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Abstract

This document is a detailed description of the spin parity analysis of p — 7T~ 7°7x°7°. In

addition to this, We find the that 7+ 7~ 7°x°7° represent 0.091 + 0.004 of all annihilations at
rest. Excluding w and 7 intermediate states, we find 77 7~ 7°7°7° to represent 0.067 & 0.004 of
all annihilations at rest. From the spin parity analysis, we learn that much of the 777~ x°z°x°
final state proceeds through an isoscaler (JPc = 0++) object decaying into p*p~. This fo

object has a mass of 1437413 MeV/c? and a width of 352443 MeV/c?. We find that
BR [pp — for® — p*p~x° — (¥ x°)(x~ x°)x°] = 0.022 + 0.004
We also see evidence for this fo decaying into go.
BR [ﬁp — for® = oor® — (a7 )(x°x° 7r°] ~ 0.006

In addition to this 0** object, we find evidence for a large contribution from *8; initial
state proceeding through probably two J = 1 objects. These may be the b;(1235) — po and
the p° — pTp~. We find the p! to have a mass of 1530 MeV/c® and a width of 300 MeV/c?.
We find rather odd parameters for the b;(1235), mass 1350 MeV/c? and width 680 MeV/c?.
This is not completely understood.

We have also looked for the f;(1520) — pTp~. The data are consistent with a small contri-

bution from this decay,
BR [pp(* So) — £2(1520)7° — ptp77° — (xt7°)(x " x°)x°] < 0.00201,

but certainly do not require this contribution.



Contents
1 Introduction

2 Survey of the Data

2.1 The 4n Invariant Mass . . . . . . . . . 0 i i i e e e e e e e e e e e e e e
2.2 The 37 Invariant Masses . . . . . . . . o i i e e e e e e e e e e e e e
2.3 The 27 Invariant Masses . . . . . . . . o i e e e e e e e e e e e e e

2.4 The T 7~ n°x°x® Branching Fraction . . ... ... ... .. ... ..........

3 The Fitting Procedure and Parametrization of the Data

3.1 Definition of the Problem . . . . . ... .. .. ... ... . L o oo
3.2 The Likelihood Function . . . . . . . . . . . . . . . e e e
3.3 Goodmess of Fit . . . . . . . . . e e e
3.4 The Breit-Wigner Amplitudes . . . . . .. .. ... L. Lo o oo
3.5 Interference Between Decay Chains . . . . . . . .. .. ... .. ... .........
3.6 The Helicity Amplitudes . . . . . . . . . . . . . e e e
3.6.1 1Sy — (0F,1F,2F)otro-+ ...
3.6.2 1Sp— (oF, 1t 2)2tto—t L
3.6.3 1So — (0F,17,2F)1707 . . .. ..
3.6.4 38 — (1F)17707F L e
3.6.5 381 — (IF)1H=07F . L

4 Systematic Tests of the Fitting Procedure

4.1 The Dynamical Weights . . . . . . . . . . . .. ... . e
4.1.1 Variationsinthew Cuts . . . . . . . . . . . . e e e

4.1.2 Results using the wrong hypothesis . . . . . . . ... ... ... ........
4.2 Checks on the Confidence Level Cut . . . . . . .. .. ... .. ... ... ...,

5 Results of the Likelihood Fits

5.1 Fits to a Single Intermediate State . . . . . . . . ... ... ... 0000000,
5.2 Fits to Two Intermediate States. . . . . . . . . ... ... ... ... o 0.,
52.1 pl—poand X(0t) —ptp™ . o oL
522 pl—poand X(0tY) —wptp~&oo .. ...
523 pl—poand X(2tY) s ptp™ o oL

5.24 b — poand X(0FF) — ptp™ or X(27F) — ptp~

525 pt—ptp and X(0t+) s ptp™ ..o L
5.3 Fits to More than Two Intermediate States . . . . . . ... ... .. ... ......
5.3.1 pil = po, pal = ptp~and X(0FT) - ptp™ . . . oL oL oL

5.3.2 pl — po, X(0t+) > ptp=and fo - ptp oroe . . . ...
5.3.3 b — poand X(0*F) - pTp~ and X(0tt) w00 . . . . . . ...
534 by —po, pt —»ptp and X(0tH) = ptp™ Lo
535 by —po, pl = ptp , X(0tT) s ptp~ &oo .. ..o

5.3.6 by — po, pt — ptp~, X(0T+) — pTp~ and f,(1560)
5.3.7 by — po, pt = ptp~, X(0tT) — ptp~ and f»(1520)

6 Summary

A Angular Distributions

14
16

18
18
19
20
21
22
24
24
24
25
25
26

27
27
28
30
30

32
32
33
33
35
39
42
45
47
49
51
54
57
60
62
64

66

68



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
4.1
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
Al
A2
A3

List of Tables

4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

4m Invariant mass. . . . . . . ... L.l e e e e e e e e e e e e 3
47 Mass differences. . . . . . . .. L. L e e 4
47 Monte Carlo Invariant mass. . . . . . . . . . . ... Lo e 5
47w Monte Carlo Mass differences. . . . . . . . .. ... . o oo oL 6
37 Invariant mass. . . . . . .. oL oL Lo e e e e 7
37w Monte Carlo Invariant mass. . . . . . . . .. .. ... .. L0 8
37w Mass differences. . . . . . . .. L e e 10
37 Monte Carlo Mass differences. . . . . . . .. .. .. ... 0oL, 11
37 Monte Carlo Mass differences. . . . . . . .. .. .. ... 0o L. 12
37 Monte Carlo Mass differences. . . . . . . . . .. .. ... . 0oL, 13
27 Invariant mass. . . . . . .. oL L. e e e e e e e e e 14
27 Goldhaber plot . . . . . . . . e e e e 15
Monte Carlo Fit Comparison to pf and X(0Ft+) . . . . . .. ... .. ... .. .. .. 29
Fittopt mpoand X(0tF) —pp . . . . . oo 34
Fittopl mpoand X(0tT) moo. . . . . .. o 37
Fittopt wpoand X(0t) mpp& oo . . . .. ..o 38
Fit to pt — po, X(2++) — pp and X(0++) PP e e e e e e e 41
Fittob; wpoand X(0tF) —pp. . . . . oo i 43
Fittoby wpoand X(2tT) s po. . . . . .o 44
Fit to pt — pp and X(0++) PP e e e e e e e e e e e e e e e e 46
Fit to pit — po, p2! —w ppand X(0tT) —pp . . . . oo 50
Fit to pt — po, X(0tT) — ppand fo(1560) w00 . . . . . . . .o 53
Fittob; »poand X(0tT) mpp& oo . ... ... . 55
Fit tob; — poand X(0**) m»ppand fo mo0 . . . . . .. .. 56
Fit toby = po, pt mppand X(0tF) —pp. . . . ... o 59
Fit toby — po, pt = pp, X(0tT) s pp & oo . . . . .. .. 61
Fit to b — po, pt — pp, X(01) — pp, and fo(1560) w00 . . . . . . . ... . ... 63
Fit to b1 — po, pt — pp, X(0) — pp, and f2(1520) —wpp . . . . . . . ... . ... 65
A — BC Angular Distributions . . . . . . .. .. L Lo o 69
B — ww Angular Distributions . . . . . . ... oL Lo o 70
C — mr Angular Distributions . . . . . . . .. .. L oL L Lo 71
Monte Carlo Parameters used for p — poand X(0t+) —pp . . . .. .. ... ... 28
Monte Carlo Results for pt — poand X(0t*) - pp . . .. . ... . ... 28
Monte Carlo Results for pf — poand X(2tt) —pp . ... ... ... ... ... . 30
Monte Carlo Results for pt — ptp~ and X(0F*) »pp . . . . . . ... ... 31
Variations of confidence level cut . . . . . . . .. ... Lo oo oo 31
Fits to single final states . . . . . . . . . . ... . o oo 32
Fit Results for pt — po. . . . . . . . o e e e e 32
Fit Results for pf » poand X(0Ft) —pp . . . . . . .. oo o 33
Fit Results for pt X(0t+) s oo . . . . . . . o o 36
Fit Results for ot w poand X(2¥*) s pp . . . . . . .. oo 39
Fit Results for b — po and X(07+) m ppor X(2¥+) mpp . . . . . .. ... L. 42
Fit Results for p°1ptp~ and X(0t+) —ptp™ . . . . .. oo oL 45

Summary of 0T+ Properties . . . . . . . . . .. ... ... 48



5.9
5.10
5.11
5.12
5.13
5.14
5.15
6.1
6.2
6.3

Fit Results for p1! — po, palptp~ and X(0tT) —wpp . . . . . .o L oL 49

Fit Results for p — po, X(07*) — pp and fo(1560) > ppor oo . .. .. .. .... 51
Fit Results for b — po and X(0*t) mpp & oo . . . . .. .. . L. 54
Fit Results for by — po, pt > ptp~and X(0tt) > pp . . . . . . . ..o 57
Fit Results for by — po, pt = ptp~, X(0*t) s pp & oo . . . . . ... ... ... 60
Fit Results for by — po, pt — ptp~, X(0t+) — pp and fo(1560) w00 . . . . . . .. 62
Fit Results for by — po, pt — pTp~, X(07+) — pp and f2(1520) »pp . . . . . . .. 64
Summary of 0tt S pp& oo . . . . . .. 66
Summary of two 07+ Objects . . . . . . .. . . . ... ... 67

Summary of 21+ Properties . . . . . . . .. .. ... 67



Crystal Barrel 1

1 Introduction

In this note, I describe in detail the spin parity analsysis of the 7T 7~ n°7°7n° final state. This
analysis is quite different from preexisting crystal barrel analysises due to the large number of final
state particles. It is not possible to carry out a Dalitz plot analysis as has usually been done.
Rather, an unbinned maximum liklihood fit in the 8-dimensional #t7~ #°x°n° phase space has
been performed.

This document is part 2 of a detailed description of the analysis of the 7t 7~ w°x°x° final state.
It is assumed throughout that the reader is familar with part 1 of this document[ll. All details of how
the data have been reconstructed are described in the previous document, and will not be repeated
here. The starting point for this description will be the 38266 7-C fit 7t 7~ 7°x°7° events obtained
in the previous document. Also used are a sample of 569787 Monte Carlo, CBGEANT, events which
yield a sample of 72997 7-C fit 7t 7~ n°x°7m° Monte Carlo events at 15% confidence level.
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2 Survey of the Data

Before continuing, it is necessary to identfy the obvious features in the data. If we assume that the
ata~n°n°n° final state is reached through a series of quasi two—body processes, then we need to
identify potential 47, 37 and 27 objects. The following decay chains are possible:

pp — Axw,A— BC,B — nn,C — 7w
pp — Aw,A— Bm,B—-Cn,C — 7w
pp — AB,A—Cnx,B — 7r,C — 7.

2.1 The 47 Invariant Mass

In order to identify what the A, B and C objects could be, I have produced both invariant mass
plots, and difference plots. The best example of both of these is shown in figure 2.1. In this figure
are shown two invariant mass plots, that for 7t 7~ 7°x° which contains 3 entries per event, and
that for 7t 7°x°x°, which contains 2 entries per event. The difference plot defined as the former
minus the latter, and is also shown. The idea behind this is that if there is something in the former
spectra, but not in the latter spectra, then the latter is a good measure of the bad combinations
in the former. By subtracting the two, one is left with only the good combination. It is important
to note that we have subtracted 2 entries per event from 3 entries per event, which yields 1 entry
per event. The resulting difference spectra is also shown more clearly in figure 2.2. In this figure, I
have labeled a structure near 1200 as the b;. This is the b decaying to wx®. It is not possible to
have a charged b; here, as both charged particles are needed to form the w. There is also a large
peak near 1500 labeled the { and a peak near the end of the spectra labeled accpetance. The latter
peak is an artifact of the fact that we have a lower momentum cut—off for neutral pions than that
for charged pions. Finally the ¢ peak is what as been seen in pd and fit to both a 0t+ and 2+
object 121 :[3114]: [5L16L: [7] In order to indicate that these peaks are significant, I have also provided
the corresponding Monte Carlo plots from 7T 7~ 7°x°7° phase space. Figures 2.3 and 2.4 show that
the previous peaks cannot be generated by simple phase space.
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Figure 2.1: The 47 invariant mass spectrum. The A show the 7t~ 7°x° invariant mass, (three entries
per event). The + show the xE 7w x° invariant mass, (two entries per event). The Mshow the difference
between the two previous spectra.
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Figure 2.3: The 4w invariant mass spectrum for Monte Carlo. The A show the 7t 7~ w°x® invariant
mass, (three entries per event). The + show the xExox°x° invariant mass, (two entries per event). The
M show the difference between the two previous spectra.
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binations per event. The lower peak labeled b; arises from the b; — wn® decay. The peak labled
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2.2 The 37 Invariant Masses

We next consider the 37 invariant masses. The four possible masses are shown in figure 2.5. In these
spectra, the only obvious structures are the  and w as discussed in the previous note, ([1]). As a

°x°n® phase space are shown in

comparison, the 37 mass spectra formed from Monte Carlo 7t 7~ 7
figure 2.6. As with the real data, the locations of the n and w are marked. However, in principle the
7 and w are not the only 37 objects in the mass range from 400 to 1500 MeV /c. We might expect

to see the following mesons via their pm decays.
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Figure 2.5: The four 37 invariant mass combinations. (a) shows xtx~m°, where one sees the 7 and
the w, (three entries per event). (b) shows the single 37° combination per event. One only sees the 7.
c and d Show the 7¥7°x° invariant masses, (three entries per event). There is no obvious structure.

e $(1020) — pfa¥ — atx7°
e ¢(1020) — p°7° — ata~x°

e hy(1170) — ptaF — 7o~ 7°
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Figure 2.6: The four 3w invariant mass combinations for Monte Carlo. (a) shows xtx~x°, where one

sees the 7 and the w, (three entries per event). (b) shows the single 37° combination per event. One

only sees the 7. ¢ and d Show the 7*7°x° invariant masses, (three entries per event). There is no

obvious structure.
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e hy(1170) — p°n° — ata~x°

e af(1260) — pton°t — wtaox°
e a;(1260) - p°7°” — 7 «°x°
o a$(1260) — p*7¥ — xtx—x°

e al(1320) — pton°t — wtaox°
® a,(1320) - p°7°” - 7w w°x°
o a$(1320) — p*7¥ — xta—x°

o w(1390) — pt7F — 7tz x°

e w(1390) — p°n° — wtx~x°

None of these final states should be seen in 37°, and the ¢, h; and w(1390) would only be seen in
xtx~m°. In order to look for these, the 37 difference spectra have been formed, and are shown in
figure 2.7. Again, we see quite clearly the prescence of both the n and the w. I have also indicated in
the various plots where we would expect to see the other objects. There is clearly no strong evidence
for the ¢, a1(1260), a3(1320) or w(1390). However, we could not rule out the h;(1190).

In order to try and get a better feeling for these spectra, I have also presented similar Monte
Carlo spectra. Figure 2.8 shows the spectra for 7t 7~ 7°#°x° phase space. Figure 2.9 shows the
spectra for the wm®n°® sample, and figure 2.10 shows the spectra for the nntx~ Monte Carlo sample.
The combination of all of these plots leads me to conclude that other than the w and 7, there are
no significant contributions from other 3w objects. In particular, the bump in the h;(1170) region
can probably be simulated with a combination of phase space, and  — 3#°. To facilitate analysis,
I will remove both the w and the 7 using simple cuts in the invariant mass spectra. These cuts are
described in section 3.1.



10 tr x°noxw®

5000 |- W 2000 &
: (a) : (b)
4000 [ 2000 |
3000 [ 1000 -
2000 o L
B N, L
T \ C
1000 - @0 1000 [
0 L L% r 7
\ L1 1 ‘ | | ‘ | L1 | ‘ | L1 72000 [ | ‘ | [ ‘ L1 L1 ‘ [
40 800 1200 1600 400 800 1200 1600
m(n ) —mn 1) IMeV /¢ m(n ) —m(n®nn®) MeV/c?
1600 ¢ 1600 ¢
1200 £ 1200 <d>
800 [ 800 [
400 F 400 F
0 F 0
—400 [ —400
-800 [ -800 E
~1200 [ -1200 [
~1600 F 7 ~1600 £ 7)
72000 :\ [ ‘ [ | ‘ | L1 | ‘ | L1 72000 :\ L1 | ‘ | [ ‘ L1 L1 ‘ [
400 800 1200 1600 400 800 1200 1600
(7 7)) —m (1) [IMeV /¢ m(7 ) —m (7 n°n°) (MeV/c?

Figure 2.7: The four 37 invariant mass differences. These are weighted such that there is one positive
entry per event. The arrows labled ¢, hi, a; and as indicate where one would expect to see these
resonances from their pr decay modes.
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Figure 2.8: The four 37 invariant mass differences for Monte Carlo. These are weighted such that there

is one positive entry per event. The arrows labled ¢, h1, a; and a3 indicate where one would expect to

see these resonances from their pr decay modes.
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Figure 2.9: The four 3w invariant mass differences for Monte Carlo wn®#°®. These are weighted such
that there is one positive entry per event. The arrows labled ¢, h;, a; and a3 indicate where one would
expect to see these mesons in their pw decay modes.
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Figure 2.10: The four 37 invariant mass differences for Monte Carlo T 7~. These are weighted such

that there is one positive entry per event. The arrows labled ¢, hy, a1 and as indicate where one would

expect to see these mesons in their pw decay modes.
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2.3 The 27 Invariant Masses

After removing the 1 and the w from the data sample, we need to examine the 27 mass spectra.
These plots are shown in figure 2.11. We see clear evidence for all three charge states of the p(770),
while at the indicated position of the f(950), we see essentially nothing. Because of this, I will
only consider two possible 27 objects, the p(770), and the (xw) S—Wave as given by the A.M.P.
parametrization.
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Figure 2.11: These figures show the four possible 27 invariant mass combinations. The w and 71 decays
to 37’s have been removed. The three charged states of the p are clearly seen. The arrows labled fo
indicate where one should see the f3(950) in its 27 decay.

In order to try and see if the inermediate state ptp~7° does indeed contribute, we can plot
the 7t 7° invariant mass against the 7~ 7° invariant mass, (different 7°’s are chosen for the two
invariant masses). This plot leads to six entries per event, and is shown in figure 2.12. There is a
clear enhancement in the pp region of the plot. However, it is also clear that there is more than just
pp in the data; we need to consider prrw in addition to pprw.
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Figure 2.12: The 7~ «° invariant mass plotted against the other two 71 =
six entries per event in this plot. The diagonal line in the upper right corner shows the approximate
phasespace limit for these data. The nominal p™ and p~ masses are shown with the dashed lines. The
two boxes are centered on the p(770) masses, and show a full width of 1T' and 2T'. Both p masses are

supressed due to phasespace limits, but there is a clear enhancement in the p™p~ region.
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2.4 The ntn 7°n°r° Branching Fraction

In part one of this document [1], I have derived a number of three body branching fractions. At
this point, I will return to the branching ration point, and derive two fractions useful in this note.
I start with the numbers in section 1 for both real and Monte Carlo data:

e 38,266 7-C fit 77~ 7°7w°7° events at a 15% confidence level cut. These events arise from a
p-stop sample of 3,346,403+ 50,915 events [1].

e 72997 7-C fit #t 7~ x°x°7° Monte Carlo events at a 15% confidence level cut. These events
arise from 569,797 CBGEANT events.

The Monte Carlo events lead to a reconstruction efficiency for simple five © phase space of

72997

= = 0.1281 + 0.0005.
569797 +

€57

However, in [1], we have seen that the efficiency for final states involving narrow 37 objects are:

€urr = 0.1288124 0.003388
€promre = 0.120712+£0.005713
€pntr— = 0.112023 £ 0.006625

It also has been seen that the effect of broad resonances on the above three efficiencies is typically
+0.005. We also recall that the n — 37° decay is problematic, and this may lead to the lower
efficiency value. As such, if we only take the first three numbers, we can obtain an efficiency as the

average:
€5 = 0.126 £ 0.005,

where the rather large error is due to the contributions of broad intermediate resonances. Given
these numbers, we then compute that:

BR(pp — ntr~ x°x°x°) = 0.0908 % 0.0039 = 0.091 + 0.004 (1)

Using this number, we can subtract the contributions from the wnm and nwx data. These
numbers can be recomputed from the data in [1] to remove the uncertainty from the decays of the
w and 7. As seen in 7T~ 1°7°7°, we find:

e For wr®w°, we find 0.0213 £ 0.0008.
e For nn°7°,we find 0.00144 + 0.00016.
e For T n~, we find 0.00445 + 0.00033.

Summing the above three yields 0.0272 £ 0.0009, which we can subtract from 0.0908 £ 0.0039 to
yield an w and 7 free branching fraction of:

BR(pp — ntx~ 7°7°x° = 0.064 + 0.004 (2)

Alternatively, we can remove the 7 and w from the ¥ 7~ #°7°x°® sample by cutting at 30, (see
section 3.1). This yields 23,220 real events, and 56,166 Monte Carlo events. We then use the Monte
Carlo numbers to yield an efficeincy of:

€sx = 0.09857 + 0.005,
where the larger error is used to account for intermediate resonances. Combining yields:

BR(pp — ntn~n°x°7°) = 0.0704 + 0.0038. (3)
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These previous two numbers are consistent within errors. For all proceeding dicusion, I will take the
simple average of them. I will however retain the full error due to the samples not being independent.

This then yields an w— n—free branching fraction of:
BR(pp — ntn~7°7°n°) = 0.067 £ 0.004. (4)

This number will be used later in these analysis to estimate branching fractions into broad reso-

nances.
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3 The Fitting Procedure and Parametrization of the Data

3.1 Definition of the Problem

From the previous survey of the data, we will make the assumption that after the w and 7 have been
removed, all the data can be described via a reaction of the form of equation 5. We will also assume
that for the B and C mesons, we will only use the p(770) and the =7 s—wave parametrization,

(A.M.P.).

pp — Aw,A— BC,B — 7w,C — 77 (5)

To begin with, it is necessary to explain how we remove the w and the 7. In the case of the
w, the 3 7t 7~ x° invariant mass combinations are formed for each event. If at least one of these
combinations is in a 30 w window defined as m,+ 52.5 MeV, the event is rejected. For the 7, the
lone 37° invariant mass is first checked to see if it falls in a 30 77 window of + 23.5 MeV around
m,. Then the 3 7t 7~ x° invariant masses are checked to see if at least one of them is also in the 7
window. If any of the above conditions is satisfied, the event is rejected. Rejecting all events which
satisfy at least one of the above conditions leaves a sample of 23220 w—, n—-free 7t 7~ 7°w°7° events.
A similar cut on the 72997 Monte Carlo events yields 56166 events. The higher acceptance for the
Monte Carlo sample arise from the fact that there are no real w’s or n’s in the Monte Carlo sample.

In order to describe the data, we need to define a set of coordinates. Given that we have 5
particles in the final state, 8 variables should be sufficient to completely describe the system. Five
particles leads to 20 variables, however energy and momentum conservation reduce this to 16. Next,
because we know the masses of the five particles, this reduces to 11. Finally, we are allowed to
choose our coordinate system, this then reduces us to 8 variables. However, because there is no
unique description of how we build 4, B and C, there will be interference between the choices. For
example, given that we say B is a pt and C is a p~, then there are 3 ways we can form B from
our pions, and for each of these, there are 2 ways to form C. We have six ways to put the event
together. When we go to compute the helicity amplitude for the event, we need to compute all the
angles relative to the same coordinate system. As such, once we have defined the coordinate system
relative to one of the 6 solutions, we are stuck with it for the other 5 solutions. In this sense, we
will need the 11 variables to describe the system, even though only 8 are truely significant.

So if we start in the pp rest frame, then clearly we need the mass of A, ms. We also need the
orientation of A relative to some coordinate system, cos 4 and ¢4. Now we can perform a rotation
so the z—axis points along the direction of A, and boost into the A rest frame. Here, we now have
two masses, mp, and m¢, and two angles which orient the decay, cosfp and ¢p.

Now we will need to move into the B and C rest frames. This is performed by first rotating the
coordinate system so the z—axis lines up with the direction of motion, and then boosting. In the
B rest frame, we need two angles to locate the resulting pions, cos8; and ¢;. Similarly, in the C
rest frame, we have the angles cosf; and ¢3. From this we obtain the 11 varibles which describe or
system.

(ma, mp, mc,cos64,¢4,cos0p,¢p,cos01,d;,cos b3, P3) (6)

If there is no ambiguity in putting the event back together, then it is always possible to choose
6a=¢a=¢p=0.

We also note that for a given 777~ 7°7°x° final state, there are 15 independent ways we can
build 4, B and C. In order to minimize later computation, I have defined an ntuple which contains
the 11 variables for each of the 15 combinations, plus three additional variables (168 elements). This
is computed once for each event, and then reused over and over by the fitting function.
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3.2 The Likelihood Function

Because of the large number of dimensions needed to describe the 777~ 7°x°x° final state, it is not
possible to bin the data in any meaningful fashion. Even assuming only 5 bins per dimension, we
would still have 58 = 390625 bins. With only 23000 events, this would give an average of 0.06 events
per bin, and nearly every bin would be an edge bin. Instead, we must treat the data in an unbinned
fashion. In order to fit unbinned data, it is necessary to use a maximum likelihood method. Most
of what I will now describe is detailed in references [8] and [9]. The necessary parts will be repeated
here for completeness sake.

The likelihood funtion used in this analysis is defined in 8] as the Standard Likelihood Method.
The likelihood function to be maximized is given as:

H fudﬂ @

where the product is taken over the N data points. The normalization integral over all phase space
is normally computed via Monte Carlo methods. The usual procedure is to reduce the product to
a sum by taking the logarithem of £. The problem can then be reduced to minimizing the negative
of the logarithem of the likelihood function:

—Inf = N-In( fudﬂ Zlnp.l (8)

Now let us look more closely at the weights ;. We can express these as p; = &; - ¢; - €;, where € is
the detector efficiency for the event, ¢ is the phase space weight of the event, and £ is the dynamical
weight of the event. Using this formalism, we can express equation 8 as:

—InfL = N-In /,udQ Zlnf, Zln

And given that we always perform the sum over the same events, the last sum will be a constant.
As we are then minimizing equation 8, we can neglect a constant offset. However, in the case where
we want to compare fits using different input samples, this term is necessary.

At this point, let us examine the normalization integral. This is normally computed by taking
M Monte Carlo events, and evaulating the weight u for each of them. In the case of Monte Carlo,
the efficiency is known. It is 1 for the events that make it through the detector simulation, and
0 for the events which fail. The phase space factor is also known. In the case of a program like
GENBOD!!!, the weight is given for each event. Whereas for our typical cBGEANTI[!2] the events are
generated according to phase space, so the weight is set to 1. In either case, we can define g in such

a way that
M
Zﬂj = Q401
=1
where
M
Qior = Z ¢J
=1
or then

ZM]

) + ln(ﬂtot)

In( f pdQ) =

In( f

tot
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which assuming that we use the same Monte Carlo events, is just a constant and can be neglected
in the minimization procedure. This means the minimizing of equation 8 is equivalent to minimizing

N
~lnL = =) Ing (9)
i=1

Next we will examine the normalization. Typically our weights x can be expressed as:

po = |ay-e ™ w; +ay-e Tty |? (10)

Where a; are real constants, ¢; are phases and the w; are complex weights. We will require that
3> a? = 1. In normalizing this, it is first necessary to normalize the complex weights w; indepen-
dently.

M
Dot = a-Z|w]’ 2
j=1

which then yields an a for each w as:

Qtot
S w2
This then means that we need to rewrite equation 10 as

p = |ap-er. (w1 - V1) + ag ceTi2 . (w2 - Vaz) |

Finally, we need to require that the combined weight is normalized.

M
Qot = B- Zﬂlj
=1

which then yields a 3 as:
Qtot
M
21:1 H1;

which yields our final expression for the normalized weight y as given in equation 3.2

b o= |a1-e_i¢1-w1-w/,B-al—i—az-e_i%-wz-«/ﬁ-az |2 (11)

It is important to note that every time we modify the dynamical weight, it is necessary to renormalize

8 =

the funtion. We will see that if we want to leave the mass and width of resonances free, it is necessary
to renormalize at every iteration. In the case where we fix these, wee need only normalize once at
the start of the run.

3.3 Goodness of Fit

The major drawback of using a maximum likelihood fit is that there is no simple measure of the
goodness of fit. In the limit of a large number of events, the quantity 2 -ln £ can be shown to be
related to a x?, so taking the difference between 2 -In £ for two different fits will lead to a AxZ.
However, going from this to an absolute x%/ndf is not trivial. In order to gauge the goodness of
fits by eye, I have defined 31 projections from the 8—dimensional phase space. These are based on
the 11 variables of equation 6 in section 3.1, and the 15 ways that it is possible to reconsiruct each
event. From these it is possible to define 31 unique projections. These include invariant masses
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+tx~w°n® with three entries per event, m(x* 7~ ) with one entry per event, and then angles

like m(w
related to the decays.

For each of these 31 projections, it is possible to define a x%/ndf. We can then form a global
pseudo—x2?/ndf by summing these 31 indivdual ones. This of course uses the same information
several times, and also does not take into account the correlations bewteen the variables. As such,
we will very often see that the likelyhood tells us that the fit is better, while this pseudo—x? tells us
the fit is worse. However, this x? can and does provide very valuable information about where a fit

is having problems.

3.4 The Breit—Wigner Amplitudes
I take the standard Breit—-Wigner form for an isobar of spin J.

T
BW (m; mo, To, J) = Mo -0

m2 —m? —i-mg - T(m;mg, o, J)

with

F2
I‘(m;mo,I‘O,J):I‘O.@_i. éI(q)
m g0 Fj(q)

The Blatt—Weisskopf centrigugal-barrier functions are taken as:

Fo(q) = 1
2z
F1(q) - z+1
1322
F =
2(9) (z—3)2+92

where
z(q) = (a/pr)"

and pr = 0.1973 GeV/c, corresponding to 1 fm. For J = 0, then

I'(m;mo, To) =To - o 1
m Qo
and for J =1
mo ¢° @ +pk
T(m;mo,To) =To- — - 5 - S—5
m qy 9“+Dpr

Finally, for J = 2,
5 4 2 2 4
mo ¢ ¢+3:9-Pr+9:P
I‘(m;mo,l‘o)zl‘o-—o-—s- 2 g f f
m ¢ ¢*+3-¢°-pr+9-pk

In the case of a particle of mass m decaying to two daughters of mass m; and mg,

VIm? — (my + my)?] - [m? — (my — my)?]

2m

g(m;my,my) =

This formula works fine for a massive object decaying into two stable objects. However, in the case
where we consider one broad resonance decaying into two other broad resonances, this formula will
break down. In this case, we do not use the masses of the daughter resonances for m; and my, but
rather a combination of the grand daughter particle masses [1%. Suppose we have

m — mymy — (mgmy)(mcemq)
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then we define q as follows:

V[m? — (mg + mp + me + mg)?] - [m? — (mq + mp — me — myg)?]

2m

q(m7 Mg, Mp, Mg, md) —

This formula will always provide a real value for ¢ and o, meaning we can make a sensible inter-
pretation for I'(m).

Throughout this paper, I refer to an object o which decays into both 7°#° and «tx~. This
o 1efers to the mw S-Wave parametrization of reference [14]. At this point, I use strictly the K1
parametrization. When a o is implied, I have replaced the Breit—Wigner function with the following:

Mur  N(Mrr) - exp(2i6(mer)) — 1
q P

BW (mgy) =

where m . is the 27 invariant mass, and n and § are obtained from the K1 soultion to the =
S—Wave scattering

3.5 Interference Between Decay Chains

For a fixed decay chain, there are usually several ways to build the intermediate particles 4, B and
C. If we consider A to be a neutral object decaying into pTp~, (B = p*, C = p~). Then there
are three ways to build A from the 7t 7~ 7°x°x° final state, (leaving out a different 7° each time).
For each of these, there are then two ways to build the p*p~, depending on which #° is assigned
to each particle. This leads to six combinations, all of which need to be included in the transition
amplitude.

6 3
A:Z ’Yi'hi'HBWj(i)
=1 =1

where h; is the heicity amplitude for a given choice, and the product is over the corresponding
Breit—Wigners of A, B and C. The factor v; is either 1 or -1, and the problem is to determine
which.

These 4 come from the isospin couplings of the system. We will consider that our object A is
isospin 0, and is produced from a 'Sj initial state. The G-parity of the 7t 7~ 7°7°x° final state is
—1, which means that the G—parity of our 1Sy initial state must also be —1. Also, L = 0 and S = 0.
This means that —1 = G(1Sp) = (—1)(Z+5+D) which then tells us that the initial state must be
isospin 1, (| 1,0)). We must then couple this to a | 0,0) object and a | 1, 0) object.

|1,0) = (1,0]0,1,0,0)| Ax)
1Sy = | Ax°)
We then need to consider the A decaying to ptp~.

10,00 = (0,0]1,1,41,—1) | ptp™)+(0,0]1,1,—1,+1) | p~p*) + (0,0 ] 1,1,0,0) | p°p°)
1 1 1

= — _|__ -ty - 0 0

ﬁlpp> ﬁlpp> ﬁlpp>

Finally, we must consider the decays of the p* and p~, (in this particular channel there is no p°).

A =

|1, +1) = (1,+1]1,1,4+1,0) | #F=x°) + (1,+1]1,1,0,+1) | x°xt)
1 1
T = —|xtr®) - — | x°xT
P 7 | ) 7 | )
|1,-1) = (1,-1|1,1,-1,0) | =~ =°) +(1,-1]1,1,0,—1) | x°x ")
1 1
pmo= —— )+ o 1)

V2 V2
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We can then put all of this back together to form our initial state from our final state. Ignoring all
the normalization terms,

150 — _

= +
= [
In order to determine the v;, we need to look carefully at what we call A, B and C. In this problem,
I have always taken B to be the pT, and the first daughter is always the #%. Simlarly, C is always
p~, and the first daughter is always 7. I also take B to always be the first daughter of A, and A
to always be the first daughter of the 'Sy initial state. This means that all 6 possible terms have
the form [(nt#°)(m~ n°)]x°, so they all have the same sign for 7.
This is of course not always true. If we consider the 2S; initial state, then we can derive that
this must be an isospin 0 state. If we then let A be an isospin 1 object, B is also an isospin 1 object,
and C is an isospin 0 object, then we will find.

|0,0) = (0,0]1,1,+1,—1)| Atx~)+(0,0|1,1,—-1,+1) | A~=F) +(0,0| 1,1,0,0) | A°=°)
1 1 1
3 _ +,_— - _+ 0,0
ST = —|AT™Tn Y+ —|A"T7") - — | A°n
L= lATT ) AT - S A
For the A decaying to B,C, we have:
|1,+1) = (1,+1]1,0,+1,0)| B*C°)
At = |B*CY)
|1,-1) = (1,-1]|1,0,—1,0)| B~C°)
A~ = |BC°)
|1,0) = (1,0]1,0,0,0) | B°C®)
AO — |BOCO>

If we now identify the B as the p, and C as o,

|1, +1) = (1,+1]1,1,4+1,0) | #F=°) + (1,+1]1,1,0,+1) | =°= ")
b= lEte) - e
|1,-1) = (1,-1|1,1,-1,0) |7~ x°) +(1,—1]1,1,0,—1) | #°x ")
o= ) )
1,00 = (1,0]1,1,4+1,-1) |=t7x") + (1,0 1,1,—1,+1) | =~ a*)
p= et - o)
88) = +[(=Tx°)(x°x°)]x"

[ ) (")t
= [(=tr)xn)
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In the manner in which I have defined the problem, all chains of the form Atx~ are written in
the form of the first line. They therefore all have ¥ = +1. The A~ xT are all written in the form of
the second line, so ¥ = —1. Finally, the A°x° are all written as the third line; v = —1.

3.6 The Helicity Amplitudes

All helicity amplitudes have been computed in the method described in reference ([13]). However,

these have been worked out by hand, simplified, and then coded up in a very optimized way. The

(13

code has then been tested by comparing output with the Amsler’s SPIN program !*®. In the following,

I will always assume a reaction of the form:

pp — Am,A— BC,B — mam3,C — w475

I will also use the notation that L denotes the relative angular momentum between A and #; and
S will denote their combined spin, (note that as the « has spin 0, S will always be the spin of A).
I will then use ! to denote the relative angular momentum between B and C, and s will denote
their combined spin, (note that B and C are in all cases either p or o, which means s = 0,1,2). I
will also assume that no relative angular momenta larger than 2 are needed to describe the data. I
will also make the simplifying assumption that all data can be described in terms of initial S—state
annihilation. This means I will only consider the initial states 1Sy and 2S;. Also, given that we
have five pions in the final state, we know that the overall G—parity must be negative, which means
the quantum numbers of these two initial states are:

o 15y, (IG)JPC =(17)o~*

° 35, (IG)JPC =(07)1 -

3.6.1 !S;— (0F,1,2+)ot+0-+

I have considered two possibilitites for the 0t — 4r decay.
e 0Ft — 0t+t0*tt — (atx~)(7°x°), for example fo — oo — 7T x " 7°7°.
e 0t - 1717 — (xt#°)(x~ =°), for example fo — pTp~ — atn®w~ =°.

In the first case, we have L =0, S =0 and I = 0, s = 0. In this decay, the 0t* must be an isospin
0 object. The helicity amplitude for this rather trivial case is

h=1.

For the second case, I have L = 0, S = 0 and I = 0, s = 0. In this case, the 071 object could
have isospin 0, 1 or 2, but the z—component of isospin must be 0. At this point I only consider an
isopsin 0 object. The helicity amplitude A is slightly more complicated.

1
h = —[sin 6y - sin B3 - cos(¢p1 + ¢2) — cos b1 - cos B2 ]

V3
8.6.2 1S5 — (0F, 1+ 2%)2++0-+
I have considered two possibilitites for the 2t+ — 4r decay,
o 2T+t — 0t 0*tt — (atx~)(7°x°), for example fo — oo — 7T~ 77O,

e 2Tt 5 1717 — (xtx°)(x~ =°), for example fo — pTp~ — ata®w~ =°.
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In the first case, we have L = 2, S = 2 and I = 2, s = 0. In this mode, the isospin must be zero.
The helicity amplitude is then given as:
h= L (3-c0520(, —1)
20
For the second case, I have L =2, S = 2 and I = 0, s = 2. Here the 2% object can have isopsin
0, 1 or 2, but the z—component of isospin must be zero. I have considered only an isospin 0 object.
The helicity amplitude is slightly more complicated, and given as

h = (3 - cos? 6y — 1) - [sin 0y - sin B - cos(¢p1 — P2) + 2 - cos By cos 6]

-sin? @y - sin 0; - sin 6 - cos(¢p1 — @2) - sin 8y, cos 6y

=] o ]| =
o o

3
_|_ [—
V30
3.6.3 !S,— (0F,1%,2%)1-0"
Here I have considered one decay,
e 17 — 170+t — (ztx°)(x°7°), for example prt — p*(770)0 — 7t 777,

This can occur with L = 1, § = 1, and with I = (0,2), s = 1. For the case of I = 0, the helicity
amplitude is given as:

= ——-(sinBp -sin by - cos p; — cos by - cosby)

V3

and for the case of I = 2, this is expressed as:

h = - (sin @ - sin 0y - cos @1 + 2 - cos By - cos B;)

E‘H
o

3.6.4 35— (1T)1——o0-+
Here I have considered two decays,
e 177 - 1770 — (7)) (x°x°), for example pt — p(770)0 — w7’ 7°.
e 177 - 1717 — (xtx°) (7~ =°), for example p°1 — p*(770)p™ (770) — ntx° 7w~ =°.

The first can occur with L =1, S = 1, and with I = (0,2), s = 1. In this case, the returned helicity
amplitude is a 3—element vector, (from the spin 1 initial state), (v1,v2,v;). A very important
simplification is to note that the third element of the vector is simply the complex—conjugate of the
first.

1 .
— —i¢a ;

v = —-e -[Re(zg) +7-cosfy4 - Im(z

1 \/i [ ( 0) A ( 0)]

vs = —i-sinfly - Im(zo)

The constant zg is given for I = 0 and I = 2 as:

LeTi¢B [sin 6; cos 6 - cos ¢y + cos by - sin B, — i - sin @; - sin 6]

- Sl

z2[l=2] = .et9m [sin 01 cos 6y - cos ¢y — 2 - cosfy -sinfp — ¢ - sin ¢y - sin 6]

3



26 tr x°noxw®

The second can occur with L =1, S =1, and with [ = 1, s = (0, 1, 2). In this case, the returned
helicity amplitude is a 3—element vector, (v1, v2, v;). where the third element of the vector is simply
the complex—conjugate of the first.

1 .

— —iPa ;
v = ———-e -[Re(zs) +1-cosf4 - Im(z,
v2 = i-sinfy - Im(z)

The constant z, is given for s = (0, 1, 2) as:

|
-

20[s =0] = -sinf - e %5 [cos B - cos By —sin by - sin O, - cos(P1 + ¢2)]

= S
co (=]

z1[s=1] = e V9B {cos By - [sin 6; - cos By - cos ¢ + cos b1 - sin B - cos @)
— 1-[sinfq - cosBy - sind; — cos By - sin by - sin ¢}
z23[s=2] = -sinfy -e"*%5 [2-cosf; - cosby + sinb; - sin by - cos(P1 + ¢2)]

ks

0 e~ ¢ {cos By - [sinB; - cos By - cos p1 — cos b - sin B - cos Pa)

— 4-[sinf; - cos By - sin ¢y + cos b - sin B, - sin @5}
3.6.5 35 — (1T)1t-0-*
Here I have considered one decay,
e 177 - 1770t — (7x)(x°x°), for example b1(1235) — p(770)0 — wrw’n°.

This can occur with L = (0,2), S = 1, and with I = s = 1. As with the previous case, this helicity
amplitude is also a 3 element vector. It is also true that the third element of the vector is just the
complex conjugate of the first. This vector can then be written as.

. 1
— e i%a ; i
v, = e - |Re(z1)+i-cosfy - Im(z1) + — -sinfy - z
1 (21) A (21) V2 A Z2
ve = 29-cosf4 —i-V2-sinfu -Im(z1)
The values of z; and z; are given for L = 0 and L = 2 as:

1 . —i-d . .
z[L=0] = E-smel-e B . (cos¢py —i-cosfpsin ¢1)
zn[L=2] = b .sinf; -e*?B. (cos¢r —i-cosbp - sin ¢1)

/40
z2[L=0] = E-smel-sm@B-smgbl

—1 . . .
z2[L=2] = E-smel-smaB-smqﬁl
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4 Systematic Tests of the Fitting Procedure

In this section, I will examine possible systematic problems in the fitting procedure. The procedure
will consist of taking a 2’nd Monte Carlo sample, (different from the Monte Carlo fitting sample).
To this 2’nd sample will be applied a dynamical weight, w. The original sample will then be used to
fit the second sample under various conditions. The results can then be compared to the dynamical
weights, and the effects of various conditions studied. Also included in this section will be a study
of the effects of the probability cut on the fit results.

In order to do this, we must return to equation 7. If we had produced a Monte Carlo sample
according to some spin hypothesis, and then fitted this second sample using a different sample, what
would change? In reality, we apply a spin weight w to each event in the second sample. This then
changes equation 7 to be:

N BT
c = I+
=1 fﬂdﬂ
then equation 8 becomes:
N
—InL = N -ln(/udﬂ) - Zwi -In p;
=1

which as before, we could rewrite as:

—-Int = N-ln/,u,dﬂ sz Ing; — sz & - €),

and the minimization equation, (9) is then:

N
—-InL = —Zwi-lnfi
i=1

However, in order to compare fits made using different events, or events with different weights, one
must carefully consider the term:

Z w; - ¢z

4.1 The Dynamical Weights

For the dynamical weight of the 2’nd Monte Carlo sample, I have taken the following:
e 1So(pp) — X(0F*)x°, X — ptp~, (see section 3.6.1).
e 1So(pp) — pim, p! — po, (see section 3.6.3).
e 351(pp) — pim, p! — po, (see section 3.6.4).

This dynamical weight can be written as a term from the 'Sy initial state , and one from the 25;
initial state, added incoherently.

w = frs0" | Afs0] > +(1- firs01) | Aqssa) 12

where the contributions to the two initial states can be written as:

A[lsO] = Qz- et A[z—»pp] +a, - (1 - a[21:2])5 : AFI:O] +ap- ali=2] * e v, AF}:2]
A[351] = (1 - a,2:2)5 : A[llzo] +ap=2] - e t?. A[llzz]

For the dynamical weighting parameters, I have chosen the following values:
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Parameter Name Value

mx (0t1) 1350.00
Tx(0tt) 300.00
My 1450.00
| AP 250.00
fis0 0.50000
ax 0.95000
a, 0.31225
aj—» 0.10000
dx 1.00000
o} 3.14159

Table 4.1: Dynamical weight parameters for an X(0*%) and a pr.

4.1.1 Variations in the w Cuts

tr x°noxw®

In this section, I have examined what the effect on the fit is when one varies the w—cut for the fitting

sample, while holding the w—cut on the input sample constant. In this study, the 2°’nd Monte Carlo

sample has had the w removed using a 2.00 cut. This sample has then been fit with three different

samples, (1.00, 1.50 and 2.00). The results are shown in table 4.2. For later reference, figure 4.1

shows four projections from this fit.

Parameter Name | Weight || sample a | sample b | sample c
—2In L —13411 —14070 —14743
x%/ndf 0.8855 0.9782 1.1242

mx (0F1) 1350.00 || 1332.20 1342.24 | 1347.22
Tx(0tt) 300.00 301.49 296.25 283.80

My 1450.00 || 1454.24 1451.15 1450.98
| 250.00 261.78 269.36 250.70

fis0 0.50000 || 0.49799 | 0.49545 | 0.49455
ax 0.95000 || 0.94215 | 0.94560 | 0.94830
ap 0.31225 || 0.33519 | 0.32534 | 0.31737
aj—2 0.10000 || 0.08342 | 0.11336 | 0.12115
ox 1.00000 || 0.90467 | 0.86802 | 0.76687
¢ 3.14159 || 3.25197 | 3.12038 | 3.01285

Table 4.2: Fit results for an X (07*) and a pr. The three sets of data correspond to different cuts used
to remove the w in the fitting sample. Sample a is cut at 20, sample b at 1.54, and sample c at 1o.
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Figure 4.1: Mass projection fits from Monte Carlo to the ptw and X(0%*)x hypothesis. The shaded
regions are the fit results, while the points with error bars are the data. a shows the 7t 7~ x°7° invariant

mass. b shows the =17~

afx®

invariant mass. ¢ and e show the #£37° invariant masses. d and f show the
invariant masses. g shows the 47 mass differences, and h shows the 7°x° invariant mass.
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4.1.2 Results using the wrong hypothesis

In this section, I have fitted the 2’nd Monte Carlo Sample with several wrong hypothesis. Given that
the true result is 07+ and p/, I first looked at what the fit would do with a 2+ and pr hypothesis.
I then asked how much of this 2’nd hypothesis we could allow in addition to the true hypothesis.
The results of these studies are shown in table 4.3. We see very clearly that the true hypothesis is
favored by Aln £ of 3595 — a very significant difference. We then see when we add an admixture of
the 271 hypothesis, we get an improvement in In £ of 1 — an insignificant amount. When we then
look more closely at this last test, we also see that the normalized strength of this 27+ addition
is 0.00003 relative to 0.94326 for the 07T, essentially zero! The fit has totally rejected this wrong
hypothesis.

Parameter Name || 0t1 Hyp. || 2t Hyp. | 0tF and 277+
—2In L —13411 || —9815.85 —13412
x%/ndf 0.8855 1.3090 0.8857
mx (01) 1332.20 1330.94
Tx(0Ft) 301.49 295.05
mx (217) 1248.03 2388.38
Tx(2%t) 143.68 294.44
My 1454.24 1535.89 1455.22
T, 261.78 390.17 262.24
fis0 0.49799 0.39104 0.49618
ax(o) 0.94215 0.94326
ax(z) 0.22975 0.00003
a, 0.33519 0.97325 0.33207
a3 0.08342 0.09990 0.08585
éx(0) 0.90467 0.86040
bx(2) 1.05869 4.17346
Pi=2 3.25197 1.97322 3.26507

Table 4.3: Fit results for an X(07*) and a pt dynamic weight fitted using various hypothesis. For
comparison, the 07* column is fit using the same hypothesis as the dynamical weight. The X(2*+)
column then simply replaces the 071 with a 2+ object.

In addition, I have performed the above fit using the 07+ | and a p/ that decays to ptp~, (as
per section 3.6.4). (This decay of the pf can not go from the 1S initial state.) The results of the fit
are shown in table 4.4, and it is seen to be significantly worse than the previous hypothesis.

4.2 Checks on the Confidence Level Cut

Another important question is the effects of the confidence level cut on the fit results. In these tests,
the real data were fit using Monte Carlo sample a from the previous section. The confidence level
cut was then varied from 15% up to 40%, and the results compared. These are shown in Table 4.5.
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Parameter Name | 01+ Hyp.
—2InC —8238.59
x2/ndf 8.3294
mx (0F1) 1320.69
Lx(0t) 270.70
My 1255.07
T 427.52
fis0 0.56436
ay(s =0) 0.36619
ap(s =1) 0.81861
ap(s = 2) 0.44247
do(s=1) 4.42166
(s —2) 2.85399

Table 4.4: Fit results for an X(0%%) and a pr dynamic weight fitted using the hypothesis that pr — ptp~.

Parameter Name || 37% Cut | 20% Cut | 15% Cut
—2InL —10433 | —9866 —9837
x?/ndf 1.2572 1.2301 1.2223
mx (011) 1448.33 | 1449.37 | 1442.73
Tx(0F+) 295.78 338.74 336.55
my 683.71 692.61 674.46
Ty 574.80 580.25 559.82
fiso 0.42987 | 0.42039 | 0.42248
ax 0.84335 | 0.76988 | 0.84260
ap 0.53736 | 0.63818 | 0.53854
ai=2 0.19983 | 0.12777 | 0.15030
bx 1.47430 | 1.52883 | 1.43691
¢ 4.95474 | 4.68411 | 4.71727

Table 4.5: Fit results for an X(0%+) and a p/. The three sets of data correspond to different confidence

level cuts used to select the fitting sample.
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5 Results of the Likelihood Fits

In this section, I will describe the results of many different fits. I will try to present the data
in a fairly logical sequence, starting with fairly simple assumptions, and then proceeding to more
complicated cases. In the case where I judge the fit to be rather poor, I will usually only quote the
likelihood function, and the pseudo—x?%. I will not give the actual parameters which minimize the

fit.

5.1 Fits to a Single Intermediate State

The simplest assumption which one can make is to try and describe 100% of the data with only
one decay channel. In table 5.1 I present the general results from this study. We can see that it
essentially hopeless to describe these data purely in terms of a 07+ or a 2+ object. However, a
description in terms of the pl appears to be a big step in the right direction.

Description —2InL X% /ndf x%/ndf
1So — X(2tH)n° — ptp™ —» ata~x°x°x° | 7270.31 | 14957/2938  5.0910
1So — X(2tH)n° - 00 - ata~ n°n°n° 13317.45 | 20746/2938  7.0614
1So — X(0t+)n® — ptp™ —» ata~x°x°x° | 3027.17 | 15592/2938  5.3069
1So — X(0tH)n° - 00 — nta~ n°n°n° —1977.88 | 14699/2938  5.0031
881 — b1(1235)m — pom — nta w0 x° 197.34 8352.7/2938  2.8430
1Sy — prrx¥, 35, — piw

pim — p(T70)om — nta~ 7w xw° —8193.21 | 5001.6/2938  1.7024

Table 5.1: A summary of the fit results to individual channels.

However, examining the fit parameters from the pf, (table 5.2), it is clear that this hypothesis
cannot be totally correct. In particular, the mass seems rather low, 1136 MeV/c2, and the width is
far too large, 1497 MeV/c®. Even so, this p/ seems to have many details favored by the data.

Parameter Name

—2InL —8193.2
x2/ndf 1.7024
My 1136.30
Ty 1497.06
fis0 0.37576
aj—» 0.05783
¢ 4.80119

Table 5.2: Fit results for a p/ alone. The three sets of data are for the phase ¢ between the [ = 0 and
l = 2 decay of the p!, left free, fixed at 0 and fixed at .
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5.2 Fits to Two Intermediate States
5.2.1 p! — po and X(0++) —ptp~

Here we will try a pt and a 0%+ object together, (see sections 3.6.1, 3.6.3 and 3.6.4). The amplitude
for this is:

w = fi1s0 | Afs0] 12 +(1- firs01) | Afssa) 2

where

A[].SO] = ax- e—‘i~¢x : A[z—»pp] + ap - (1 - a‘12:2)% . AFI:O] + Ay - Aj=2 * e_i'¢ . AF}:2]

A = (1—afy)?- A[lzzo] +aj=p-eH?. A[lzzz]

The results of this fit are shown in table 4.5 for varying confidence level cuts. Also shown in
table 5.3 are similar results for different cuts on the Monte Carlo sample. In figure 5.1 are shown

four mass projections from the 3¢ fit. The most troublesome of these is the 777~ invariant mass.
The fit seems unable to reproduce the p° in the data sample, or rather it wants to produce it about
40 MeV below where it is seen in the data. The fit also selects a rather strange mass and width for
the pt, (m = 680, ' = 575). At first appearances, this looks like it could be the tail of the p(770).
However, for this to be the case, the decay of p — po would have to be of comparable strength to

the p — 7w decay. This cannot be true. As such, this is something which is not understood.

Parameter Name || 3.50 | 30 Cut | 20 Cut
—2InL —10433 | —11836
x%/ndf 1.2572 | 1.5894
mx (0F1) 1448.33 | 1430.86
Lx(0tt) 295.78 291.40
My 683.71 809.61
Ty 574.80 635.18
fis0 0.42987 | 0.42686
ax 0.84335 | 0.88493
a, 0.53736 | 0.46573
aj—» 0.19983 | 0.15024
dx 1.47430 | 1.25760
¢ 4.95474 | 4.95854

Table 5.3: Fit results for an X(0%*+) and a pr. The three sets of data are for diiferent w cuts on the
Monte Carlo sample.

If we take the 30 cut, ( same as in data ), as our standard, then we find there are problems in

several of the projections. There are five projections whose x%/ndf is larger than 2: n#tx~7x°x°,
at3n°, 7~ 3x°, nt 7~ and one angular distribution. In addition, four projections have a x%/ndf

larger than 1.3: 7T #°, 7~ 7° and two angular distributions.
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Figure 5.1: Mass projection fits to the p — po and X(0**) — p*p~ hypothesis. The shaded regions
are the fit results, while the points with error bars are the data. The fit has difficulty in the peak region
of a and b, as well as not reproducing the 47 mass difference very well. There is also some problems in
the w°x!°¢ invariant mass, (h), and in the a7 invariant mass around 600 MEV/c2.
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5.2.2 pl — po and X(0tt) — pTp~ & oo

In this section, I have considered the decay of the X (0**) into oo, and into both pp and oo. The
general amplitude for this is obtained from sections 3.6.1, 3.6.3 and 3.6.4. It can be written as:

w = fi1s0 | A[s0] 12 +(1- firs01) | Afssa) 2
where

A[lsO] = Qz—pp] " e—‘l'(ﬁ[z_,,,,,] . A[z—»pp] + Az—o0] * e—z~¢[zﬁ,,] . A[z—»aa]

+

ap - (1— afﬂ)% ) AFI:O] +ap ai=p et Aﬁ:z]
Agsyy = (1- alzzz)% ) A[II:O] tazy et A[llzz]

The results of this fit are shown in table 5.4. First of all, we see that the oo decay alone gives a
significantly worse fit than the pp alone. However, as seen in figure 5.2 b, the ¢ — 717~ seems to
interfere with p° — 717~ in such a way as to significantly improve the overall 717~ invariant mass.
However, the 7t7° mass projections are worse. Given this progress, we next allow both decays.
The results are given in column 4 of table 5.4, and we see a very significant improvement in the
likelihood, ( AL = 900). This second decay does not shift the mass, but does slightly broaden the
01T object. This leads us to suspect that there may actually be two 0t objects, one decaying to
pp and one decaying to oo, (see section 5.3.2). In figure 5.3 we see several mass projections from
the case where both decays are allowed. Comparing this with the case of only pp, (figure 5.1), we
see that the 7t 7~ and #°#° invariant masses are better, but the 7+ ° masses seem worse.

We can also estimate several branching fractions here. First, from only the pp or oo decays, we

find:

BR(pp — for® — pTp 7° — atr x°7°7°) =~ (0.067)-(0.42987)- (0.84335)% ~ 0.02048
BR(pp — for® — oor® — nta~7°7°7°) =~ (0.067)-(0.44343)-(0.48067)% ~ 0.00686

When we then allow both decays, we find:
BR(pp — for® — pTp 7° — atr x°7°7°) =~ (0.067)-(0.46998)- (0.85178)% ~ 0.01999
BR(pp — for® — oon® — nta~7°n°7°) =~ (0.067)-(0.46998)-(0.47502)% ~ 0.00640

These are interestingly quite consistent, and lead us to conclude that both of these decays are
allowed.
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Parameter Name | 0tt = ptp~ | 0T s o0 | 0t = pTp™ & o0
—2In L —10433.5 —9104.5.3 —11330.1
x?%/ndf 1.2572 1.6259 1.1179
mx (0F1) 1448.33 1502.44 1437.13
Tx(0tt) 295.78 165.58 365.85
My 683.71 1181.00 839.90
Ty 574.80 901.16 705.94
fis0 0.42987 0.44343 0.47281
ax_zp 0.84335 0.79444
ax_20 0.48067 0.44953
ap(ts0) 0.53736 0.87690 0.40840
ay(l=2) 0.19983 0.08641 0.17118
Px—2p 1.47430 1.51143
Px 20 3.83105 4.39895
d(1=2) 4.95474 4.56042 4.88303

Table 5.4: Fit results for an X(0**) and a p/. The possible decay of the X (07 ) into oo is studied.
The pp column is just the data from table 5.3. The oo column allows only the oo decay, and the last
column allows both decays.
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Figure 5.2: Mass projection fits to the pt — po and X (07*) — oo hypothesis. The shaded regions are
the fit results, while the points with error bars are the data. The fit has problems in a, b, d, f, and g.
However, notice that in the 7t 7~
where X (0t1) — pp.

invariant mass, (b), the problems are quite a bit less than in the case
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Figure 5.3: Mass projection fits to the pt — po and X(0*t+) — pp & oo hypothesis. The shaded regions
are the fit results, while the points with error bars are the data. In comparison to pp alone, this fit does
much better in the 77~ and 7°x° invariant masses, (b and h. There is also a slight improvement in

the 47 mass differnece, (g). It still has the same sort of problmes in a, d, and f.



Crystal Barrel 39

5.2.3 p! — po and X(2++) —ptp™

Here, we try a combination of a 27T object decaying into pTp~ and the p/ decaying to po from the
previous section, (see sections 3.6.2, 3.6.3 and 3.6.4). The weight as used in this fit is given as:

w = fi1s0 | Afs0] 12 +(1 = fi1s0))- | Afss1] 2

where

Ajso) = o€ P Ao pg + az0 €7 0 Aoy
+ a,-(1- afzz)% ‘Af)z:o] +a, - ai=2 Le 9. Aﬁzz]
A[351] = (1 - a,2:2)5 . A[lzzo] + aj—2 - e t?. A[llzz]‘

The results of this fit are shown in the 2+ column of table 5.5. This hypothesis is much worse than
the 07+ hypothisis of section 5.2.1, (Aln £ = 1301), (column 0%+ of table 5.5). In particular, there
are nine projections whose x2/ndf is larger than 2: 7t 7~ 7°x°, 7t 3x°, 77 37°, 7t 7 ~, 7t 7, 7~ 7°,
and three angular distributions. In addition, six angular distributions, and the 7°#° invariant mass
have x2/ndf larger than 1.3. I do not consider this hypothesis a good description of the data.

However, it is interesting to determine how much of a 2% object the fit of section 5.2.1 would
accept. I have allowed a 071 and a 2t deacying to ptp~ in addition to the p/. These results
for both a free mass and width of the 2+, and for the mass and width fixed to 1520 and 120
respectively are also shown in table 5.5. We see that this combined hypothesis leads to a rather
small improvement over the 07+ alone, (Aln £ = 250). We also see that there is about a 6% (0.252)
admixture — at the border of significant.

Another interesting point is that when the mass and width of the 2t object are left free, the
fit chooses 1245 and 160 respectively — approximately the values for the f,(1270). However, fixing
the mass and width at the f,(1520) values does not significantly change the outcome.

Parameter Mass Free Mass Fixed(})
Name ott 21t 2% and 01t | 21 and 0t
—2InC —10433.5 | —8462.95 —10647.0 —10626.8
Xz/'ndf 1.2572 1.8462 1.2931 1.2946
mX(O‘H') 1448.33 1441.19 1445.77
I‘X(O'H') 295.78 352.86 339.05
mx (2++) 1905.78 1245.82 1520.00
Tx(2++) 129.51 159.16 120.00
my, 683.71 587.56 765.21 766.41

| A 574.80 602.32 651.15 650.02
fis0 0.42987 0.36642 0.44561 0.44735
ax (o) 0.84335 0.82006 0.82193
ax(2) 0.19203 0.24509 0.25916
ap 0.53736 0.98139 0.51714 0.50722
aj—» 0.19983 0.08425 0.16841 0.15151
¢X(0) 1.47430 1.69861 1.70649
¢X(2) 3.25741 5.14988 5.98813
di=2 4.95474 5.51420 5.04563 5.03565

Table 5.5: Fit results for an X(0*%) and a pt, X(2*%) and a pt, and X(0*+), X(27*) and a p1. The
last column had the mass and width of the 271 fixed at 1520 and 120 respectively.

Given these results, we can make an estimate for the ratio of X(2*%) — pp to X(2+) — =x.
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We get that:
BR(pp(*s0) — X2(1520)7° — pTp~x°) = (0.44735) - (0.25916)% - (0.067) = 0.00201

where 0.44735 is the fraction of 1Sy initial state, 0.25916 is the amplitude of X5 — ptp~, and 0.067
is the branching fraction to 7t 7~ 37° excluding w and 7, (Equation 4). Isospin arguments then tell
us that

BR(pp(*s0) — X2(1520)7° — ppr°®) = 0.00302

From reference [16], we can find that:
BR(pp(*s0) — X2(1520)7° — 7°7°7°) = (0.095) - (0.01) = 0.00095

where 0.095 is the fraction of 1S; initial state going to X2, and then decaying to 27°, and 0.01 is
roughly the branching fraction of pp into 2#°. Isospin arguments then tell us that

BR(pp(*s0) — X2(1520)7° — wa7®) = 0.00285

We can then form:
Xy —pp  0.00302

X, —» 7 0.00285

In a similar light, we can assume that the 2t object is all f»(1270), and that the 6.9% branching
fraction of f,(1270) to #* 7~ n°x° is all p*p~. We can then estimate that:

~ 1.06.

BR(pp(*s0) — f2(1270)7° — ptp~x°) = (0.44561) - (0.24509)? - (0.067) = 0.00179
Using the 6.9%, we could then derive that:
BR(#p(*s0) — f2(1270)7°) = 0.039

This is far too large, and would clearly be seen in the pp — 7t 7~ 7° data — at about 30% !. As
such, the identification of this 2** object as the f2(1270) seems very unlikely.
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Figure 5.4: Mass projection fits to the p — po X (27%) — ptp~ and X(0F*) — p*tp~ hypothesis.
The shaded regions are the fit results, while the points with error bars are the data. The fit has problems
invariant masses in the 600 MeV/c?

region, (d and f). Finally, there are pronlems in the #°x° invariant mass, (h), and the 47 mass difference

in the peak regions of a and b. It also has trouble with the 7% x¢"¢

is not well reproduced, (g).
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5.2.4 b; — po and X(0tT) — ptp~ or X(271) — ptp~

Here I consider a by, ((I¢)JP¢ = (11)1%7), decaying into po, and either an X(0*+) or an X(217)
decaying into p* p~. This is actually a relatively simple amplitude. The only 1Sy contribution comes
from the X, while the only S; contribution comes from the b;. The weight for this hypothesis is:

w = fi150" | A1s0) 1> +(1— fris01)- | Afssq 2
where

Ange) = axo-Apo—pp +ax2 € X A,y

Ay = (1— a%ﬂ)% 'A[IL:O] Fap_y-eim=a 'A[lez]
The results for the fits with both spins of X are shown in table 5.6. The 21 hypothesis is signifi-
cantly worse than the 071 hypothesis, ( AL 2 3000 ). The 07+ hypothesis also gives worse results
than that using the p — po 5.2.1; it does however give better results in some of the projections. In

Parameter X(—ptp)

Name X(0t+) X(2%) Both
—2InL —8830.69 | —5788.35 | —9055.60
x2/ndf 1.1353 1.4545 1.1329
mx(0t+) | 1437.61 1432.25
Tx(0tt) 385.18 382.95
mx (211) 1495.83 | 1736.30
Tx(2t1) 20.41 179.59
ms, 1344.75 | 1353.23 | 1332.15
Ts, 442.76 387.43 479.87
fiso 0.44276 | 0.38743 | 0.49235
axo 1.00000 | 0.00000 | 0.95745
axsa 0.00000 | 1.00000 | 0.28859
ar—3 0.52704 | 0.56981 | 0.54679
bx3 5.24101
Pr=2 1.93482 | 1.82119 | 1.93096

Table 5.6: Fit results for a b; like object, ((I¢)JFP¢ = (1*)1%~) decaying into po, and either an
X(0t*) or an X(2*1) object decaying into ptp~.

figure 5.5 and 5.6 are shown several mass projections from these fits. The most interesting features,
(in the 07t data) are that the #7#~ #°x° invariant mass is very well reporduced, and the nt =~
invariant mass is much better reporduced than any of the previous fits. However, there are a number
of problems.

In the 01+ case, there are five projections whose x?/ndf is larger than 2: #+3x°, #=3x°, 7t n—,
a7t x° and 7~ 7°. There are also two angular distributions whose x2?/ndf is larger than 1.3.

In the 217 case, there are seven projections whose x%/ndf is larger than 2: 7 3x°, 7= 37°, 7t n—,
atT7°, 7~ 7° and two angular distributions. In addition, there are seven angular distributions whose
x2/ndf is larger than 1.3.
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Figure 5.5: Mass projection fits to the by — po and X(0t+) — p*p~ hypothesis. The shaded regions
are the fit results, while the points with error bars are the data. Note that the a is quite well reproduced

by this fit. Also, event though there are still problmes in the 777~ invariant mass, (b), the fit is quite

a bit better than other fits. We also see that the #°x° invariant mass, (h) and the 47 mass difference,

+

(g) are rather well reproduced. The fit has serious problems in the #*x° invariant masses, (d and f).
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5.2.5 p°1 — pTp~ and X(0++) — ptp~

In this section, we consider an alternate decay of the pf into p*p~, (see section 3.6.4). The amplitude
for this decay is given as:

w = frs0 | Afs0] 12 +(1 - firs01) | Afssa) 2
where

Anso] = Az—pp)

A[351] = Qp[s=0] " e~ Poli=ol . A(p)[s:O] + Qp[s=1] ° e~ Poli=a . A(p)[szl]
+ ap[s:2] . e_l'¢P[s=2] . A(p)[s:2]

The results for this fit are given in table 5.7. What is rather interesting about the p°1 — ptp~ is
that the fit chooses a reasonable mass and width for the pf, 1470 and 435 respectively. We can also
see in figure 5.7 that the fit does a very nice job in several of the distributions. However, given that
there is no p° anywhere in the fit, it is of course not possible for the fit to reproduce the observed
p° in the data.

Parameter Name | pt + X(011)
—2InL —17658.2
x2/ndf 2.3364
mx (0F+) 1404.67
Tx(0tt) 434.56
myp, 1471.36
Tp, 434.55
fiso 0.35073
ap, (s =0) 0.57333
ap,(s=1) 0.50820
ap,(s=2) 0.64268
$p,(s = 0) 3.23663
b, (s =1) 0.60899
bp,(s = 2) 5.37100

Table 5.7: Fit results for p°1 — pTp~ and X (07+) — ptp~.
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Figure 5.7: Mass projections to the p°1 — p*p~ and X(0*t*+) — p*p~ hypothesis. The shaded regions

are the fit results, while the points with error bars are the data. The fit does rather well in a, and the
+
T

«° are repriduced very well, (d and f). The fit has real problems in the 7+« invariant mass, (b),
because there is no p° in the hypothesis. We also see that the 4w mass difference, (g), and the n°=°

invariant mass, (h) are not well reproduced.
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5.3 Fits to More than Two Intermediate States

In the previous sections, we have learned a great deal about what the data like and dislike. We have
also seen that the hypothesises tried are probably insufficient to completely explain the data. In
this section, we will build more cmplicated hypothesis using those parts of the previous hypothesis
that seem to give good results. Before starting, we should briefly review what we have learned.

e The data require a 0** object produced from 'Sy and decaying into ptp~, (mx ~ 1437,
I'x = 352). All hypothesises without this object give very poor results. We have summarized
the properties in table 5.8.

e Replacing the 07T object with a 2t1 object is always disfavored by a very large amount.
However, allowing an admixture of a 271 object in addition to the 0T* object is allowed, and
yields a small improvement in the fit.

e Considering only a 07t object decaying into oo is disfavored by the data, (section 5.2.2).
However, as figure 5.2 shows, this hypothesis helps the low mass region of the 777~ invariant
mass, and goes a long way in solving the problems in the p° peak.

e Allowing both a oo and a pp decay of the 011 is favored by the data. What is interesting is
that only a oo decay of the 071 leads to an object of higher mass and narrower width. We
will want to consider two 07T objects, one decaying into p*p~, and the second into oo

o The data seem to like a J = 1 object produced from 2S; and decaying into po. Identifying
this as a pf yields rather strange values for the mass and width, even though the likelihood

of the fit is good. This identification also has problems explaining the 717~ invariant mass,

(figure 5.1).

o Identifying the J = 1 object as a b;, (section 5.2.4) yields a significantly worse likelyhood, but
oddly the pseudo—x? is signifcantly better. This identification also does a much better job
of reproducing the p° peak in the #*#~ invariant mass projection, (see figure 5.5), but has
trouble reproducing the pt and p~ peaks.

e Identifying the J = 1 object as a p/, but only allowing a decay into p*p~, (section 5.2.5) yields
a rather poor fit — but only because there is no p° in the hypothesis. The hypothesis does an
excellent job with the p™ and p~ peaks.
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Section | Comments mass width B.F.
4.2 20% C.L. Cut 1449.37 338.74 0.01669
4.2 15% C.L. Cut 1442.73 336.55 0.02010

5.2.1 30 Cut 1448.33 295.78 0.02048
5.2.1 20 Cut 1430.86 291.40 0.02240
5.2.2 +oo 1437.13 365.85 0.01999
5.2.3 +X(2%7) 1441.19 352.86 0.02008
5.2.3 +f2(1560) 1445.77 339.05 0.02025
5.2.4 by 1437.61 385.18 0.02966
5.2.4 by + X(217) 1432.25 382.95 0.03024
5.2.5 pla 1404.67 434.56 0.02350
Averages 1437+ 13 | 352+ 43 | 0.0223 £ 0.0044

Table 5.8: A summary of the mass, width and branching fraction for the 07T object. The branching
fraction is taken as pp into fom°, with f, then decaying into ptp~.
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5.83.1 pi! — po, p2! — pTp~ and X(0T1) — ptp~

In this section, I take the second p!, pa, decaying to p*p~ from section 5.2.5 and combine it with
the orional pr — po. This second p can only come from the 2S; initial state. Shown in table 5.9 are
the fit results for the previous p and a 0*% object, (section 5.2.1). This new p, and a 0+ object,
and both of these p’s with the 0% object. The amplitude for this decay is given as:

w = fi1s0" | A1s0) 1> +(1- fiis01)- | Afssq 1
where

A[lsO] = ax - e—i~¢x . A[m—»pp] + ap - (1 - 0,12:2)% . AFI:O] + Ap - Aj=2 * e_i'¢ . AF}:2]

A[351] = Qp1 - (1 - a1222)% : A[llzo] +ap1 - aj=2 - e v, AE;:2]

ap[s:o] . e_i'(ﬁl’[s:l)] . A(p)[szo] + ap[s:l] . e_i'¢P[s:1] . A(p)[s:1]
_|_ ap[s:z] . e_i'(ﬁl’[s:Z] . A(p)[s:2]

In figure 5.8 are shown several mass projections for the hypothesis with both pr’s. The fit still exhibits
many of the problems seen in section 5.2.1. It is also interesting that the fit has given rather strange
mass and widths to the second p/, 850 and 1325 respectively. However, likelihood does look quite
good for this fit. There are four projections whose x%/ndf is larger than 2: n#t7~7°7°, nt3x°,
7~ 37° and 7t 7~. In addition, one angular distribution, and the 77 7° and =~ 7° invariant masses
have a x2/ndf larger than 1.3.

Parameter Name | p; + X(07%) | pa + X(0FF) | p1 + p2 + X(0FT)
—2InL —10433.5 —7658.2 —11076.6
x?/ndf 1.2572 2.3364 1.2119
mx (0F) 1448.33 1404.67 1436.18
Tx(0t+) 295.78 434.56 393.77
mp, 683.71 697.76
Tp, 574.80 693.14
mp, 1471.36 847.01
Tp, 434.55 1326.57
fiso 0.42987 0.35073 0.35958
ax 0.84335 1.00000 0.88928
ap, (*50) 0.53736 0.45736
ap, (3s1) 1.00000 0.85557
ap, (I =2) 0.19983 0.25964
ap, (s =0) 0.57333 0.45794
ap,(s=1) 0.50820 0.06869
ap, (s =2) 0.64268 0.23146
bx 1.47430 1.73856
bo. (1 = 2) 4.95474 5.34310
$p,(s =0) 3.23663 3.23663
b, (s =1) 0.60899 5.26187
b, (s = 2) 5.37100 5.16773

Table 5.9: Fit results for an X (07) two pt's. p; is allowed to decay to po, while p, is allowed to decay
to ptp~. The X(0**) decays to ptp~.
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Figure 5.8: Mass projections to the p; — po, p§ — ptp~ and X(0t+) — ptp~ hypothesis. The
shaded regions are the fit results, while the points with error bars are the data. The fit has problems in
the peak region of a and b. We also see that the 47 mass difference, (g), and the 7°x° invariant mass,
(h) are not well reproduced.
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5.8.2 pl — po, X(0t+) — pTp~ and fo — ptp~ or oo

In section 5.3.2 we allowed both a 01+ and a 2** in addition to the pr — po. In this section, I allow
a second X (0*1) object with possible decays into either oo or pp. The amplitude for this process
is:

w = fi1s0" | Ap1s0] 12 +(1 = fi1s0))- | Afss1] K

where

A[lso] = a[fl?—#?p] . e_l'qs[z—*l)l)] . A[E—*pp] + a[f_>20] . e_l"p[fﬁzrr] . A[f—>20'] + a[f—>2p] . e_l'¢[f—»2p] . A[f—>2p]
+ ap . (1 — alzzz)% . A[OIIO] + ap s Q=29 * e—i'¢ . AF’:2]

A[351] = (1 - a12:2)5 ' A[llzo] + aj=2 - e v A[11:2]

The results of this study are given in table 5.10. The most intersesting result is that the fit likes a
second 011 object decaying into oo, (AL ~ 930), (column 3 of table 5.10). However, this object
appears to be nearly degenerate in mass to the 07T decaying into pp, but quite a bit narrower.
Recall that in section 5.2.2 we considered a single 07T object decaying to both pp and oo; the fit
totally rejected the latter decay. When we allow only a pp decay of this second object, (column 4 of
table reftab:rho2X0, the fit does not improve very much, and the mass and width of the new object
don’t make sense.

In addition, we can fix the mass and width of this second object to that of the fo(1560) (17], In
this case, the pp decay mode is completely rejected, (column 6), while the oo decay mode gives a
fit which is only slightly worse, (comumn 5). Several mass projections from this last fit are shown

in figure 5.9.
Parameter | No 2’nd Mass Free Mass Fixed(})
Name fo(1560) | fo — oo | fo—=ptp™ || fo— oo | fo—ptp”
—2InC —10433.5 || —11361.5 —10647.6 —11252.5 —10532.7
Xz/ndf 1.2572 1.1108 1.2787 1.1151 1.2591
mX(O'H') 1448.33 1445.76 1453.51 1415.77 1464.85
FX(O'H') 295.78 434.74 306.24 431.26 294.43
my(0F+) 1458.30 631.72 1560.007 | 1560.001
Ts(0*+) 204.74 297.49 245.001 245.001
my, 683.71 826.59 553.53 838.50 705.39
L, 574.80 602.84 21.11 566.55 562.12
fis0 0.42987 0.47345 0.41777 0.47453 0.43231
ax_.zp 0.84335 0.80648 0.85061 0.79804 0.84821
af_ap 0.36491 1.65- 10
aj_.25 0.44459 0.43918
ap,(lso) 0.563736 0.38978 0.37891 0.41261 0.52966
ay(l=2) 0.19983 0.20199 0.24316 0.20882 0.21378
dx—2p 1.47430 1.74668 1.80923 1.66755 1.53132
bs—2p 6.04079 1.07916
Df20 4.51338 5.08160
b1 =2) 4.95474 4.93293 5.07875 4.95519 4.99335

Table 5.10: Fit results for two X(0%+)’s and a pr. The possible decay of the second X(0*+) into oo

and pp is studied.

However, given the fact that the two 07+ masses are so close, it is most likely that the two
objects are one in the same. Recall from section 5.2.2 where we allowed the X(0**) to decay to
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both ptp~ and go. There we measured:
BR(pp — for® — ptp 7° — atr x°7°7°) ~ (0.067) - (0.46998) - (0.85178) =~ 0.01999
Which we can compare with:
BR(pp — for® — ptp 7n° — ot x°7°7°) ~ (0.067) - (0.47345) - (0.80648) ~ 0.02063.
For the oo,
BR(pp — for® — oon® — atx 7°7°x°) ~ (0.067) - (0.46998) - (0.47502)% ~ 0.00640
Which we can compare with:
BR(pp — for® — oon® — nta~ 7°7°7°) ~ (0.067) - (0.47345) - (0.44459)% ~ 0.00627.

We also see that the relative phase between the two decays in section 5.2.2 is 2.88752, while in this
section we find 2.76670. I think given the existing data, we must assume that there is only one 01+
object, which decays to both pp and oo. Using simple isospin arguments, we could then derive that:

BR(fo — pp)

—_—F—— =~ 2.08
BR(fo — 00)

and, that assuming fo only decays to pp and oo, then:

BR [pp — for°] ~ 0.044
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5.8.3 b, — po and X(0tt) — ptp~ and X(0t1) — o0

Based on the success of the oo decay of the X(07*) from section 5.2.2, I now consider a b,
((I€)JPC = (1*)1*7), decaying into po, and an X(0**) decaying into both p*p~ and oo. This is
actually a relatively simple amplitude. The only 1Sy contribution comes from the X, while the only
35, contribution comes from the b;. The weight for this hypothesis is:

w = frs0 | Afs0] 12 +(1 - firs01) | Afssa) 2

where

—tPxX oo

A[lsO] = QX—og0 "€ : A[X—»aa] +ax—pp- A[X—»pp]

Azsyy = (1- a%:z)% 'A[IL:O] tap_o-et?. A[lez]
The results for the fit are shown in table 5.11, and several mass projections are shown in figure 5.10.
As seen in the figure, the p* are not fit very well, however, the entrie 7t 7~ invariant mass seems
nicely reproduced. What is rather bothersome is the fact that the mass and width of the b; come
out quite a bit off from their accepted values, mass 1300 MeV /c? and width 520 MeV /c?.

In addition to this we can also take a second 07+ object, which we allow to decay only into
oo. The results for this fit are shown in column 5 of table 5.11, and mass projections are seen in
figure 5.11. What is interesting is that the mass of the fo comes out nearly the same as the X,
but its width is much narrower — 165 versus 461. Also, the fit is not that much better than the fit
where the same 071 has both decays. As such, it is difficult to conclude that there is a second 01+
object.

Parameter X (0**) Decays Into: fo
Name pp oo Both fixed } oo
—2In L —8830.69 —9231.75 | —8374.33 | —9282.94
X2 /ndf 1.1353 1.1434 | 1.3707 | 1.1202
mX(0++) 1437.61 1414.43 1410.74 1416.93
I‘X(0++) 385.18 387.66 365.30 461.47
myo 1444.95
Tso 165.25
mp, 1344.75 1312.53 1232% 1309.89
Iy, 442.76 520.93 155¢ 497.03
fis0 0.44276 0.49310 0.55987 0.49750
ax_.pp 1.00000 0.95049 0.92495 0.95489
ax_oo 0.31077 0.38009

afo—oo 0.29697
ar—2 0.52704 0.54119 0.41193 0.59309
PX— oo 3.26956 3.46807

b10—00 3.32860
dr=2 1.93482 1.86294 2.22020 1.82203

Table 5.11: Fit results for a by — po and X(07*) — ptp~. In addition, both X(0**) — oo and
fo — oo are tried.
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Figure 5.10: Mass projections to the by — po and X(07*) — p*p~ & oo hypothesis. The shaded
regions are the fit results, while the points with error bars are the data. There seem to be problems in
the 7 7° invariant masses, (d and f); the fit really does not reproduce the pT very well. However, all
other projections appear quite good.
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Figure 5.11: Mass projections to the by — po and X(0t+) — ptp~ and fo — oo hypothesis. The
shaded regions are the fit results, while the points with error bars are the data. There seem to be problems
in the 7% x° invariant masses, (d and f); the fit really does not reproduce the pT very well. However, all
other projections appear quite good.
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5.8.4 b; — po, pt — ptp~ and X(01) — ptp~

We have seen earlier that a pf decaying to pTp~, and a b; decaying to po are both able to reproduce
very well many of the features in the data, but individually they fail in specific projections. What
is interesting is that one they tend to complement each other. The amplitude for the three included
amplitudes is given as:

w = fiisop | Apso) 12 +(1 = fiis0)): | Apsyy 2

where
Anso] = Az—pp)
A = ap-(1—al,)?-A(b)}
[38s1] b1 =2 1)1=0]
+  ap1-ai=g e VP Ab 1)1 2]
+ apfs=q] - € VPel=01 . A(p),—
+ app=1y e VPRl Ap) =
+ apfsmg) - € VP0l=2 . A(p),=

The results of this fit are given in table 5.12, and several mass projections can be seen in figure 5.12.

Parameter Mass Free Mass Fixed(t)
Name b1 + X(0Ft) | p+ X(0FF) | by +p+ X(0FF) || by +p+ X(0FT)
—2In L —8830.7 —T7658.2 —10232.1 —9628.4
Xz/ndf 1.1353 2.3364 1.1518 1.3025
mX(0++) 1437.61 1404.67 1354.97 1356.29
I‘X(0++) 385.18 434.56 400.88 415.56
mp, 1344.78 1200.12 1232t

To 442.76 1121.75 1551

m, 1471.36 1495.07 1431.87
r, 434.55 289.90 293.62
fis0 0.46412 0.35073 0.35640 0.34966
ap, 1.00000 0.75956 0.66700
ap, (1 =2) 0.52704 0.34615 0.41510
ap(s =0) 0.57333 0.41780 0.52218
ap(s =1) 0.50820 0.09805 0.08836
ap(s =2) 0.64268 0.48878 0.52018
dp, (1 =2) 1.93482 2.04452 2.20155
gb,,(s =0) 3.92245 3.82701 4.20950
gb,,(s =1) 1.29480 0.23941 0.20171
gb,,(s =2) 6.05682 5.83854 6.14483

Table 5.12: Fit results for an X (0%F), b; and pr. b; is produced from 3s; and is allowed to decay to
po. The pt is produced from 2s; and decays into p*p~. The X(0%%) is produced from !sq, and decays

into pTp~.

In general the fit is not bad, it just has a rather large number of free parameters, (21). There are
four projections whose x2?/ndf is larger than 2: 77 37°, #=3x°, 7t 7 ~, and one angular distribution.
In addition, there are three angular distributions whose x2?/ndf is larger than 1.3.

In addition, we can fix the mass and width of the b;(1235) to their PDG values, (mp = 1232,
T'y = 155). The results of this are given in the last column of table 5.12. We see that the fit is not as
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good as the free fit, but is not terrible. This fit leads to three projections whose x?/ndf are larger
than 2: 7+37°, 7~ 37° and ntn~. There are also seven projections with x%/ndf larger than 1.3:

at7°, 7~ x°, and 5 angular distributions.
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Figure 5.12: Fit results for an X(0%%), b; and pi. b; is produced from 3s; and is allowed to decay to
po. The pt is produced from 3s; and decays into p*p~. The X(0%%) is produced from !sq, and decays
into pTp~. The fit has problems in b, d and f. However, the problems appear quite a bit less than
previous fits.
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5.85 by —po, pl —ptp~, X(0t1) - ptp~ & o0

Here we take the amplitude of section 5.3.4 as a staring point, and allow a second 0t* object, fo to
decay to oo. The amplitude for this is given as:

w = frs0 | Afs0] 12 +(1 - firs01) | Afssa) 2

where

—tPooo

A[lsO] = Qg—pp- A[z—»pp] +az—00-€ ' A[z—»o’o’]

Agsyy = ap-(1— a12:2)§ ‘A(bl)[llzo]
apy - ai=y - € A(by) iy
apls=0] < e Boliza) 'A(p)[s:0]
apls=1] c e~ Bole=1 'A(p)[s:1]

+ + + +

ap[s:z] . e—i'¢p[3=2] . A(p)[s:2]

The results of this fit are shown in table 5.13, and several mass projections are shown in fig-
ure 5.13.

Parameter | Mass Free by + p! + X (0) || Mass Fixed(})
Name pp pp&oo pp&oo
—2InC —10232.1 —10351.8 —9954.5
x%/ndf 1.1518 1.0597 1.1758
mX(0++) 1354.97 1415.09 1391.06
I‘X(0++) 400.88 391.85 397.27
mp, 1200.12 1277.40 1232%
Tp1 1121.75 483.60 155¢
m, 1495.07 1524.45 1438.36
r, 289.90 493.09 461.13
fiso 0.35640 0.44901 0.41555
Gz pp 1.0 0.96448 0.90983
Az oo 0.26416 0.41497
ap, 0.75956 0.78698 0.66681
as, (1 =2) 0.34615 0.49930 0.45814
ay(s =0) 0.41780 0.37665 0.48058
ap(s=1) 0.09805 0.07100 0.12817
ap(s =2) 0.48878 0.48348 0.55497
Pz—oo 3.50866 3.51733
b, (1 = 2) 2.04452 1.90223 2.12105
do(s=0) 3.82701 4.32288 4.43104
do(s=1) 0.23941 0.51046 0.89814
do(s=2) 5.83854 6.20256 0.06700

Table 5.13: Fit results for an X(0%*), b; and pr. b; is produced from 3s; and is allowed to decay to
po. The pt is produced from 2s; and decays into p*p~. The X(0*%) is produced from !sq, and decays
into both pTp~ and go.
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Figure 5.13: Fit results for by — po, p°t — ptp~, X(07*) — pTp~ & oo. The by and pt are produced
from 3s; while the X (0%+) is produced from !sq.
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5.8.6 b — po, pt = ptp~, X(0tT) — ptp~ and fo(1560) — oo

Here we take the amplitude of section 5.3.4 as a staring point, and allow a second 0t* object, fo to
decay to oo. The amplitude for this is given as:

w = frs0 | Afs0] 12 +(1 - firs01) | Afssa) 2

where
Apso] = g Afp—pg) +a50 €7 0 Ao g0
Ay = ap - (1- a12:2)§ : A(bl)[llzo]

+ apcai=p-etM 'A(bl)[llzz]

+ app=q e =0 - A(p)s=g)

+  apps=1] e~ Pole=n 'A(p)[s:1]

+  aps=2 e Boliza) 'A(p)[s:z]
Parameter Mass Free by + p! Mass Fixed(t) b1 + p!
Name +X(0F*) | +X(0FF) + fo || +X(0FF) | +X(0FF) + fo
—2In L —10232.1 —10509.4 —9628.4 —10467.8
Xz/ndf 1.1518 1.0666 1.3025 1.0610
mX(0++) 1354.97 1347.43 1356.29 1342.98
I‘X(0++) 400.88 446.51 415.56 486.61
myo 1419.80 1560.}
To 368.80 245.%
mp, 1200.12 1250.75 1232. 1273.11
Ts1 1121.75 925.71 155.F 817.07
m, 1495.07 1500.04 1431.87 1473.31
r, 289.90 491.49 293.62 628.12
fis0 0.35640 0.39748 0.34966 0.39052
ay 0.95424 0.95988
afo 0.29904 0.28040
ap, 0.75956 0.77173 0.66700 0.75990
ap, (1 =2) 0.34615 0.30898 0.41510 0.32987
ap(s =0) 0.41780 0.39198 0.52218 0.41584
ap(s =1) 0.09805 0.14934 0.08836 0.09607
ap(s =2) 0.48878 0.47802 0.52018 0.49031
ds0 3.48267 4.20081
b, (1 = 2) 2.04452 2.08402 2.20155 2.13540
gbp(s =0) 3.82701 3.89479 4.20950 3.87131
gbp(s =1) 0.23941 0.54872 0.20171 0.43425
gbp(s =2) 5.83854 5.79657 6.14483 5.76399

Table 5.14: Fit results for an X (0%%), b; and pr. b; is produced from 3s; and is allowed to decay to
po. The pt is produced from 3s; and decays into p*p~. The X(0%%) is produced from !sq, and decays
into pTp~.
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Figure 5.14: Fit results for by — po, p°1 — ptp~, X(0t+) — p*Tp~ and fo(1560) — go. The b; and
p! are produced from 2s; while the two 0T+ objects are produced from 'sg. The fit has trouble in the

low mass region of the #*7~ invariant mass, b.
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5.8.7 by — po, pt = ptp~, X(0tT) — ptp~ and f2(1520) — pTp~
Here we take the amplitude of section 5.3.4 as a staring point, and allow a 21 object, f, to decay

to ptp~. The amplitude for this is given as:

w = fi1s0 | A[s0] 12 +(1- firs01) | Afssa) 2

where
Anso] = Gz Ajpppl@s2 - e hor " Alf2—pp]
Agsyy = ap-(1- ‘112:2)% : A(bl)[lz—o]

+ apr-a—p e VP AD ji=2]

+  @pp—o] - e FPel=01 . A(p)(s=

+ o apmyy e = Ap) o

+ @ppmg) e Pol=21 L A(p),=
Parameter Mass Free by + p! Mass Fixed(t) b1 + p!
Name +X(0FF) | +X(0FF) + fo || +X(0FF) | +X(0FF) + fo
—2InC —10232.1 —10527.3 —9628.4 —10516.4
Xz/ndf 1.1518 1.0765 1.3025 1.0922
mX(0++) 1354.97 1418.19 1356.29 1410.68
I‘X(0++) 400.88 288.18 415.56 302.87
My 2243.92 1520.%
| AP 127.99 120.F
mp, 1200.12 1308.45 1232. 1346.54
Tp1 1121.75 1376.32 155.F 1753.13
m, 1495.07 1535.38 1431.87 1519.22
r, 289.90 494.22 293.62 495.32
fis0 0.35640 0.38332 0.34966 0.37972
az 0.94007 0.94662
ajfo 0.34098 0.32236
ap, 0.75956 0.74817 0.66700 0.74387
ap, (1 =2) 0.34615 0.32329 0.41510 0.33409
ap(s =0) 0.41780 0.45702 0.52218 0.45429
ap(s =1) 0.09805 0.08690 0.08836 0.09664
ap(s =2) 0.48878 0.47311 0.52018 0.48056
o2 5.79558 5.72279
b, (1 = 2) 2.04452 2.09831 2.20155 2.03225
gbp(s =0) 3.82701 3.80653 4.20950 3.65623
gbp(s =1) 0.23941 0.28098 0.20171 0.41374
gbp(s =2) 5.83854 5.84446 6.14483 5.71767

Table 5.15: Fit results for an X (0%%), b; and pr. b; is produced from 3s; and is allowed to decay to

po. The pt is produced from 3s; and decays into p*p~. The X(0%%) is produced from !sq, and decays

into pTp~.
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Figure 5.15: Fit results for b — po, p°t — ptp~, X(0t+) — ptp~ and f»(1520) — pp. The b; and
p! are produced from 2s; while the two 0+ objects are produced from 'sg. The fit has trouble in the

low mass region of the #+ 7~ invariant mass, b. It also has problems in a, f, g and h.
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6 Summary

First of all, we measure the branching fraction into 7t 7~ 7°7°x°.
BR(pp — nTn~ n°x°x°) = 0.091 £ 0.004

and we can then determine that after we have excluded the w and n from the final state, that:
BR(pp — nTn~x°x°x°) = 0.067 £ 0.004.

We have also carried out a rather complicated spin parity analysis of the full 777~ 7°#°x° final
state. Even though we cannot completely identify everything in the 7t 7~ 7°x°n° final state, there
are several strutures that seem indisputable. Firstly, the dominant structure in p*p~ is an isoscaler
JPC = 0+ object, (fo(1440)).

mpo = 1437+ 13MeV/c’
Tjo = 352+43MeV/c?

In addition, we also see strong evidence for the oo deacy of fo(1440), (table reftab:x02d). Using
isospin arguments, we can derive that:

BR(fo — pp)

—_—F—— = 2.08
BR(fo — 00)

We also can derive the following branching fractions:

BR(pp — for® — pTp n° > atr x°n°x°) ~ 0.0223
BR(pp — for® — gon® — ntx x°x°x°) = 0.00640

Section | Comments | mass width | B.F. ptp~ | B.F. oo
52.2 | pf 1437.13 | 365.85 0.01999 0.00640
533 | b 1414.43 | 387.86 0.02985 0.00319
5.3.5 | bip 1415.09 | 391.85 0.02798 0.00210

Table 6.1: A summary of the mass, width and branching fraction for the 07+ object decaying into both
pp and oo

We also find that the data slightly favor two 0t1 objects. One decaying into ptp~, and the
second decaying into co. A summary of these results are shown in table 6.2. We have seen that
the results are not very sensitive to the mass and width of this second object. We also see that the
inclusion of a b; — po tends to reduce the need for this second object.

We have also looked for a JP¢ = 21+ object decaying to ptp~. We find no clear signal for this
object, but the data are consistent with some small admixture. However, the results have a much
larger scatter than that for the 07+ of above, (see table 6.3). As such it is rather difficult to conclude
there is really a 2t contribution. However, when we force the mass and width to 1520 MeV /c?2
and 120 MeV/c?, we find that the data are consistent with the following, (assuming only initial S
states):

BR [pp — f2(1520)7° — p*p~ x°] ~ 0.0020.

[16]

Then using the results on sy production of the f, from our 37° analysis we estimate that:

Xy — pp  0.00302

= =~ 1.06.
Xy — 7w 0.00285
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Section | Comments | mass width B.F.
5.3.2 fo free 1458.30 | 204.74 | 0.00627
5.3.2 fo fixed 1560t 2451 | 0.00613
5.3.3 fo free 1444.95 | 165.25 | 0.00294
5.3.3 fo fixed 1560t 245%

5.3.6 fo free 1419.80 | 368.80 | 0.00238
5.3.6 fo fixed 1560t 2451 | 0.00206

Table 6.2: A summary of the mass, width and branching fraction for a 2'nd 01+ object. The branching
fraction is taken as pp into fom°, with fo then decaying into co. One o then decays to #tx~, and the
second to w°7°.

However, this result depends very strongly on numbers in the 3#° analysis that may change with
the higher statistics currently being analyzed. This search for the f5(1520) in pp probably needs to
wait for data from a gas target.

Finally, it appears that most, (55% — 65%) of the nt7~7°7°x° final state comes from the 35;
initial state, and proceeds through an isovector, J = 1 object. Unfortunately, it is not certain what
this isovector object is. We have tried p! — po, by — po, and p°1 — pTp~, as well as combinations
of these. Even though the data can be described reasonable well, the mass and widths found for
these objects do not normally make much sense. In particular, for the pt — po, we always find
a mass of about 700 MeV/c? and a width of 700 MeV/c2. However, atributing this to the tail of
the normal p(770) would imply the 47 and 2= decays of the p(770) are of similar size. For the
by — po, we find a mass of about 1300 MeV/c? and a width of 400 — 500 MeV/c2. Finally, for
the p°t — ptp~ we find resonably sensible numbers. A mass of 1400 — 1550 MeV/c? and a width
of 300 — 500 MeV/c? seem acceptable. However this is insuffucient to explain the data. In terms
of obtaining nearly sensible masses and widths, this latter two J = 1 hypothesis seem the most
promising. It may eventually turn out that we are required to allow a small contribution for initial
P states, but until now this has not been attempted.

Section | Comments | mass width B.F.
5.2.3 free 1245.82 | 159.16 | 0.00179
5.2.3 fixed 1520t 1201 | 0.00201
5.2.4 by 1736.30 | 179.59 | 0.00275
5.3.7 | pby 2243.92 | 127.99 | 0.00298
5.3.7 | pby 1520% 1201 | 0.00264

Table 6.3: A summary of the mass, width and branching fraction for the 271 object. The branching
fraction is taken as pp into fom°, with f» then decaying into ptp~.
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A Angular Distributions

In this section, I present 24 angular distributions from the fit in section 5.2.2, ( pf — po, and
X(0tt) — ptp~ & o0o). Figure A.1 shows eight projections of angles from the deacy of the 4w
object A into the two 27 objects B and C. The angles are computed in the rest frame of A. Note the
cryptic captions. a and b assume a neutral 4, (777~ 7°x°) decaying into a neutral B, (¥ 7~ ), and
a neutral C, (7°). ¢ and d assume a neutral A, (x* 7~ 7°x°) decaying into a charged B, (x*x°) and
a charged C, (7~ 7°). e and f assume a postively charged 4 , (*37°) deacaying into a positevely
cahrged B, (7*#°), and a neutral C, (x°#°). Finally, g and h assume a negatively charged A4,
(7~ 37°) deacying to a negative B, (v~ «°) and a neutral C, (x°x°).

Figure A.2 shows eight projections of angles from the decay of the B into #w. The angles are in
the rest frame of the B. The eight cases correspond to the cases described above.

Figure A.3 shows eight projections of angles from the decay of the C into #w. The angles are in
the rest frame of the C. The eight cases correspond to the cases described above.
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Figure A.1: Angular distributions for A — BC.
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