #T7~ 6y
o 7-C fit to 7T 7w~ w°mwom°
o 7-C fit to 7t 7 npa°x°

All events which satisfy at least one of the latter two hypothesis at or above 1% confidence level are
retained. This yields 68,310 events. Of these, 486 have their pile-up flag set and will be rejected at
the next step. These events can be subdivided into the following samples:

o At least one 7t~ w°7°7° 60,678 events.
e Exactly one 7T 7~ 7°7°n° 49,259 events, (no #ta~ nwxw°).

o At least one 7t 7w~ npw°7° 13,065 events.

e Exactly one 7t 7~ nm°n° 7,025 events, (no 7t 7~ 7°x°x°).

Figure 2 shows the resulting confidence level distributions for these events. Figure 3 shows the nine
pull distributions for these fits, to which Gaussians have been fit. The fit results are given in table 1.
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Figure 2: The 7-C confidence level distributions from cBKFIT for real data. (UL) is the 4-C
distribution, (UR) is the 7-C distribution, (LL) is the 77~ 7°7°7°® and (LR) is the 7t~ nm°x°

Quantity Mean Sigma
0, —0.0626 £+ 0.0025 | 1.087 4+ 0.0020
E, 0.0508 + 0.0027 1.129 + 0.0022
by —0.0015 £ 0.0025 | 1.074+ 0.0019

1/p;fy —0.0182+ 0.0066 | 1.105=+ 0.0049
tan At —0.0609 £ 0.0061 | 1.058 + 0.0043
Pt 0.0298 £ 0.0063 | 1.062+ 0.0044
1/pgy 0.0359 £+ 0.0070 | 1.1324 0.0048
tan A~ —0.0614 + 0.0061 | 1.060 + 0.0043
P~ 0.0176 +0.0063 | 1.075+ 0.0044

Table 1: The fit parameters from the 7-C pulls seen in figure 3
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Figure 3: The pulls from the 7-C kinematic fit for real data.
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2.4.2 Monte Carlo Data

In this section, the results from CBKFIT for a sample of Monte Carlo events can be compared to the
real data. The sample consists of 52,500 717~ 7°7°7° events generatyed according to phase space.
Figure 4 shows the confidence level distributions. In table 2 are summarized the fits to the pull

distributions shown in Figure 5.
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Figure 4: The 7-C confidence level distributions from cBKFIT for Monte Carlo data. (UL) is the 4-C
distribution, (UR) is the 7-C distribution, (LL) is the 77~ 7°7°7°® and (LR) is the 7t 7~ nm°x°

2.5 Definition of 7T7 - 7°7°n°

Of the 68,310 events from CBKFIT 60,256 have at least one 7tm~ m°7°7° solution at 1%, and no
pile-up flag set. From these, it is necessary to define a 777~ 7°7°7° sample. To do this, the event
is first required to have a 7-C confidence level for 7t 7~ w°7°#° larger than 15%. This reduces the
event sample to 42239 events. Next, there must be no 777~ n7°7° hypothesis with a confidence level



Quantity Mean Sigma
60y —0.0131+ 0.0048 | 1.040+ 0.0036
E, —0.0112 4+ 0.0055 | 1.100+ 0.0055
by 0.0051 4+ 0.0048 | 1.042+ 0.0036
1/p;'y —0.0179 £ 0.0142 | 1.136 £ 0.0102
tan At —0.0066 + 0.0146 | 1.044+ 0.0083
Wt 0.0610 £0.0123 | 1.051 4+ 0.0092
1/pz, —0.0864 + 0.0146 | 1.146 4+ 0.0101
tan A~ —0.0069 £ 0.0121 | 1.068 & 0.0087
P~ —0.0932 £ 0.0117 | 1.017 4+ 0.0087

Pl o L o

Table 2: The fit parameters from the 7-C pulls for Monte Carlo data seen in figure 5
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Figure 5: The pulls from the 7-C kinematic fit for real data.
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larger than 1%, which leaves 38905 events. Finally, there must be no second 777~ 7°7°#w° hypothesis
within 15% confidence level of the first. These cuts yield a final sample of 38,266 7+ 7~ w°7°7° events,
or 0.01018% of the origional 3,758,762 events.

Confidence Level | Events
15% 38266
25% 32172
40% 24726
50% 20395
75% 10320

Table 3: Accepted 7T 7~ 7°7°7° events as a function of the confidence level cut.

It is important to note that no explict vertex cut has been made anywhere in this analysis. It
is assumed that the fits select only events that come from liquid hydrogen. As a demonstration of
this, the vertex distributions of those events clssified as 7t 7~ 7°7°7° are shown in figure 6. The
tails in the @, y and z distributions correspond to tracks which are nearly parallel or antiparallel.

These conditions lead to singularities in the vertex fit.

2.6 The number of p stops

The initial sample of 3,758,762 events are not all p stops in liquid hydrogen. A careful treatment of
this has been performed in reference [3] for the same data set. The pertainent parts of this analysis
will be used here.

First, in the present analysis I effectively reject all events with the pile—up flag set. In the base
sample there are 6074 events with this flag set, or 0.01615 of all events, compared to 0.0061 of the
accepted events. By simply rejecting all such events, we need to scale the number of stops by 0.9838.

Annihilation outside the target is also an important consideration. This is taken from [3] as
0.961 + 0.007. There is also an inflight contribution, which leads to an additional correction factor
of 0.943+0.011, (this number probably also accounts for annihilations in the iron ring as it is rather
large for inflight annihilation alone).

There may finally be a residual in flight contribution to this sample. This can be accessed by
looking at the assymetry in the vertex z distribution for all events accpeted for analysis. In the
analysis of Burchell [3], this was found to be 0.9918 + 0.009. Repeating his analysis for my sample,
I find a value of 0.9986 + 0.0065.

All of these corrections taken together lead to the number of stops

Nyiop = 3,346,403+ 50,915,

(with a 1.65% systematic error in the number of stops). This number will be used in computing all
branching ratios.
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Figure 6: The vertex distribution of events defined as 7t 7~ 7°x°x°. (UL) shows the z distribution,

(UR) shows the y distribution, and (L) shows the z distribution.
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3 Analysis of wrm and n77 into 7t~ 7°7°w°

3.1 pp — wrr®
3.1.1 Real Data

Identification of the w decaying into 7t 7~ 7° can be seen clearly from the 7t 7~ 7° invariant mass
spectrum, (figure 7). The inserted spectrum has been fitted using a gaussian on top of a quadratic
background,

f(m) = Aexp(—(m — my,)?/202) + bo + by - m + by - m?

The fit has a x2? of 1.157, and yields:

A = 593.3+10.41
m, = 1783.7+0.2697
o, = 16.46+0.2798
bp = —171.6+9.040
by = —0.2025+ 0.02202
b, = 0.000927 %+ 0.00001554

Given a bin width of 2.6667, the integral over the gaussian is computed to yield 9179.63 4 224.26
wT°w°® events.

N, =+V2r-0,-(A/2.6667)

The reason for the mass being 2 MeV too large is at present not completely clear, but seems to be
related to the momentum scaling for charged tracks. It should be noted that the mass is also high
by the same amount in the Monte Carlo sample. Finally, it is not completely reasonable to treat the
w as a simple Gaussian. The natural width of the w is 8.43 MeV, which is of similar size to the o of
the fit Gaussian. As such, these data should be fit with a Breit—Wigner convoluted with a Gaussian,
(a Voigtian). Brigitt Schmid performed this analysis for the w in her thesis [4] and showed that the
Gaussian fit is equivalent, however the analysis should be repeated here.

We then define all events with an entry in the mass window 748 to 816 as possible w’s. In order

to try and enhance the w to background signal, I define:

5o [P xPe |2
Q*

A can be used as a measure of the distance from the edge of the Dalitz plot to a given point in the
plot. For a vector particle such as the w, this quantity should be linear, rising from zero at A = 0 to
a maximum at A = 1, whereas any background under the w should be uniform over the Dalitz plot,
meaning A is constant. Figure 8 shows the distribution for all events in the w window as well as the
Dalitz plot from these events. One sees the linear structure for the true w’s on top of the constant
background.

Given this sample of wn®7°, invariant masses and Dalitz plots are formed. These are shown in
figure 9. One sees a very clear signal for the 5;(1235) — wn® in both the invariant mass projection
and the Dalitz plot. There is evidence as well for f5(1270) — w°7°, seen as an enhancement at the
top of the wm versus w plot, and as the rise at the high end of phase space for the #°7° invariant
mass. These agree quite well with the all-neutral analysis of wn®7° performed by S. Dombrowski [5].
In figure 10 are shown these plots for restricted ranges of A. For the high range of A, there is a clear
enhancement of signal to background, and the previous structures are clearer.
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Figure 7: The 7t 7~ 7° invariant mass in 10 MeV wide bins. The inserted figure has been fit with
a gaussian on a quadratic background, and has a bin width of 2.6667 MeV.
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Figure 9: (UL) The invariant mass of the wm® in 10 MeV bins, (UR) the invariant mass of the m°#°
in 10 MeV bins. (LL) The Dalitz plot of wm versus wm, (LR) The Dalitz plot of 77 versus w.



Crystal Barrel

1000

800

600

400

200

1000 1200 1400 1600 1800

0
800

A m(wn®) IMeV/c’]
3.2

2.8

2.4

A mi(wr®) vs m*(wn?)

15

450
400
350
300
250
200
150
100

50

0
800 1000 1200 1400 1600 1800

A mlwn®) IMeV /c’]

A mH{wr®) vs m*(wr?)

Figure 10: (UL) The invariant mass of the wn® for A larger than 0.5 . The data are in 10 MeV bins.
(UR) the invariant mass of the wn® for A smaller than 0.5. The data are in 10 MeV bins. (LL)
The Dalitz plot of wm versus ww for A larger than 0.50. (LR) The Dalitz plot of w versus wm for A

smaller than 0.50.
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3.1.2 Monte Carlo Data

In order to estimate the efficiency for wn°n®, 40,717 events were generated according to phase space
and run through the CBGEANT program, (version 4.06/05). The w in these events was forced to
decay 100% of the time into 77~ 7°, however the Dalitz decay of all 3 7°’s was allowed. The events
were reconstructed and run through an identical analysis as the real data. During the skimming
phase, (section 2.1), the following numbers of events were accepted:

e Two long tracks at the vertex whose charges sum to zero: 23837, (58.543%).
e Between 6 and 12 unmatched PEDs: 30288, (74.387%).
e Both of the above conditions: 17892, (43.942%).

The resulting 17892 events were then given to the USDROP package, (section 2.3). 9868 events
were accepted at the 1% confidence level, of which 6131 were drop-0, 2727 were drop-1 and 1010
were drop—2, and 823 had multiple solutions. The corresponding ratio is 6.1:2.7:1, and 8.3% of the
events have multiple solutions at the 1% confidence level cut.

These events were then given to the CBKFIT code, (section 2.4).

o At least one 7t~ w°7°7w° 7,906 events.

e Exactly one 7T 7~ 7°n°n° 6,844 events, (no 77 nw°w°).
o At least one 7t 7 nwo7° 667 events.

e Exactly one 7t 7~ nm°n°® 75 events, (no 7t 7~ 7°x°x°).

Of these, 5,456 satisfied the definition of 7T 7~ 7°7°7°, (section 2.5). These events were then passed
through the w analysis, (section 3.1.1), and the resulting 7+ 7~ 7° invariant mass is shown in figure 11.
This is fit to a Gaussian plus quadratic background. The resulting fit has a x? of 1.114, and yields:

A = 4455+ 8.828
m, = 783.7+0.2103
o, = 12.4440.1913
bo = —251.2+4+3.891
by = 0.6488+0.009368
b, = —0.0003538 &+ 0.000006384

which when integrated gives 5209.42 + 130.67, and an efficiency for reconstruction of 0.127942 +
0.003209.

In order to determine if the presence of intermediate resonances can affect this efficiency, it is
necessary to evaluate the efficiency for b;(1235)7° and f2(1270)w. To do this, it is not necessary
to generate new Monte Carlo data. Rather, we can examine all of the produced wn°n° events, and
assign a dynamical weight based on a Breit—Wiger function of the resulting mesons. We can then
take the sum of these weights in the entire generated sample, and the sum of these weights for those
events accepted by the analysis. The ratio of these will be the efficiency for the given channel. If n,
sums over accepted events, and n, sums over generated events, the ratio is:

>0 w(es)

T T wle)

In this analysis, we define the number of events as those that satisfy the definition of 7t7~7°7°x°,

and not the number from the fit. For this reason, the phase space efficiency is 0.133998 and not
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0.127942, (a factor 0f 1.04733 larger). The results are shown in table 4. We see that the presence
of an intermediate resonance tends to increase the efficiency. If we assume we know nothing about
such resonances, the most sensible value to take is the simple average of all numbers in the table.
This then gives an efficiency of 0.134909 4 0.001070, where the error is the standard deviation of the
efficiencies. This error is treated as an additional systematic error, and added in quadrature with
the previous error to the efficiency, (0.003209). Rescaling this back to the fit value, and including
the additional systematic error yields 0.128812 4 0.003388.

Decay Chain Generated | Accepted Efficiency
wn’m® Phase Space 40717 5456 0.133998
b1(1235)7° — (wm°®)7w° 12112 1648.8 0.136088
w f2(1270) — w(mw°7°) 2383.3 320.89 0.134641
Average 0.134909 + 0.001070

Table 4: The efficiency for reconstructing wn®n® for the allowed intermediate states.

Can we understand this apparently low efficiency? Given only the solid angle effects, we estimated
in section 2.1 that each track has a 78.2% detection efficiency and each photon has a 97% detection
efficiency. The product then yields:

€q = (0.782)2 - (0.97)° = 0.509

and including the Dalitz decays, (¢ = 0.98798 per 7°), would reduce this to 0.494. We have also
placed a 15% Confidence level cut, (¢; = 0.850), which brings us down to 0.420. Now recall that
in the 37° analysis [7] that the total reconstruction efficiency was 30% using a 10% confidence level
cut. From this we can estimate that in a split—off free environment, after simple photon solid angle
effects have been unfolded, the chance of reconstructing a single 7° is about 74%.

0.30

/3= 0.74
0.90 - (0.97)6)

61[’0:(

Using this, we have:
€w = €Q -ef’ro . (ed)3 <€, = 0.167
At this point, it is not hard to imagine that the inclusion of charged particles and their associated

split—off problems could account for the remaining 4%, and in this sense, the computed efficiency of
12.88% is understandable.

3.1.3 Branching Fraction

We have N, = 9179.63 & 224.26 wn°n° events, and take the branching ratio for w — w¥7~7° as
b, = 0.888 £ 0.006 [6]. The total number of p stops is Nyiop = 3,346,403+ 50,915 (section 2.6), and
the efficiency for reconstruction of an w is ¢, = 0.128812 + 0.003388. Then the branching ratio, f3

is given as:
Ny

Nstap by - €y

fr=

yielding:
BR(pp — wr°nw°) = (23.98 £+ 0.59 + 0.75) - 1073,
where the first error is statistical and the second is systematic.

We now wish to access the effects of the confidence level cut on this result. The entire analysis
has been repeated using a 256% and 50% cut in the 7-C confidence level. The results of these analysis
are shown as the ratio of accepted event to Monte Carlo efficiency in table 5. All three results are
identical. This branching ratio is then considered as a good measurement.
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Figure 11: The Monte Carlo 717~ #° invariant mass. The inserted figure has been fit with a gaussian
on a quadratic background.

Confidence Level Acc. Events M.C. eff. Ratio
15% 9179.63 4 224.26 | 0.127942 1 0.003209 | 71748 + 2512
25% 7905.47 4 206.20 | 0.110809 + 0.002946 | 71343 + 2657
40% 6204.89 4 180.81
50% 5205.59 4 162.07 | 0.073349 + 0.002360 | 70970 + 3177
75% 2612.32 1+ 118.23

x? for 3 d.f. 0.0390

Table 5: The number of wn°7° as a function of the 7-C confidence level
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3.2 pp— nrw°
3.2.1 Real Data

Identification of the 5 decaying into 7t 7~ 7° can be seen clearly from the #¥ 7~ #° invariant mass
spectrum, (figure 12). The inserted spectrum has been fitted using a gaussian on top of a quadratic
background,

f(m) = Aexp(—(m — my)?/202) + bo + by - m+ by - m?

The fit has a x? of 0.8687, and yields:

A = 83.48+5.835
m, = 547.9£0.5884
oy, = 9.237+0.6329
bo = 378.71+4.270
by = —-1.770+0.01384
b, = 0.002072+ 0.00001646

Given a bin width of 3.33333, the integral over the gaussian in the first case gives 581.69 & 58.20
nm°7° events.

If we now define an n window as 526 MeV to 580 Mev, we can form the nwm Dalitz plot,
(figure 13). Examining figure 12, it is clear that about 50% of the events in the n window are in fact
background events. As such, the fact that these plots do not look the same as seen in the all-neutral
analysis of nm°7° should not be overly alarming. Looking in the n°7° plot, we do see a structure
near 1300 MeV which may be the f3(1270). An explanation of the structure in the nx invariant
mass is not attempted.

3.2.2 Monte Carlo Data

In order to estimate the efficiency for nm°#®, 17,102 events were generated according to phase space
and run through the CBGEANT program, (version 4.06/06). The 7 in these events was forced to
decay 100% of the time into 717~ 7°, however the Dalitz decay of all 7°’s was allowed. The events
were reconstructed and run through an identical analysis as the real data. During the skimming
phase, (section 2.1), the following numbers of events were accepted:

e Two long tracks at the vertex whose charges sum to zero: 9589, (56.069%).
e Between 6 and 12 unmatched PEDs: 12318, (72.027%).
e Both of the above conditions: 7013, (41.007%).

The resulting 7013 events were then given to the USDROP package, (section 2.3). 4037 events
were accepted at the 1% confidence level, of which 2732 were drop-0, 979 were drop-1 and 326 were
drop-2, and 366 had multiple solutions. The corresponding ratio is 8.3:3.0:1, and 9.07% of the events
have multiple solutions at the 1% confidence level cut.

These events were then given to the CBKFIT code, (section 2.4).

o At least one 7t~ w°7°7° 3,191 events.
e Exactly one 77~ 7°7°n° 2,738 events, (no 7T 7~ nw°n°).
o At least one 7T w7 319 events.

e Exactly one 7t 7~ nn°n°® 32 events, (no 7t 7~ 7°x°x°).
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Figure 12: The 7t 7~ «° invariant mass in 10 MeV bins. The inserted figure has been fit with a
gaussian on a quadratic background, and has a bin width of 3.333 MeV.
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Of these, 2146 satisfied the definition of 7T~ w°7°x°, (section 2.5). These events were then
passed through the n analysis, (section 3.2.1), and the resulting 7+ 7~ #° invariant mass is shown in
figure 14. This is fit to a Gaussian plus quadratic background. The resulting fit has a x2 of 1.120,
and yields:

A = 366.9+11.21
m, = 549.8+0.2751
oy, = 7.404+0.1581
bp = —22.61+2.352
by = 0.03988+ 0.008116
b, = —0.00002964 + 0.000008903

which when integrated with a bin width of 3.33333, these yield 2042.80 + 76.15. This leads to a
reconstruction efficiency of 0.119448 + 0.004452.

In order to access the effect of intermediate resonances, an analysis as in section 3.1.2 has been
carried out. The results are shown in table 6. As before, we will normalize to the average of all
intermediate resonances, and the the standard deviation of those values into the systematic error in
the efficiency. This then yields: €, = 0.120712 % 0.005731.

Decay Chain Generated | Accepted Efficiency
nm°7° Phase Space 17102 2146 0.125482
nfo(975) — n(7°w°) 1090.4 139.28 0.127733
nf2(1270) — n(7°7°) 2895.1 390.70 0.134952
0(980)7° — (n7°)7° 1559.7 197.50 0.126627
a2(1320)7° — (nx°)7° |  3302.1 431.36 0.130632
Average .129085 + 0.003797

Table 6: The efficiency for reconstructing nm°7° for the allowed intermediate states.

3.2.3 Branching Fraction

We have N, = 581.69 & 58.20 nm°n°® events, and take the branching ratio for n — 7#T7~7° as
by = 0.236+0.006 [6]. The total number of p stops is Nys0p = 3,346,403+ 50,915 (section 2.6), and

the efliciency for reconstruction of an 7 is €, = 0.120712 &+ 0.005731. Then the branching ratio, f;
is given as:

This then yields that

BR(pp — nm°7°) = (6.10 £ 0.61 + 0.34) - 1073,

where the first error is statistical and the second is systematic.

I have also varied the confidence level cut, and repeated the above analysis for 256% and 50%
cuts. The results shown in table 7 show no systematic shifts with the rising confidence level cut. As
such, this branching ratio is considered a good measurement.
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Figure 14: The Monte Carlo 777~ 7° invariant mass. The inserted figure has been fit with a gaussian

on a quadratic background.

Confidence Level | Acc. Events M.C. eff. Ratio
15% 581.69 4+ 58.20 | 0.119448 + 0.004452 | 4870 4 520
25% 511.44 +52.72 | 0.102222 4 0.004093 | 5003 4 553
40% 357.24 + 44.61
50% 296.09 + 40.65 | 0.065745 4 0.003312 | 4504 4 659
75% 153.83 4 31.86

x2 for 3 d.f. 0.3484

Table 7: The number of n7n°7° as a function of the 7-C confidence level
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3.3 pp—oyrtw”
3.3.1 Real Data

Identification of the 7 decaying into w°7°#°® can be seen clearly from the w°#«°#n° invariant mass
spectrum, (figure 15). Unfortunately, using this 37° invariant mass to determine a branching fraction
leads to inconssistent results. These seem to arise from the large likelyhood to find more than one
way to form the 7°’s from the n decay. Inorder to try avoid this pitfall, these data have been analyzed
using the 4—C fit results rather than the 7-C results as in the previous two sections. Unfortunately,
the 4-C fit was simply that in USDROP, rather than a proper treatment using CBKFIT. An alternate
approach would also be to perform an 8-C fit by adding the n — 3#° decay as a constraint. This
has not been done.

1200 F
i 240
i 200
1000 160
i 120
r 80
800
B 40
|- O ,_“_.._-"'-"
L 400 500 600 700 800
600
i m (') AlliMeV /c”)
400
200
O | | | ‘ | | | | ‘ | |
400 600 800 1000 1200 1400 1600 1800

m (o) AlliMeV /¢

Figure 15: The #°7°x°® invariant mass in 10 MeV bins. The inserted figure has been fit with a
gaussian on a quadratic background, and has a bin width of 2.6667 MeV.

Using an analysis identical to the previous sections, and fitting the 37° invariant mass of figure 15,



Crystal Barrel 25

we obtain:
A = 2125+7.519
my, = 548.0+0.2401
o, = 8.345+0.2317
bp = 88.51+2.252
by = —0.4688 4+ 0.007861
b = 0.0006147 + 0.000007625

Given a bin width of 2.6667, the integral over the gaussian gives 1666.89 & 72.65 events.

If we now define an n window as 532 MeV to 564 Mev of figure 15, we can form the nwm Dalitz
plot, (figure 16). In the 7" 7~ invariant mass, a very clear signal is seen for the p°. We also see a
structure near 1300 MeV which may or may not be the f2(1270). Finally, there may be a structure
near 950 MeV which could be the f5(975). The structure in the n7 mass is not so easily disentangled.

In the modified analysis, the 6 invariant mass was formed for all events having a 4—C confidence
level larger than 25%. This yielded a sample of 62,006 events whose invariant mass spectra is
shown in figure 17. The inserted spectrum has been fitted using a Gaussian on top of a quadratic
background,

f(m) = Aexp(—(m — my)?/202) + bo + by - m+ by - m?

The fit to figure 17 has a x2 of 1.057, and yields:

A = 142.745.496
my = 552.1+0.4410
op = 12.94+0.4601
bo = 49.3213.260
by = —0.3777+0.01169
b = 0.0006452 + 0.0000111

Given a bin width of 2.6667, the integral over the gaussian gives 1735.72 + 90.98 events.

3.3.2 Monte Carlo Data

In order to estimate the efficiency for nw¥7~, 30,000 events were generated according to phase space
and run through the CBGEANT program, (version 4.06/06). The 7 in these events was forced to decay
100% of the time into 37°’s, however the Dalitz decay of all 3 7°’s was allowed. The events were
reconstructed and run through an identical analysis as the real data. During the skimming phase,
(section 2.1), the following numbers of events were accepted:

e Two long tracks at the vertex whose charges sum to zero: 18,542, (61.81%).
e Between 6 and 12 unmatched PEDs: 22,582, (75.27%).
e Both of the above conditions: 14,025, (46.75%).

The resulting 14,025 events were then given to the USDROP package, (section 2.3). 7734 events
were accepted at the 1% confidence level, of which 4137 were drop-0, 2555 were drop-1 and 1042
were drop-2, and 1083 had multiple solutions. The corresponding ratio is 4.0:2.5:1, and 14.0% of
the events have multiple solutions at the 1% confidence level cut.

These events were then given to the CBKFIT code, (section 2.4).

o At least one 7t~ won°7w° 5,485 events.
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e Exactly one 7t a~w°7°n° 3,547 events, (no #t 7~ nm°w°).
o At least one T nwom° 6 events.
e Exactly one 7t 7 nn°n° 5 events, (no #tr~ w°7x°7°).

The 7734 events satisfying the 4-C confidence level cut were then used to access the efficeincy
of this channel. All events with a 4-C confidence level larger than 25% were examined. The 6+
invariant mass for all of these events is shown in figure 18, the fit to the 6 spectrum yields:

A = 324.747.024
my = 553.1+0.2244
op = 13.6610.2156
bp = —46.07+1.166
by = 0.1753+£0.003793
b = —0.0001491 + 0.00000333

which when integrated with a bin width of 2.6667, these yield 4169.32+111.65. This yields a nominal
efficeincy of
€gy = 0.138977 &+ 0.003722.

A similar number can be obtained from the 37° invariant mass. Here we obtain an efficiency of:
€3rc = 0.111104 £ 0.003168.

The effects from intermediate resonances are studied in the same fashion as in section 3.1.2
using the 37° invariant mass on a smaller statistical sample. The results are shown in table 8.
As before, we define the average as the efficiency, and include the standard deviation from this
value as an additional systematic error. This then gives us ey, = 0.140127 + 0.008173 and €3, =
0.112023 + 0.006625.

Decay Chain Generated | Accepted Efficiency
nwta~ Phase Space 20000 2297 0.11485+ 0.0024
p°’n —nrta~ 5003.8 561.54 0.1122
nfo(975) — n(r~ =) 1292.5 148.57 0.1149
nf2(1270) — p(xtx™) 3431.4 433.12 0.1262
aé‘(980)7r:F — (grd)r¥ 3633.6 429.88 0.1183
a3(1320)*7F — (nat)a¥ | 7798.5 846.94 0.1086
Average 0.1158 + 0.0060

Table 8: The efficiency for reconstructing nm* 7~ for the allowed intermediate states.

3.3.3 Branching Fraction

We have N, = 1735.72 4 90.98 events from 6y and N, = 1666.89 £ 72.65 from 37°. We take the
branching ratio for n — 37° as b, = 0.319 & 0.004 [6]. The total number of p stops is Nyyop =
3,346,403+ 50,915 (section 2.6), and the efficiency for reconstruction of an 7 is €g, = 0.140127 +
0.008173, €370 = 0.112023 £ 0.006625. Then the branching ratio, f; is given as:

N"’)
Nstap . b"l €y ’

fy =
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Figure 18: The Monte Carlo 6+ invariant mass. The inserted figure has been fit with a gaussian on
a quadratic background.
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This gives:
BR(pp — nmTn~) = (11.60 4+ 0.61 £ 0.71) - 1073

for 6, and
BR(pp — nrtn~) = (13.94 4 0.61 + 0.87) - 103

The first error is statistical and the second is systematic. The fact that these are wildly different
gives us some hint that we have encountered problems here.

In order to access the effects of the confidence level cut, the entire analysis was repeated using
confidence level cuts of 40% and 60%. These reuslts are shown in table 9. The analysis for 37° was
also repeated at various conficence levels. The ratio of accepted events to efficiency for 6+ is a very
stable quantity, while that for 37° falls rapidly with an increasing confidence level cut. I have also
formed a x? to determine how consistent these reults are. This is shown in the tables, and for the
37°, I have formed it from all measurements, and from the last 5 measurements. The value from the
last 5 is not unrealistic, x?/N = 1.7187/5 = 0.3437, but is three times larger than similar numbers
from other channels. In table 10 are computed the branching ratios from the various confidence
level cuts. It should be pointed out that the errors are very strongly correlated, so one should be
careful in taking averages. However, the simple mean of the last five numbers yields 12.53 - 1073,
and all of the measurements are consistent with this.

Confidence Level | Chain Acc. Events M.C. eff. Ratio
25% 6y 1735.72 4+ 90.98 | 0.138977 4 0.003722 | 12489 4+ 735
40% 6y 1376.42 4+ 80.84 | 0.111976 4 0.003275 | 12292 + 807
60% 6y 948.09 4+ 73.10 | 0.075918 &+ 0.002711 | 12488 4+ 1061

x? for 3 d.f. 0.0381
15% 37° 1666.89 4+ 72.65 | 0.111104 + 0.003168 15003 + 781
25% 37° 1411.40 + 69.85 | 0.096982 + 0.002966 14553 1 847
40% 3r° 1072.99 4+ 56.71 | 0.078871 4 0.002599 | 13604 4 847
50% 3r° 878.414+51.17 | 0.064072+ 0.002294 | 13706 4 937
60% 3r° 690.65 1 44.35 | 0.052005 -+ 0.002098 | 13281 + 1007
75% 37r° 405.16 + 32.32 | 0.031601 4 0.001646 | 12821 + 1221

x2 for 6 d.f. 3.8361

x2 for 5 d.f. 1.7187

Table 9: The number of w7~ as a function of the 7-C confidence level.

Confidence Level Branching Ratio
15% (13.94+£0.61+0.87) - 1073
25% (13.52 £ 0.67 £ 0.86) - 1073
40% (12.64 £ 0.67 £ 0.82) - 1073
50% (12.734+0.74 4 0.84) - 103
60% (12.3440.78 4+ 0.84) - 103
75% (11.4140.91 +0.87) - 103

Table 10: The branching ratio to nwta~

measured using the n — 37° analysis.

as a function of the 7-C confidence level.

These are
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4 Summary

The branching ratio for pp into wm°n°, nwT 7~ and nw°7° have been measured in the pp 7t 7~ m°7°7° —
7wt~ 67 final state.
BR(pp — wr°n°) = (23.98 £ 0.59 £+ 0.75) - 107 3.

This value can be compared with the value from Dombrowski of (20.8+1.6)-1073, where the largest
uncertainties arise from the all-neutral branching and the decay rate of w into 7°4.

BR(pp — nm°n°) = (6.10 + 0.61 + 0.34) - 1073,
This value can be compared to (9.3 +3)-1073 [8].
BR(pp — nntn~) = (11.60 + 0.61 4 0.71) - 1073

BR(pp — nrtn~) = (13.94+ 0.61+ 0.87) - 103,

This value can be compared to the following other measurements. (12 4 3)-1073 [9], (12.6 + 1.3) -
1073 [10] and (13.7 & 1.5) - 1073 [11]. About the only conclusions that I am willing to draw are 1:
that I have as much scatter in my data as other data and 2: I don’t trust these results. I think
that the 4-C fit provides the possibility of doing things correctly, but one needs to understand the
systematics of it better. I also suspect that an 8—C fit approach would also work. However, I have
not done this.

Finally, we can estimate the branching ratio to 7t 7~ 7°7°7° from these results. We can make
an estimate that the average efficency is about 12.5%. We have seen that this is fairly stable against
intermediate resonances. Given 38266 77~ 7°7°7° events, we then get a rough estimate of:

BR(pp — 7T~ x°7°7°) = 0.092.
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