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ABSTRACT

A concise description is given of the formulas used in partial-wave anal-
yses of K K7 systems.
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1. Introduction

We describe in this note all the relevant formulas which are used in the BNL program
for the partial-wave analysis of the KX Kr system. The formalism is based on the so-called
isobar model, which in the current version involves three isobars; two K*(890) states in

the K7 and the K7 channels and the ag/5(980) state in the K K channel.

Most of the related background material can be found in a series of notes and reports

1,23 and, in addition, in a paper written by the author in collabo-

written by the author
ration with Trueman?®. The reader may also consult Hansen et al.> and Ascoli et al.® for
earlier work on the isobar formalism; however, their formulas are somewhat different from

those given in this note.

Section 2 exhibits the Lorentz-invariant phase-space element, along with the various
Lorentz frames relevant for specifying partial waves. Section 3 deals with the problem of
defining the partial waves in the isobar model; existence of a complete orthonormal set of
functions corresponding to the isobar intermediate states is worth noting. Modifications to
these functions in the reflectivity basis are given in Section 4, as well as the parameteriza-
tion of the spin-density matrix in the same basis. The task of defining G- and C-eigenstates
are handled in Section 5. Section 6 covers the coupled-channel Breit-Wigner form neces-
sary for describing the ag/§(980). Section 7 takes up the problem of constructing suitable

likelihood functions.

2. Phase-space Considerations

For concreteness we start with the following reaction for production of a resonance X°:
mp— X'n, X°— KKn (2.1)

The Lorentz-invariant phase-space element for this process is given by, neglecting factors

which depend only on /s and W7

dp o< dQ¥* (p dQ dW) (q dQp, dw) (2.2)



where Q* = (6*, ¢*) represents the polar and azimuthal angles of the resonance X° of mass
W in the overall center-of-mass (CM) system; Q@ = (O, ®) denotes the angles describing
the orientation of the momentum § of the isobar with mass w in the K K= rest frame
(RF); Qp = (6,¢) denotes the angles corresponding to the momentum ¢ of one of the
decay products of the isobar in its helicity RF.

Let s; and s2 be the squares of the effective masses describing the Dalitz plot, with

s1 = w?. Then, for a fixed w, one has
w
dss x — pq dcosf (2.3)
w

so that
dp < d2* dR dsy dsg (2.4)

where R = (®,0, ¢) represents the Euler angles,

dR o« d® dcos© d¢ (2.5)

We choose the angles = (0, ®) to be the polar and azimuthal angles describing the
isobar orientation p in the Jackson frame (X°RF), i.e. the z-axis is chosen to be parallel
to the beam momentum in the X°RF and the y-axis is along the production normal
beam X X:O, defined in the overall CM. The angles Qj, = (6, ¢) specify the orientation ¢ of
one of the decay products of the isobar in the helicity frame (isobar RF), in which the axes
are defined such that Z, = p and g5 o« 2 X p and Z is the z-axis in the Jackson frame(*"’
signifies a unit vector). Note that one has X0 = (6*,¢*) in the overall CM, p = (0,P)
in the X°RF and § = (6,¢) in the isobar-RF. In practice, the reaction does not depend
on the ¢* variable, so it can be integrated over, and the element dcos8* can be related
to dt where t is the four-momentum transfer from the initial 7= to the final X°. The
‘Lorentz factor’ pg which appears in the phase-space formula, Eq. (2.2), gives the ‘correct’
weighting factor for the reaction; as such it it not a part of the ‘invariant’ amplitude we

consider in the next section.

A full description of the three-body system requires five variables; we have chosen the

four angles @ = (0,®) and Qp = (6,¢), and the isobar mass w as these variables. We



show in the next section a complete set of orthonormal functions spanning the four angles,

with the result that the mass/momentum dependent factors enter only through w.

The differential cross section for the reaction Eq. (2.1) can now be written, suppressing

the factors which depend only on /s and the W,

do

waw ar & MPpa (2.6)

where the variables relevant for partial-wave analyses are collectively denoted by 7,

7 ={Q,Qp,w}
dr = dQ dQy, dw
=d® dcosO d¢ dcosb dw (2.7)

The purpose of the partial-wave analysis is to parameterize the invariant amplitude M as
a function of 7 and analyze the data for each bin with given ¢t and W. Thus, the function

one needs to calculate for the purpose is the ‘distribution function’,

I(r)=|MJ? (2.8)

Another way to write down the differential cross section is use the Dalitz-plot variables

{s1,s2}:
do

dt AW dR dsy dsg

In this form, the phase-space factors have disappeared from the formula and it is symmetric

I(7) (2.9)

under interchange of subscripts 1 and 2 and, formally, independent of a specific choice of
an isobar. The Euler angles R can now be defined merely to ‘fix’ the orientation of the 3-
body system in its own RF. This formula shows that, for each point in a grid of (¢, W), the
Monte-Carlo events can be simply generated via a set of five random numbers specifying

R, s; and sy, with the ‘Lorentz factor’ = 1.



3. Decay Amplitudes

We shall use ‘a’and ‘b’ to denote the following set of quantum numbers needed to

describe a K K7 system:

a={lsJF (v)}, b={am} (3.1)

where ‘v’ stands for the isobar and s is its spin, and £ is the orbital angular momentum
between the isobar and the bachelor particle, and J is the total spin with m as its z-
component and P is the intrinsic parity given by P = (—1)l+5+1. Then the amplitude for
the X0 decay into the isobar, followed in turn by its decay, is given by®

Ay (1) JsZD (®,0,0) D3 (6,6,0) far(w) (3.2)

where

J=(2J+1), s=+/(25+1) (3.3)

s and A are the spin and helicity of the isobar, and f,)(w) is the helicity coupling ‘constant’
(but it depends on the w). It is related to the £s-coupling constant g, through a standard
prescription®,

far (W) x ?(503/\|J/\) Qs (W) ga (3.4)

In the isobar model, g, is considered independent of w, but it can depend on the W. In
partial-wave analyses, g, is in fact absorbed into the production amplitudes, which are

then the parameters to be determined in maximum likelihood fits.

The factor ‘Q’ contains all the ‘known’ dependence on the isobar mass w:

Qfs (w) = Fy(p) Fs (q) Ay (w) (3.5)

where the functions ‘F’ denote the angular-momentum barrier factors and are defined

below. The A-function has the standard Breit-Wigner form for the isobar v,

wol'g
Ay (w) = - 3.6
(w) wg —w? —iwely (w) (3.6)

with
S

wo g Fy(g)
w g0 F? (o)

Iy (w) =



where wg and Iy are the mass and the width of the isobar and ¢g = ¢(wy) so that I'y(wg) =
Iy and Ay(wp) = 1. Note that the w dependence of the width is assumed to be given by

the two-body phase-space factor ¢/w with the decay amplitude given by Fs(q).

From the form of Fy(q) given below, the energy dependence of the width is!®

2s5+1
Iy (w) 4

(3.8)

w

Since the width formula in terms of the Lorentz-invariant decay amplitude has a w2
dependence, the above formula implies that the invariant amplitude is proportional to
VwFs(q). One way to understand this dependence is to consider an elastic scattering in
the two-body channel in which the isobar v is formed. The Lorentz-invariant scattering
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amplitude in a partial wave s is™*, suppressing numerical constants,

Ts d (25 + 1) Py () %5 sin §, (3.9)
q

where the partial-wave S-matrix has been given the usual unitary form exp[2id,] in terms
of the phase shift d,, and P,(z) is the usual Legendre polynomial with the argument z
representing cosine of the scattering angle. A resonance in a partial wave s can be written

in a conventional form

w? — w?
t8y = % 1
cotdy = T 3.10)
so that
T, = (2s+1) Py (2) wolly (w) (3.11)
L ox — (25 s (z , )
q wg —w? —jwely (w)

It is seen that the w dependence as given in Eq. (3.8) makes the invariant scattering
amplitude T, to have the simplest possible singularity-free ¢ and = dependence in the
numerator, i.e. a polynomial of degree s in the variable (g - ¢f) only, where ¢; and ¢ are
the initial and final breakup momenta of magnitude ¢ in the CM system for the elastic

scattering.

The functions Fp(p) and Fs(q) are the Blatt-Weisskopf centrifugal-barrier factors as
given by von Hippel and Quigg!?,

Fo(p) =1 (3.12)



Fi(p) = szl (3.13)
Fy(p) = % (3.14)
Fs(o) = \/z (z — 15)2*"747r293(22 —5)° (3.15)
Fale) = \/(22 — 45z + 1(1):"?124252 (22 — 21)? (3.16)

where z = (p/pr)? and pgr = 0.1973 (GeV/c) corresponding to 1 fermi. Normally, the
barrier factor is defined such that Fy(p) = 1 as p = oo, but it here is renormalized so
that Fy(p) = 1 for z = 1, in order to have the fitted parameter for the ¢ wave reflect its
‘actual’ size at p = pg. Note that

Ay o pt forpa 0 (3.17)

and

Ap x ¢° forg~ 0 (3.18)

In other words, we demand that the amplitude Ay has the ‘correct’ p and ¢ dependence
near threshold.

Combining Eq. (3.2) and Eq. (3.4), one may separate out explicitly the w dependence
from that of the angles and write, dropping the constant g,

Ap (1) = B * (9, %) Qf, (w) (3.19)

where the functions ‘E’, which has no explicit dependence on the isobar v, form a complete

orthonormal set in the space spanned by the four angles €2 and 2p:

* T~ * L] g
B (9,94) = 53 DL3 (8.0,6) 4y (6) [3 <£03A|JA>] (3.20)
A
Note that
EX Q) =1, ifJ=l=s=m=0 (3.21)
and also that )
0
Y= (osAlIN)| =1 (3.22)
A J



It can be shown that

/ dQ dQy, EJE % (9,Q,) ELES (Q,Q) = (47) 150 Sep S50 Sy (3.23)

Formally, the functions ‘E’ are related to the ‘ket’ states [(s.Jm) and |Q, Q) via
(Q, QplsTm) = EZf = (Q, Q) (3.24)
with the ‘ket’ states normalized according to
(LsTm|l's' T'm'"y = S 55 6770 O
(Q, Q4] Q) = (47)% § (2 — Q") §(Q — Q) (3.25)

It is seen that the ‘E’ functions have ‘rational’ normalizations in the sense that the ‘ket’

states |Q) and |23) are each normalized to its full 47 steradians.

4. Reflectivity Basis

The parity conservation in the production process Eq. (2.1) is taken into account
through change of basis via a reflection operator* defined in the overall CM system, to
bring the density matrix into a block-diagonal form. The new basis involves introduction

of the reflectivity e through
leam) = ||am) — eP (=1)" ™™ |a — m)| 6 (m) (4.1)

where P is the parity of the state ‘a’ and
1

1
=35 m =20
=0, m < 0 (4.2)

The reflectivity € is here defined such that it coincides with the naturality of exchanged
Regge trajectories. Note that

leam) = 0 for m = 0, if e=P (—1)‘] (4.3)



In the new basis, the ‘E’ functions become

Bl () =03 Dyl *(2,0,0) d} (8) ((0sATN) (4.4)
A
where
‘D757 (2,0,0) = 6(m) | DL3 (2,0,) - P (-1)" " D%, (9,0, 0) (4.5)

Since P = (—1)***+1 the ‘E’ functions can be recast into

Epf *(Q,04) =13 Bl (2,0,6) d3g(6) (€0sA[JN) (4.6)
A
where
“Byi (2,0,0) = 6 (m) | D13 (2,0,6) + €D, (,0,9) (4.7)

It is readily ascertained that

‘Blx(2,0,¢) =20(m)ReD;5 (9,0,¢4) (e=+1)

= 2i0 (m)Im D} (8,0,4) (e=—1) (4.8)

In other words, the functions ‘B’ are purely real for ¢ = +1 and purely imaginary for
€ = —1. The normalization for the functions ‘E’ in the new basis is given by

/ dQ dQy B * (Q,Q4) CELE(Q,Q8) = (47)2 86,0877 400 St S (4.9)

It should be borne in mind that the functions ‘B’ defined above, in contrast to the ‘E’ and

the ‘D’ functions, do not satisfy the orthonormal relationships.
We exhibit finally the decay amplitudes in the new basis:
Ay (1) = “EJE*(Q,,) Q, (w) (4.10)

It is in fact in this form that the decay amplitudes have been coded into the BNL partial-

wave analysis program.

The parameters ‘V’ of the fit are those that enter into the definition of the spin-density

matrix:

K
‘o = Vir Vi (4.11)
k
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where the K is the rank of the density matrix (K = 2 in our case). Note that, owing to
parity conservation in the production process, the density matrix becomes block-diagonal
in the sense that € with a prime does not appear its definition. The ‘V’ is given in the

triangular representation?,

Eka =0, k > ne (b)
= real, k = ne(b)

= complex, otherwise (4.12)

where n(b) is an ordinal number ranging from 1 to N¢(b) which is the total number of
different states b for a given €. Now the square of the invariant amplitude M assumes the
form

I(r) = “pw “As (1) A5 (7) (4.13)

ebb’

Or, introducing a function,

Te(r) =Y Vi “Ay(7) (4.14)
b

the I(7) can be succinctly written
I(r) =) [T (r)] (4.15)
ek

indicating that the distribution function I(7) is in fact a sum of 2K non-interfering terms,

each of which results from a sum of fully interfering states |eam).
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5. G- and C-parity Eigenstates

A detailed description of the problem of constructing the eigenstates under the G- and
the C-parity operations can be found in a note written by the author®. Here only the bare

minimum necessary for exposition of relevant formulas are given.

Let 7 be a given configuration of the K K7 system. We denote by 7 that obtained
by interchanging K and K. Suppressing indices €, a and m, which are irrelevant for this
discussion, one may form

Y (7) (r)+ A(7)] (5.1)

1
= (A
Suppose now that the decay amplitude A is expanded as a function of orbital angular
momenta L for the KK system in its own RF. Its G-parity is (—1)L+1 if the K K system is
charged; while its C-parity is (—1)L if it 1s neutral. Note in particular that this argument

holds regardless of the nature of the isobars involved—this is a general result.

It is clear now that for a neutral K K= system,
Gy = £y (5.2)
for the state containing a charged =, while
Cipy = topy (5.3)

for the one containing a neutral 7. It should be stressed that these results are independent
of the isospin of the neutral K K= system. Thus, isospin considerations are irrelevant for
a neutral K K7 system, as long as appropriate G- or C- parity eigenstates are used in the

analysis.

Let i be the eigenvalue for either the G- or C-parity operation. Then, the eigenstates

are written, fully restoring all the indices,

b (T) [ A (7) + 1 “Ap (7)] (5-4)

1
V2
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where ;1 = 1. The specification of decay amplitudes for the K K« system is now complete.
For completeness, we exhibit the distribution functions ‘I’ in terms of these eigenstates.
We introduce a shorthand notation ¢ = {b, 4}, to write

I(r) =) “peer “c(r) WY (7) (5.5)

ecc’

The ‘U’ functions now take the form
Up(r) =Y Vi We(r) (5.6)
and the I(7) is again given by

I(r)=Y [U(r)P (5.7)

6. Parametrization for the a((980) Isobar

We use for the Breit-Wigner form for the ag/§(980) the coupled-channel formula given
by Flatté!®, with one modification: the w dependence of the width is assumed to be given

by the Lorentz-invariant phase-space factor ¢/w, not merely by ¢ as used by Flatté.

The § is seen to decay into two channels, 71 and KK, and they will be labelled 1 and
2 in this note. Then, the Breit-Wigner formula replacing Eq. (3.6) can be written

_ D (w)|

AE (w) Dj (w)

(6.1)

where
. Wy
Ds (w) = wj —w? — L (9ia + g342) (6.2)
The parameters g; and gs are the dimensionless coupling constants and ¢; and ¢z are the

breakup momenta for the 7 and K K channels, respectively. The constant w; is the KK

threshold, so that the magnitude of the A-function is normalized to one at the threshold.

Let wg and I'y be the mass and the width as observed in the 7 channel. Then, by
demanding that Eq. (6.1) approximates these parameters

2

s (w) > w*— wg — 1wol'y, as w — wy (6.3)



13

with gg = iky, where k3 is the magnitude of g3 below the K K threshold, one obtains

o (;
wi = w(z) 2 (wo)wofo (6.4)
q1 (wo)
and
w2l
g 0 (6.5)

B WiWgq1 (LUO)

Here one has set r = g%/g%.

The shape of the resonance peak as given by Eq. (6.1) is highly asymmetric near wy;
so in practice one has to increase I'g or decrease r or both to approximate a simple Breit-
Wigner form of a given mass wg and width I'g. For further comments on this point, the

reader is referred to Ref. 14.

7. Maximum-likelihood Methods

In this section we exhibit the form of the likelihood function used in our partial-wave
analysis, along with the normalization integrals for all Monte-Carlo events and also for
accepted MC events. We show in addition the formula for calculating the ‘predicted’ or

‘acceptance-corrected’ number of events.

The likelihood function for finding ‘n’ events of a given bin with a finite acceptance

n(7) is defined as a product of the probabilities,

o {% } II {fur);((?; pa dr (7.1)

i

where the first bracket is the Poisson probability for ‘n’ events. This is the so-called
extended likelihood function, in the sense that the Poisson distribution for ‘n’ itself is

included in the likelihood function!®. Note that the expectation value 7 for n is given by

n o« /I(T)?](T) pq dT (7.2)
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The likelihood function £ can now be written, dropping the factors depending on n alone,

Lo [ﬁ I(n’)] exp {—/1(7)77 (1) pq dr

The ‘log’ of the likelihood function now has the form,

Inf Z Inl(m) —/I(T)n(r) pq dT (7.3)

We shall adopt the following shorthand notation for indices:

a = {ekc} = {ekapm}
o' = {ekc'} = {ekd' u'm"} (7.4)

where p stands for either G- or C-parity. Note that ‘primes’ do not appear for € and k;
they apply to non- interfering indices. Now the distribution functions I(7) assume the
following compact form,
I(r) =) Va Vi dal(r) ¢ (1) (7.5)
aal
where ¥ is the symmetrized decay amplitude ‘A’ as defined previously. As such, ¥ does
not depend on the index k.

The normalization integrals are most expeditiously obtained through the Monte-Carlo
events. Let M be the number of MC events generated, and let M; be the number accepted
by the finite geometry of the experiment and other software cuts. The MC acceptance is

then given by ny = My /M. One needs two sets of normalizations,

1 M
Vool = ﬂ Z ¢a (Tl) ¢;’ (Tl) (76)

for the full MC sample and

1 Mg
Vi =31 2 Valm) ¥ (n) (7.7

for the accepted MC sample, so that

1 Mz
Ne Voo = HZZ: Yo (1i) Yo (i) (7.8)
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is the true accepted normalization integral, obtained by replacing M; in the denominator

with M in Eq. (7.7).

The ‘log’ of the extended likelihood function £ can therefore be written

> VoV WE

aa’

(7.9)

Ing = Z In Z Va V3 Yo (1i) U2 (Ti)] — g

ool
where n is the number of experimental events in a given bin. With an extended likelihood
function, the parameters themselves now have an absolute normalization. It can be shown
that, by substituting ‘V’s by ‘cV"’s where ¢ is a constant independent of «, and then by
differentiating In £ by ¢?, that the ‘V’s are normalized according to

e Y VaVi U, =n (7.10)

(The partial derivative should equal to zero at the minimum.)

The ‘predicted’ number of events from the fit is

N=) VoV Uou (7.11)

aa’

One may renormalize the parameter via

Vo, /v (7.12)
Nz

Then, in terms of the new parameters, the ‘log’ of the likelihood function reads

Inf = Z In Z VoV Yo (1i) ¥y (TZ)] —-n Z VoV 02 (7.13)
and the normalization condition assumes the form
Y VaVa oy =1 (7.14)

With this normalization, the fitted ‘V’s are, to first order, independent of variations among
different bins, and a set of fitted parameters in a given bin is, therefore, an excellent starting
value for the neighboring bins. The predicted number of events is now given by, in terms

of the new parameters,

n
N=—YN V,V T, 7.15
3 (7.15)
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Note that n, = Mz/M would be the predicted fraction of accepted events if the data
were distributed isotropically as in MC events. This formula shows that the ‘acceptance-
corrected’ event number N is proportional to the observed event n divided by n,— the
summation involving the fitted parameters ‘V'’s is precisely what is needed to ‘correct’ for

the anisotropy inherent in the experimental data.

Consider next a case in which two separate triggers, 1 and 2, result in the same event-
types under study. The joint likelihood is simply the product of the two likelihoods £
and L. And the ‘log’ of the likelihood is given by

ni1+n2
ML= Y In|> VaVita(n) ik (n)] IR A {771\1151102, i 772\11521 (7.16)
where the subscripts and superscripts 1 and 2 stand for the triggers 1 and 2. The normal-

izations are found to be, using the techniques as before,

my VoV ¥ = (7.17)
nzz VoV \Ilffi = ngy (7.18)

and the predicted number of events is again given by Eq. (7.11).

One may redefine the parameters in a manner similar to Eq. (7.12), as follows:
ny + na

m +n2
Then the new ‘log’ of likelihood is given by

ni1+n2
Y VoV da (i) vl (Ti)]

V -

v (7.19)

Inl = Z In

i

s lm oG m @
—n —|— n VaVal 7\11 ’ + \II /:|
(1 2) Z {771 +n2 Y mtne ¢

(7.20)

aa’

and the new normalizations are

(”1 - ”2> Z Vavs o) =1 (7.21)

M+ 2 m
ni + na « (2) N2
E VoV O, = — 7.22
(771 + 72 > R (7.22)

The predicted number of events assume the form, in terms of the new parameters,

N = (”1+”2> Z Va V2 (7.23)

m + n2
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