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Abstract: Antiproton-proton annihilation into three neutral pseudoscalar mesons with incident
antiproton beam momenta of 600 MeV/c and 1940 MeV/c has been studied with the Crystal Barrel
spectrometer at CERN. The data were taken with a trigger on antiproton interaction, zero charged
tracks and calorimeter energy sum in order to acquire only all neutral final states.

The mass range for the detection of intermediate states is enlarged up to 2.2 GeV/c2 as compared to
1.7 GeV/c2 in annihilation at rest. Whereas the reaction at rest proceeds via relative S and P states,
with increasing beam momentum higher spins contribute.

For the first time the production of the f0(1500) in reactions in flight is observed. Besides weak sig-
nals in the Dalitz plots of an isoscalar state at a mass of approximately 1.85 GeV/c2 and an isovector
state at 1.9 GeV/c2 two JPC = 2++ states decaying into ποπο (M = 1640 MeV/c2, Γ = 169 MeV/c2)
and ποη (M = 1650 MeV/c2, Γ = 260 MeV/c2) respectively have been observed. In the ηη invariant
mass region above 2 GeV/c2 a heavy resonance is required to describe the data.

According to predictions from lattice QCD this heavy object might be the lightest tensor glueball.
The other four states are good candidates for the first and second radial excitations of the non-stran-
ge tensor mesons.
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1. Selection and reconstruction

The data used with an incident antiproton beam momentum of 1.94 GeV/c were recorded in
July 1992 and August 1994, the ones with 0.6 GeV/c beam momentum in Apri l 1993. All
600 MeV/c data and almost all 1940 MeV/c data were taken with a zero-prong trigger requiring a
reacting antiproton in the target defined by the entrance counters and no signal from the veto
counters downstream behind the target. Furthermore neither hits in the PWCs nor in the inner most
three layers of the JDC were demanded. Additionally, a lower threshold in the fast FERA energy
sum (Tony‘s box) was set.

For the studied reactions only πο’s and η’s decaying into two photons were considered. The final
states ποποπο, ποποη, ποηη and ηηη were reconstructed from six measured photon hits in the electro-
magnetic calorimeter.

For the reconstruction standard CB sof tware was appli ed to the data: CBOFF 1.27/05[4] ,
LOCATER 1.97/04[5], BCTRAK 2.03/00[6] and GTRACK 1.34/01[7]. These libraries were inter-
faced with CBoOff++[8].

1.1. Reconstruction of the photons

The standard cut of 1 MeV as minimum energy deposit per crystal was appli ed during recon-
struction of the photons. Clusters and PEDs with energy deposits less than 20 MeV were rejected.

The energies were corrected using the updated energy correction function[9]. In order to obtain an
improved spatial resolution the ’Rainer Glantz’ ped smoothing (PDRG flag set in BCTRAK) was
applied[11]. The reconstructed values for ϑ are corrected by about 10 mrad for PEDs with central
crystal type 11-13.

All Monte Carlo studies were done using CBGEANT 4.06/07[10] basing on the CERN software
package GEANT 3.15/90[12]. Efficiencies and acceptances were estimated with the help of Monte
Carlo technique.

1.2. Preselection

The cuts of the preselection are:

1. no charged track from LOCATER

2. exactly six photons from BCTRAK. Only PEDs with energy deposits greater 
than 20 MeV are considered as photons.

The left spectrum in figure 1.1 shows the multipli city of charged tracks in the all neutral triggered
data. The multiplicity of photons after rejection of charged events is shown in the right spectrum.

A preselection cut on total energy and momentum of the events was not applied. Complete events
are more effectively recognized and selected by means of a constraint fit. In figure 1.2 the distribu-
tion of total energy versus total momentum of pure neutral events is shown. Due to the hermiticity of
the detector and the required minimum energy deposited in the calorimeter during data taking most
of the events fulfill already energy momentum balance within the expected errors of measurement.
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Cuts typically applied in analyses of at rest data were carefully studied. The rejection of events with
PEDs in the outermost crystals (crystal type 13) is fatal when analyzing reactions in flight. Due to
the expected leakage losses at the edge of the calorimeter this cut appears to be reasonable, however
it reduces the covered solid angle in the c.m. system drastically. Actually a large fraction of those
events are of high quality and badly measured events are rejected later on by the constraint fit. Sim-
ilarly a cut vetoing events flagged as pile-up events was not applied. Real pile-up events are rejected
by the further selection and many good events were flagged as pile-up. Also no split-off recognition
algorithm was applied to the data, as the background of five photon events with one additional elec-
tromagnetic split-off could be well estimated and suppressed more efficiently by other means.

1.3. Constraint fit

The simultaneous measurement of all particles in the final state and the complete determination
of their kinematics allows a constraint fit to improve the data quality. Moreover such a constraint fit

Figure 1.1: Multiplicities before preselection. The left spectrum shows the multiplicity of charged tracks 
found offline. On the right hand side the multiplicity of PEDs after rejecting charged events is shown.

Figure 1.2: Total energy versus total
momentum. The number of entries in 
each cell is drawn in logarithmic scale to 
visualize weak structures. Besides the 
strong enhancement where fully recon-
structed events are expected (momentum 
= 1940 MeV/c, energy = 3093 MeV) re-
gions can be identified where one photon 
could not be seen (diagonal bands). The 
reoccurrence of a similar structure at 
higher momenta is resulting from reac-
tions in the veto counter, which did not 
work with 100% efficiency. These events 
were recorded but the photon momenta 
were not calculated correctly.
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yields the possibility to test hypotheses such that events can be classified. Another output of an suc-
cessfully converged kinematical fit are four-vectors which fulfil l the imposed constraints. As this
method is not implemented correctly for purely neutral final states in flight into CBKFIT, a self-
made code was used. This code fits all measured kinematical quantities of the six photons (ϑ, ϕ, √E)
and allows for a completely freely adjustable z-coordinate of the primary reaction vertex. The for-
mulas involved can be found e.g. in [13]. CBKFIT (CASE.EQ.6) has not been used because there
the vertex’s position is calculated by newton iteration from the photon z-momenta and then treated
in the fit as a measured quantity with a fixed error. This treatment gives rise to large covariances
among most of the involved quantities which is not taken into account in CBKFIT, where all off-
diagonal elements of the covariance matrix are fixed to zero and also an evaluation of the true error
of measurement of the vertex position by means of error propagation is not implemented. It turns
out that the actuall y used method in this analysis is not only the correct mathematical formulation
but also improves the selection and reconstruction chain with respect to eff iciency, invariant mass
resolution and separation of final states by confidence levels.

Kinematical fits were applied testing the following hypotheses:

1. pp→6γ, 3 constraints

2. pp→πoπoγγ, 5 constraints

3. pp→πoπoπo, 6 constraints

4. pp→πoπoη, 6 constraints

5. pp→πoηη, 6 constraints

6. pp→ηηη, 6 constraints

For the hypotheses 2, 4 and 5 45 permutations of the sequence of the six photons were tried, for the
third hypothesis 90 permutations and for the hypotheses 3 and 6 15 permutations each. In order to
minimize CPU time the permutations of interest are preselected by windows in the invariant mass.
The boundaries of these were chosen large enough not to lose any event: 70-200 MeV/c2 for pions
and 450-650 MeV/c2 for eta-mesons.

1.4. Errors of the measured quantities

The prerequisite for the application of a constraint fit is the knowledge of the errors of measure-
ment. The error in √E is estimated to be

σ(√E)/E = 2.8% /√E, E in GeV. (1.1)

A lower limit of σ(√E) > 0.35 MeV1/2 is superimposed. The errors for ϕ and ϑ were determined in
[11] for energies up to 1 GeV for crystal types 1 to 12 and parametrized by

p1 + p2 √E + p3 ln(E), E in MeV. (1.2)

The parameters p1, p2 and p3 were determined separately for the cases of one or several PEDs per
cluster and separately for edge and central crystals. A Monte Carlo study showed that this parame-
trization cannot be used for photon energies higher than 1 GeV which frequently occur in in flight
reactions. Therefore the errors as calculated by BCTRAK were not used for ϕ and ϑ. They were
overwritten by values based on a study of the reconstruction of Monte Carlo events generated with
1.94 GeV/c antiproton momentum (tab. 1.1). These new estimates had to be scaled for the kinemati-
cal fit (tab. 1.2) in order to compensate systematical diff iculties, e.g. the non-gaussian distribution of
the error of energies. These scaling factors were determined separately for measured data and
Monte-Carlo events by adjusting the widths of the pull distributions resulting from the constraint fit.
The good estimate of the errors shows up in a flat distribution of the confidence level for events
which are fitted with the correct hypothesis (fig.1.3).
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1.5. Selection of final states

PED/Clu
ster Type σ in mrad (E in GeV) F E0 in GeV

ϕ

1
1-10 27.26 - 35.68 E + 30.38 E2 - 9.28 E3 1.4

11-13 53.89 - 65.15 E + 48.15 E2 - 12.8 E3 1.3 1.6

2

1-10
hi 24.36 - 23.92 E + 17.79 E2 - 4.99 E3

1.5
lo = hi / 0.93

11-13
hi 47.98 - 48.3 E + 35.85 E2 - 9.76 E3

1.25 1.8
lo = hi / 0.88

ϑ

1

1-10 27.3 - 49.69 E + 67.16 E2 - 43 E3 + 10 E4 1.5

11 10 + 7 (1 - E/1.5)

1.25 1.512 10 + 13 (1 - E/1.5)

13 9 + 6 (1 - E/1.5)

2
1-10

hi 25 - 39.67 E + 58.28 E2 - 41.18 E3+ 10.32 E4

1.5
lo = hi / 0.91

11-13 23 - 32.26 E + 23.16 E2 - 30.16 E3 - 11.32 E4 1.3 1.4

Table 1.1: Estimation of errors for ϕ and ϑ. The errors depend on the number of PEDs per cluster (2. col-
umn) and the type of the central crystal of the PED (3. column). In most cases of 2 (or more) PEDs per cluster 
there is a distinction wether the PED has the largest energy deposit in the cluster (hi) or not (lo). The last col-
umn shows the photon energy E0, up to which the error was parametrized. For higher energies the error at 
E = E0 is used. The factor F (last but one column) scales the error.

σϕ
2 σϑ

2 σ√E
2 Table 1.2: Scaling factors for the errors. 

These factors scale the squared errors in 
order to compensate differences in the data 
samples and inadequacies of the Monte-
Carlo simulation.

Monte-Car lo 1.57 1.20 1.02

July ’92 1.18 1.00 0.97

August ’ 94 1.40 1.10 1.00

Figure 1.3: Confidence level distribution
for  the  hypothes is  pp→π οπ οπ ο  a t
1940 MeV/c. The distribution should be flat 
for events which fulfill the hypothesis. The rise 
at low values originates from events of other re-
actions, where the fit yields a low confidence 
level.
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After the kinematical fit with a free z-vertex events were rejected if none of the final state
hypotheses (3πο, 2ποη, ποηη, 3η) converged with a confidence level of at least 10% or the fitted
z-coordinate of the vertex was outside the target volume (-5 cm < z < 5 cm). The events were classi-
fied to originate from a certain kind of reaction according to the hypothesis yielding the highest
confidence level. Finally a suppression of ’ cross talk’ between the final states was applied using the
criteria listed in table1.3.

With the help of Monte Carlo events undergoing the same chain of reconstruction and selection as
real data efficiencies could be estimated. The values for eff iciencies and rates for false classification
are given in table 1.4. They result as the ratio of the number of classified events of a certain reaction
type and the number of generated Monte-Carlo events. The final states ποω and ηω, where ω→πογ,

are considered as the most prominent sources of background[15]. In these cases an electromagnetic
split -off is misidentified as a photon. As this background can be suppressed suff iciently no further
treatment of split-offs was applied.

Neither in the Dalitz plots nor in the spectra of production angles structures are visible in the accep-
tance (fig.1.4). The acceptance is almost flat and goes down for production angles close to the beam
axis |cosΘ| = 1. In the final state ποποπο at ποπο-invariant masses close to the ποη-threshold,
m2 ~ 0.47 GeV2/c4, a lack of acceptance is visible in the Dalitz plot. This is due to the restrictive
veto cut against events of the type pp→ποποη (tab. 1.3) which rejects also events of the type
pp→3πο.

1.6. Results of the selection of the 6γ final states at 1.94 GeV/c

The preselection and the selection described above were appli ed to 10.5 mill ion events taken
with an incident antiproton beam momentum of 1.94 GeV/c resulting in 197016 3πο-events, 95285
2ποη-events, 5830 ποηη-events and 472 3η-events (tab. 1.5). The quality of the reconstruction of the

confidence level of constraint fit

3πο 2ποη ποηη 3η

3πο >10% <10-3 - -

2ποη <10-5 >10% - -

ποηη <10-5 <10-5 >10% <10%

3η <10-5 <10-5 <10-5 >10%

Table 1.3: Separation and classification of f inal states. The table shows upper and lower limits for the confi-
dence level of the tested hypothesis. Emphasized: the restrictive veto cut for the final state 3πο against events 
of the type 2ποη, which accounts for a visible structure in the acceptance in the Dalitz plot (fig.1.4).

generated final state (Monte Carlo)

3πο 2ποη ποηη 3η ποω ηω

3πο 26.6% 6*10-5 2*10-4 3*10-5 4*10-3 3*10-5

2ποη 6*10-4 29.5% 1*10-3 6*10-4 1*10-3 4*10-3

ποηη 3*10-5 4*10-5 23.5% 1*10-3 3*10-5 6*10-4

3η 0 1*10-5 1*10-4 25.2% 0 3*10-5

Table 1.4: Efficiencies and ’cross talk’ . For each final state with three pseudoscalar mesons approximately 
100000 events were simulated and reconstructed, ca. 30000 for each of the background channels with one 
omega meson.
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data can be demonstrated by the spectrum (fig.1.5) of the two-photon invariant mass in the region of
the eta-mass.

1.7. Selection of the final state 3πο at pp = 600 MeV/c

For the selection of the data the same procedure was applied as described above. The scaling fac-
tors for the errors are listed in table 1.6. The achieved resolution of the 2 photon invariant mass in
the region of the η-mass is 13 MeV/c2. Additional cuts to suppress the background from the reaction
pp→ποω were applied:

1. low-energetic spli t-offs. πογ-pairs from the converged fit to the hypothesis 
pp→2πο2γ whose invariant mass lies within the mass window of the ω-meson 
(700-820 MeV/c2) are selected. If the energy of the photon not belonging to this 
pair is less than 40 MeV the event is rejected.

2. Split-offs associated with pions. If the invariant mass of a πογ-pair of a con-
verged pp→2πο2γ hypothesis is smaller than 160 MeV/c2 the event is rejected.

Figure 1.4: Visualization of the acceptance for the final states 3πο and ποηη. On the left hand side are 
shown Dalitz plots for Monte Carlo generated events. In the final state 3πο a lack of acceptance originates 
from a rigorous veto cut against the final state ποποη at ποπο-masses close to the ποη-threshold. On the right 
hand side shown are the distributions of the cosine of the production angle which is defined as the angle 
between the direction of flight of a pion and the beam axis measured in the overall c.m. system.
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The efficiency for reconstruction and background suppression after these cuts is given in table 1.7.

The result of this selection applied to 2964132 events taken in April 1993 is given in table 1.8.

July ’92 August ’ 94 Σ

tr igger zero prong zero prong mixed(0 or 2 pr.)

physics events 6327591 3273663 440776

no charged tracks 5236469 2492941 436816

6 PEDs 824013 317960 74823

one hyp. > 0.1 171752 103133 25918

ποποπο 108211 67773 17099 197016 (193083)

ποποη 52174 32904 8236 95285 (93314)

ποηη 3220 2032 467 5830 (5719)

ηηη 241 171 47 472 (459)

Table 1.5: Results from the selection at 1940 MeV/c. The table shows the number of events surviving the 
individual steps of the selection chain for the three different data samples at 1.94 GeV/c. The steps are: 
recorded physics events, no charged tracks, six PEDs, one final state hypothesis with a confidence level of at 
least 10%. Below is given the number of events classified as final states. The data sample ’mixed trigger’ was 
already roughly preselected with a veto against charged tracks. As the selection history for a fraction of the 
data sample from July 1992 is not available due to technical problems the actual number of selected events
is slightly larger than the one given in column 2. The right most column shows the total number of really 
reconstructed events (the sum of the left columns given in brackets).

Figure 1.5: Resolution of the γγ-invariant
mass at 1940 MeV/c. Data taken fulfilled 
the 2πογγ-hypothesis (c.l. > 10%) and have 
c.l. < 10-5 for the 3πο-hypothesis. The reso-
lution near the η-mass is σ = 14.6 MeV/c2.
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2 Table 1.6: Scaling factors for the errors at 
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ποποπο ποω-background

Before background suppres-
sion

34.6% 2.2*10-3

After cut 1 33.1% 1.8*10-3

After cut 2 32.6% 8.3*10-4

Table 1.7:  Efficiency for reconstruction and background suppression in the 3πο-channel at 600 MeV/c. 
These values are based on a Monte Carlo study using ca. 50000 ποποπο and 60000 ποω events. The table 
shows clearly that the applied cuts reduce the ποω-background by a factor of 3 without any significant impact 
on the efficiency for reconstruction.

Apr il ’93 Table 1.8: Result of the selection at 600 MeV/c. 
Only the final state ποποπο was selected.

tr igger zero prong

physics events 2964132

no charged tracks 2422331

6 PEDs 200334

one hyp. > 0.1 52103

πoπoπo 39655

πoπoη 8637

πoηη 903

ηηη 4
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2. Presentation of the data

2.1. K inematics of three body reactions in flight

The phase space for this kind of reaction is four-dimensional. One possible choice of coordinates
is the invariant masses squared of two pairs of final state particles (Dali tz plot variables), the polar
angle Θ of the direction of flight of a pair measured in the overall c.m. system and the azimutal angle
ϕ of its decay measured in its helicity frame (fig.2.1). Additionally, within one event, a relative angle
Φ can be defined for each of the three different permutations of pairs. Formulas for the calculation of
these kinematical quantities are given in appendix A.

2.2. Two-photon invar iant masses

The spectrum of the γγ invariant mass for events passing a constraint fit to the hypothesispp→6γ
with a confidence level better than 1% is plotted in figure 2.2. The signals of πο and η are clearly vis-
ible above the combinatorial background (15 entries per event). The signals from the η’ decaying to
γγ and from the ω decaying πογ, where one low-energetic photon from the πο decay is not detected,
are shown in  figure2.3. In this plot the γγ invariant mass is shown from the converged (confidence
level > 0.1) hypothesis pp→ποπογγ, where events fulfill ing the hypothesis pp→ποποπο (confidence
level > 0.01) were disregarded. In the mass region 620 to 1000 MeV/c2 this spectrum can be
described by the sum of two gaussians and a linear term. The gaussian width of the high mass peak
(η’ ) gives an estimate for the resolution at high masses: σ = 20.2 MeV/c2.

Figure 2.1: Kinematic quantities of three body final states in flight. The positive z-axis is defined by the anti-
proton beam direction. In the overall c.m. system a two body system A (bold arrow) is produced with solid 
angle (Θ,Φ). In its helicity frame (z’ -axis along the direction of flight in the overall c.m. system, x’-axis in the 
z/z’ -plane, two body system is at rest) A decays with spherical angles ϑ and ϕ.
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2.3. Spectra of selected final states

2.3.1.ποποπο at 1940 MeV/c

The Dalitz plot (fig.2.4) has its most prominent structures at the crossings of the interfering
f2(1270) bands. Also the f0(975) is visible as narrow bands interfering destructively with other struc-
tures in the edges of the Dalitz plot. Further structures are a triangularly shaped enhancement at a
ποπο invariant mass of 1500 MeV/c2 and a diffuse band near the crossing points of the f0(975) bands
close to the edges of Dalitz plot, corresponding to a mass of about 1850 MeV/c2. The reduced den-
sity of entries at mass squared of ca. 0.47 GeV2/c4 is due to the restrictive cut against events of the
type pp→ποποη which rejects events with ποπο invariant masses close to the ποη threshold. The spec-
trum of the invariant ποπο mass (fig.2.5) exhibits the same structures.

Figure 2.2: γγ invariant mass. Above 
the combinatorial background appear the 
signals from the πο- and the η-meson.

Figure 2.3:   Signals from ω and η’
seen in the γγ invariant mass. The pic-
tures shows the region 620 -
1000 MeV/c2. A fit of the sum of two 
gaussians and a linear term yields 
σ = 20.2 MeV/c2 for the η’ peak 
(958 MeV/c2).
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Figure 2.4: Dalitz plot of the reaction pp→ποποπο at 1940 MeV/c. The signal from the f2(1270) dominates 
the plot.

Figure 2.5: Invariant mass ποπο spec-
trum in 3πο at 1940 MeV/c. The spec-
trum exhibits the structures also seen in 
the Dalitz plot.
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Figure 2.6 shows the Dalitz plots for different production angles. This representation enhances weak
signals in regions where they are not hidden by the angular distributions of stronger signals. So, the

cuts on |cosΘ| < 0.1 and 0.3 < |cosΘ| < 0.4 enhance the structure at 1850 MeV/c2 as a band in the
Dalitz plot. The signal at 1500 MeV/c2 is enhanced in the region 0.6 < |cosΘ| < 0.7.

2.3.2.ποποη at 1940 MeV/c

The Dalitz plot and the spectra of the invariant masses of the reaction pp→2ποη are shown in
figure 2.7. Signals at 1270 MeV/c2 and at 1500 MeV/c2 in ποπο are visible, also the a0(980) and the
a2(1320) can be identified by eye. The signal of the a0(1450)[2] is missing. A very weak structure in
the Dalitz plot appears partially hidden by the crossing of the f2(1270) band with the a0(980) signal.
This corresponds to a ποη invariant mass of approximately 1900 MeV/c2. This signal can be seen
more cleanly in the Dalitz plots of the reactions pp→ποποη and pp→ποηη at √s = 2980 MeV/c2 mea-
sured by the E760 experiment[3] at Fermilab.

2.3.3.ποηη at 1940 MeV/c

The spectra of the invariant masses and the Dalitz plot of the reaction pp→πο2η are shown in
figure 2.8. Besides the signals from the isovectors a0(980) and a2(1320) and a clearly visible band at
ηη invariant masses around 1500 MeV/c2 there are hints for structures at high ηη masses

Figure 2.6: Dalitz plot for pp→3πο at 1940 MeV/c for different production angles. 
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(2100 MeV/c2) in the lower left corner of the Dalitz plots strongly hidden by the crossing of the
a0(980) bands. Moreover there is an almost invisible structure at low ηη masses possibly originating
from the interfering isovectorial amplitudes. The Dalitz plot is also given in a non-symmetric repre-
sentation (fig.2.9). The strong enhancement at high ηη masses seems not to be due to the a0 only.

2.3.4.ηηη at 1940 MeV/c

Dalitz plot and the spectrum of the ηη invariant mass are given in figure 2.10. This final state is
dominated by a single signal at a mass of 1500 MeV/c2.

2.3.5.ποποπο at 600 MeV/c

The Dalitz plot and the spectrum of invariant ποπο mass (fig.2.11) show signals from f2(1270)
and from a state at 1500 MeV/c2. Like for the Dalitz plot of the reaction pp→ποποπο at 1940 MeV/c
there is a lack of acceptance at the ποη threshold. Figure 2.12 shows the distribution of the cosine of
the production angle for the mass regions 1170 MeV/c2 to 1370 MeV/c2 and 1450 MeV/c2 to
1600 MeV/c2.
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Figure 2.7: Dalitz plot and invariant mass spectra of the
final state ποποη at 1940 MeV/c. The relatively weak sig-
nal at 1500 MeV/c2 in the ποπο invariant mass is hidden by 
the dominantly produced tensors and isovectors. At the 
crossing of the f2(1270) band and the a0(980) band in the 
Dalitz plot a weak signal appears at a mass of ca. 
1900 MeV/c2.
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Figure 2.9: Unsymmetrical Dalitz plot of
the reaction pp→ποηη at 1940 MeV/c. 
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Figure 2.8: Dalitz plot and invariant mass spectra of
the final state ποηη at 1940 MeV/c. As the f2(1270) 
does not couple strongly to ηη the signal at 
1500 MeV/c2 appears clearly in this channel. At the 
crossing of the a0 bands in the lower left corner of the 
Dalitz plot there is an indication for a structure at high 
ηη masses.
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Figure 2.10: The final state ηηη at 1940 MeV/c. The signal at 1500 MeV/c2 appears as an isolated peak in 
this channel.

Figure 2.11: Dalitz plot and invariant mass spectrum of the reaction pp→ποποπο at 600 MeV/c. The visible 
structures are the f2(1270) and a signal at 1500 MeV/c2.
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Figure 2.12: Cosine of the production angle for two mass regions. The left figure shows the distribution for 
masses between 1170 MeV/c2 and 1370 MeV/c2, on the right hand side for masses from 1450 MeV/c2 to 
1600 MeV/c2.
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3. Partial wave analysis

The analysis focuses on the reactions pp→ποηη at 1940 MeV/c and pp→ποποπο at 600 MeV/c.
The data at 600 MeV/c can be described using the complete formulation with helicity amplitudes.
As many higher spin initial states contribute to pp-reactions at 1940 MeV/c a simplified ansatz has
to be applied to fit the reaction pp→ποηη. This model has already been used to describe the reaction
pp→ποποποη at 1200 and 1940 MeV/c[14].

The advantage of a complete analysis using helicity amplitudes is that it yields informations about
the contributing initial states. Also it tries to describe the distribution of measured events in all four
dimensions of phase space.

Symbols and their meaning as they will be used in the following are listed in table 3.1. Some quanti-
ties are also explained in figure 2.1. Formulas are given in appendix A.

The highest contributing angular momenta and the total spin in the pp-initial state, respectively, can
be estimated in three ways (in units of h/2π) (tab. 3.2):

symbol meaning

A intermediate state

B particle recoiling against A

Θ, Φ spherical angles of the direction of flight of A as measured in the pp c.m. system

ϑ, ϕ spherical angles of the direction of flight of one daughter from the decay of A as measured in the rest sys-
tem of A, where the z-axis is taken to be the direction of flight of A as measured in the pp c.m. system (he-
licity frame)

θ, φ spherical angles of the direction of flight of one daughter from the decay of A as measured in the rest sys-
tem of A, where the z-axis point parallel to the p-beam axis (canonical frame)

mij, q invariant mass of particles i and j and the absolute momentum of i in the c.m. system of the reaction 
A→i+j

τ tuple of phase space coordinates of an event

J, P, C total spin, parity and charge conjugation of the pp initial state

L, S, M, ν relative orbital angular momentum between proton and antiproton measured in the pp c.m. system, spin of 
the pp systems (0 or 1) with M its projection along the beam axis. ν is the helicity of the pp system 
(ν = M)

l, lz relative orbital angular momentum between A and B as measured in the pp c.m. system and its projection 
along the beam axis

σ, λ, λf spin and helicity of A and the projection of spin along the z-axis of the canonical system

Table 3.1: Overview over the used symbols and their meaning. Formulas for the calculation of kinematical 
quantities are given in the appendix.

semi-classical Lmax statistical model Ldom measurements Jmax

600 MeV/c 1.7 1 - 2 3

1940 MeV/c 5.4 2 - 4 6

Table 3.2: Estimates of the highest contributing spin. The semi-classical ansatz (b = 1.6 fm) estimates the 
maximum orbital angular momentum (Lmax), the statistical model (r = 0.6 fm) estimates the cross section for 
annihilation for different partial waves (Ldom). From the angular distribution of two-body final states mea-
sured in pp annihilation in flight[15] an upper limit for the total spin Jmax of pp system was obtained.
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1. semi-classical: assuming an impact parameter b the maximum value of the rela-
tive orbital angular momentum L between the proton and the antiproton in the 
overall c.m. system can be estimated:

(3.1)

2. statistical model: the statistical model[16] makes predictions about cross sec-
tions for individual partial waves (fig.3.1). This model also makes use of eq. 3.1 
with an assumed hadronic radius r.

3. measurement: fitting angular distributions in the final states ωπο and ωη from pp 
annihilation in flight an upper limit for the contributing spin can be given[15].

3.1. Isobar model

An amplitude for a transition of the kind pp→m1+m23→m1+m2+m3 is factorized in amplitudes
for the subprocesses. Each of these sub-amplitudes again can be factorized as the product of a phe-
nomenological constant being proportional to the Lorentz-invariant matrix element of the transition,
a function describing the angular distribution and a dynamical function covering the energy depen-
dence of the amplitude.

(3.2)

Relativistic Breit-Wigner amplitudes and Blatt-Weisskopf damping factors are used to describe the
energy dependence of the amplitudes:

(3.3)

, (3.4)

with q the momentum of the interacting particles in the c.m. system of the scattering process. The
quantities m0, Γ0 and q0 stand for the nominal values of a resonance: mass, width and decay momen-
tum. The factor BL(q) are given as[17]:

Figure 3.1: Contributing partial waves and their
cross section for annihilation. According to this 
picture F-wave annihilation should dominate the 
annihilation process at 1.94 GeV/c.
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(3.5)

(3.6)

, ... (3.7)

The parameter r is the effective range of the potential in the decay and can be set to r = 0.2 fm[18],
0.68 fm[19] or 1 fm[20]. This choice is not crucial as long r is smaller than 1 fm corresponding to a
fermi momentum of 200 MeV/c. In this analysis it is set to be 0.2 fm.

One way to derive the angular dependent term, F(Ω) in eq. 3.2, is using the helicity formalism[21].

3.1.1.Helicity formalism

Within the helicity formalism the quantization axis is chosen to be the direction of f light of the
decaying particle A seen from the c.m. system of the production process of A. The advantage of this
choice is that the relative orbital momentum l between the daughter particles has no component
along the z-axis. The angular distribution of this decay is then simply given by the D-matrices or D-
functions[22]:

(3.8)

with J the spin of the mother particle A, M its projection along the z-axis and λ = λ1 - λ2 the result-
ing total heli city of the final state. The phenomenological constants H, also cal led heli ci ty
amplitudes are related to constants of the ls-coupling scheme well known from analyses at rest by:

(3.9)

where s is the total spin of the final state and αJ
ls are the ls-coupling coefficients. The sum runs over

all contributing orbital angular momenta and spins. The zero in the second Clebsch-Gordan-coeffi-
cient is the vanishing projection of l along the z-axis. In the case of the decay into two spinless
particles l = J, s = 0 and therefore HJ = αJ holds. For processes in which the parity is conserved, the
following relation holds:

, (3.10)

with πi being the parites of the daughters and σi their spins.

For the production of a resonance from the pp system in flight and its subsequent decay into two
spinless mesons the total amplitude can be written as the product of amplitudes describing the for-
mation of the pp scattering state, the transition amplitude of this scattering state into the resonance
and a recoiling meson and the decay amplitude of the resonance. For the first subprocess, the forma-
tion of the pp scattering state, the energy is fixed by the experimental set-up. It can be considered as
an reversed decay and is described by the helicity amplitude:

. (3.11)

Here ν1, ν2 are the helicity substates ±1/2 of the antiproton and the protons, ν the helicity of the scat-
tering state ν = ν1 - ν2, and a a short-hand notation for the quantum numbers J, P and C of the
system. Following rules are valid for the helicity amplitudes :

• from eq. 3.11 follows: , as for the fermion-antifer-

mion-system π1π2 = -1 and σ1+σ2 = 1 holds.

B0 q( ) 1=

B1 q( ) qr( )
2

1 qr( ) 2+
------------------------ 

  1 2/
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•  for spin singlet states because S = 0 and therefore also the spin pro-

jections M = ν = 0 vanish.

• for spin triplet states eq. 3.11 implies . Due to the construction of 

the wave function for spin triplet states  the ampli-

tude for ν = 0 vanishes.

The amplitude of the resonance production is composed of a heli city amplitude and a D-function.
The energy again is fixed as it is the c.m. energy of the pp system.

, (3.12)

λ is the helicity of the resonance, the quantum numbers of which are characterized by c, (Θ,Φ) is the
solid angle of emission of the resonance and b is a short-hand notation for the tuple of short-hand
notations (a,c). Due to parity conservation the following holds for the helicity amplitudes :

(3.13)

For the decay of the resonance a complete amplitude has to be built up containing a helicity ampli-
tude, a D-function and a Breit-Wigner term as well:

, (3.14)

with σc the spin of the resonance c, m the invariant mass of the pair of daughter particles (ϑ,ϕ) the
solid angle of the decay. Note that the helicity ampli tudes fc exhibits no further indices as the final
state particles carry no spin. With  the overall amplitude can be written:

(3.15)

The heli ci ty ampl i tudes  are al ready expanded in terms of orbi tal angular momentum l
(chap.3.1.1.). With the complex coeff icients  defining the contribution of the corresponding par-
tial waves. The sums extend over all possible permutations k to build select a pair out of three
particles. The symbol τ is the tuple of phase space coordinates (2 invariant masses and 2 angles).

Neither p nor p are polarized and therefore spin singlet and spin triplet pp scattering waves do not
interfere. Moreover there are no interferences between transitions with different pp magnetic spin
substates ν. The cross section is hence proportional to:

, (3.16)

where the lower index of the ampli tudes Tν is the pp heli city ν. An explicit example for a weight
function is given in appendix B.1.

3.1.2.Parameters in the helicity formalism

This formalism was used to describe the reaction pp→ποποπο at an incident antiproton momen-
tum of 600 MeV/c. The parameters involved are:

1. Helicity amplitudes of the pp initial states. These are complex numbers. Tech-
nically they are handled by the program as absolute value and phase.

H+− ±
a 0=

Ha
++ Ha

--–=

ψa
1

2
------- H++

a H--
a+( ) 0= =

cλ ΘΦ, aν〈 | 〉 F̂λ
b

Dνλ
J ∗ Φ Θ 0, ,( )⋅=

F̂

F̂ λ–
b

P 1–( ) J 1+ F̂λ
b

=

ϑ ϕ,( ) cλ m,〈 | 〉 f c Dλ0
σc ∗ ϕ ϑ 0, ,( ) ∆c m( )⋅ ⋅=

Fλ
b F̂λ

b
fc⋅=

Tν1ν2
τ( )

Hν1ν2

a ∗ ∆c mk( ) Dνλ
J ∗ Φk Θ,

k
0,( ) Dλ0

σ ∗ ϕk ϑ,
k

0,( ) l 0σcλ Jλ〈 | 〉Gl
b

l
∑

λ
∑

k c,
∑

a
∑=

Fλ
b

Gl
b

w τ( ) T1 τ( ) 2 T 1– τ( ) 2 2 T0
T τ( ) 2 2 T0

S τ( ) 2+ + +=



Partial wave analysis

24

2. l-coupling constants ( = partial wave amplitudes α). These are also complex 
numbers. For each resonance having a non-vanishing spin there are for each ini-
tial state several possible orbital angular momenta l between the resonance and 
the recoiling particle.

3. Masses and widths of resonances.

As has been shown previously no higher spins than J = 2 are expected to contribute at a beam
momentum of 600 MeV/c (tab. 3.2). Therefore only the initial states 1S0, 3P1, 3P2, 1D2 and 3F2 were
considered to contribute. The state 3P2 and 3F2 cannot be distinguished because only the external
quantum numbers J, P and C are observable in the final state. The JPC quantum numbers of these
states are 0-+, 1++, 2++ and 2-+. There is only one helicity substate for the 0-+ and 2-+ state each and
hence only one helicity amplitude. In the case of the 1++ state the amplitude for ν = 0 vanishes and
the other two are not independent (chap.3.1.1.). Only the 2++ state has all possible spin substates -1,
0 and +1 which can be parametrized by two independent helicity amplitudes. Note that the produc-
tion of scalar resonances is forbidden from the 2++ state due to parity conservation. The other three
states allow scalar resonance production with one partial wave each (tab. 3.3). Tensors can be pro-
duced from all four initial states with up to three partial waves from 1D2 (tab. 3.4).

The number of real parameters is given by

• 10 for the complex helicity amplitudes for the four initial states.

• +6 for the complex partial wave coefficients per scalar resonance.

• +16 for the complex partial wave coefficients per tensor resonance.

• +2 for the mass and the width of each resonance.

• -3 for the freedom of choice of the arbitrary global phases of the three indepen-
dent incoherently summed terms in eq. 3.16.

• -4 for the normalization of the sums of amplitudes belonging to the individual 
initial states.

For example a complete fit (free masses and width, all partial waves) with the hypothesis

pp(0-+, 1++, 2++, 2-+) → πο+[f2(1270), f0(1500), f2(1640)] (3.17)

must determine 47 free parameters. This is the reason why typically a first attempt is made to fit the
data with a reduced hypothesis, e.g. to fix masses and widths and only allow for contributions of the
lowest possible partial waves for each initial state which in this examples would mean 25 free
parameters.

The formula obtained from the compete helicity formalism describes the whole process from the
production of a resonance from the pp scattering state to its decay. It allows to fit the distribution of
measured events in all four dimensions of phase space. The limiting feature of this method is the
large number of free unknown parameters, especially the partial wave amplitudes, which grows rap-

pp-initial state orbital angular mo-
mentum l pp-initial state orbital angular mo-

mentum l
1S0 (0

-+) 0 1S0 (0
-+) 2

3P1 (1
++) 1 3P1 (1

++) 1,3
3P2 (2

++) - 3P2 (2
++) 1,3

1D2 (2-+) 2 1D2 (2-+) 0,2,4

Table 3.3: Initial states and partial waves 
for scalar resonances. Scalar resonances 
cannot be produced from the 3P2 state.

Table 3.4: Initial states and partial waves 
for tensor resonances. For most of the ini-
tial states more than one partial wave is 
possible.
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idly with the number of involved resonances and initial states. A description of the measured
reaction pp→ποηη at 1940 MeV/c with this ansatz was not successful. For this reaction a simplified
model is used where the angular dependent part of the amplitude is calculated using the canonical
formulation.

3.1.3.Canonical description of angular distributions

For a detailed description see CB-note 273[14]. Here we give only a short review. In the canoni-
cal formulation the z-axes of all systems are oriented parallel to each other. We discuss again the
reaction pp→A+B, where B carries no spin, and the spherical angles of the direction of flight of par-
ticle A in the overall c.m. system are (Θ,Φ) (chap.3.1.1.). All four-vectors of the final state particles,
measured in the overall c.m. system, are then rotated in such way that the direction of flight of parti-
cle A is along the z-axis. This is done by a rotation with Φ around the beam axis and a subsequent
rotation with Θ around the new y-axis. After a Lorentz boost anti-parallel to the z-axis (beam axis)
which transform all four-vectors into the c.m. system of A the whole system is rotated back by -Θ
and -Φ (Wick rotation). In this canonical system the spherical angles θ and φ of decay are defined as
the direction of flight of one daughter of A.

The projection λi of the total spin J of the pp system must be either -1, 0 or 1 because the relative
orbital angular momentum is perpendicular to the beam axis. As the pp-initial state is not polarized
there is no interference between these three spin substates. With l being the orbital angular momen-
tum between A and B in the overall c.m. system and lz its projection along the z-axis (beam axis), as
well as λf the projection of spin s of particle A along the z-axis, the angular dependent part of the
transition amplitude from a pp-initial state can be expressed using Clebsch-Gordan coefficients: 

(3.18)

The eigenstate of angular momentum is represented by a Legendre polynomial

, (3.19)

and the state of the decay products

, (3.20)

with (θ,φ) the solid angle of the decay in the c.m. system of particle A. Due to conservation of the
total magnetic spin sub-quantum number M in the process amplitudes to different λi add up
incoherently.

The coherent summation of amplitudes belonging to the same λf is correct assuming all transitions
coming from interfering initial states without relative phases. As this ansatz will be applied to a con-
siderably large set of pp-initial states the sum should take into account that there are also incoherent
parts contributing to the cross section as well as coherent ones with different phases. The simplifica-
tion in this ansatz is now to fit the amount of interference between two amplitudes of the same λf as
a free parameter. In the case of two interfering amplitudes e.g. instead just to fit the strengths a and b
of the two amplitudes and their relative phase an additional parameter cab is introduced which
describes the amount of interference:

, (3.21)

where the value of cab is limited to the interval -2 to +2. An explicit example of a weight function is
given in appendix B.2.

3.1.4.Parameters in the canonical approach

The canonical formulation with the mentioned simplification was applied to fit the reaction
pp→ποηη at 1940 MeV/c. This approach is attractive due to the reduced number of free variables in

J λi,| 〉 sλfllz Jλi〈 | 〉 s λf,| 〉 l lz,| 〉
λf lz l, ,

∑=

l lz,| 〉 Pl
lz Θ Φ,( )=

s λf,| 〉 Ps
λf θ φ,( )=

I a2 A 2 b2 B 2 cabab ϕabcos ℜ AB*( ) ϕabsin ℑ AB*( )+( )+ +=
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the fit. For each resonance with spin σ there are σ+1 real parameters. Additional parameters are
introduced to take interferences into account. They describe the relative phases between interfering
amplitudes and the strength of interference. By this method interferences can be switched on and off
whenever it is clear that interferences must be included or can be omitted (e.g. if the bands of the
resonances are do not overlap in the Dalitz plot). In example (3.17) there would be six free parame-
ters with no interferences. Masses and widths are fixed due to the software implementation. They
have to varied ‘by hand‘ . Giving freedom to the fit to adjust all i nterferences there are 5 additional
real parameters for the interfering strengths and 3 further parameters for relative phases. The num-
ber of parameters (in this example 20 including masses and widths) is independent of the assumed
initial states in the hypotheses and does only depend on the number of resonances involved.

3.2. Likelihood fit

The fit of the amplitudes to the data was performed using maximum likelihood methods. If p is
the probabili ty to observe an event at an elementary phase space volume at point τ, then the proba-
bility P to observe a set of events distributed according to a weight function p = w(τ,x) (x the vector
of adjustable parameters) is given by the product of all probabilities multiplied by n! (n = number of
events) as the order of events does not matter. The likelihood is defined in the same sense for weight
function representing probability densities with arbitrary normalization:

(3.22)

Acceptance of the apparatus and efficiency of reconstruction are described by ε, the free parameters
in the weight function by . The integral in the denominator extends over the kinematically allowed
region of the multi dimensional phase space. The product runs over all measured events i at phase
space point τi. The integral is needed to normalize the weight function and prevent it from diverging
during the fitting procedure. For technical reasons the quantity to be minimized is taken to be the
negative logarithmic likelihood NLL

NLL’ = -log L. (3.23)

The integral  is approximated numerically via the summation of the weight

function over a sample of Monte Carlo events. As these undergo the same influences of acceptance
and eff iciency as the data the factor ε is already considered implicitly. With m the number of Monte
Carlo events the approximation reads

. (3.24)

By neglecting all constant terms (terms not depending on x) which do not affect the optimization
procedure the calculated value of NLL is:

. (3.25)

In order to all ow for the statistical error in the number of measured events and to normali ze the
phase space integral the so called generalized likelihood function[23]:

(3.26)

is used. After purging all non-interesting terms from the formula the expression to be finall y mini-
mized reads:

L n!
w τi x,( ) ε τi( )

w τi x,( ) ε τi( ) τd∫
--------------------------------------------

i 1=

n

∏=

x

Θ w τ x,( ) ε τ( ) τd∫=

Θ
n
m
---- w τj

MC
x,( )

j 1=

m

∑≅
n
m
----Φ=

NLL' w τi x,( )( )log
i 1=

n

∑– n
Φ
m
---- 

 
log+=

LG e
n Θ–( ) 2

2n
----------------------–

L=



Partial wave analysis

27

. (3.27)

In case of convergence of the minimization procedure Φ = m holds and the first and third term
vanish.

An improvement in NLL of 0.5 by extending the hypotheses by r more free variables corresponds to
a change of one in the reduced χ2 to r degrees of freedom. Therefore a reduction of NLL of more
than 0.5 per added fit parameter has to be considered as significant (one standard deviation). Simi-
larly the error of a fitted parameter can be estimated by scanning it in the neighborhood of the found
value (all other parameters fixed). Ideally the NLL should behave li ke a parabola. In a distance of
one (two) standard deviation σ the value of NLL increases by 0.5 (2).

For fitting the minimization package MINUIT[24] was used. For the complete helicity fi ts the
MIGRAD method was chosen, for the canonical approach FUMILI.

NLL
n
2
--- Φ

m
---- 1– 

  2
w τi x,( )( )log

i 1=
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∑ n
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m
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4. Results of the analysis

4.1. The reaction pp→ποποπο at 600 MeV/c

Analysis in terms of helicity amplitudes

The steps in the analysis procedure are summarized in table 4.2 on page 31. The different fits to
different hypotheses can be compared by the value of NLL only. The χ2 value considers only the
two dimensions of the Dalitz plot. Therefore the effort to calculate χ2 correctly was not undertaken.
The sixfold symmetry of the Dalitz plot as well as the multiple counting of events contributing to
cells along the symmetry axes of the Dalitz plot were not taken into account. As already mentioned
the contributing intermediate states which are visible in figure 2.11 are the f2(1270) and a state with
mass = 1500 MeV/c2. The flat angular distribution of the latter as it is observed in the Dalitz plot
indicates its spin to be zero. The simplest hypothesis one can think of is to describe this reaction
with an intermediate f2(1270) and the f0(1500) known from our analyses at rest. Simple semi-classi-
cal arguments and predictions from calculations done within the framework of a statistical model
hint to an upper limit of 2 for the spin in the initial state. Therefore only JPC = 0-+, 1++, 2++ and 2-+

are taken into consideration. This first attempt restricts to the lowest partial waves (angular momen-
tum l between f2 and recoil pion) for each initial state and uses fixed masses and widths of the
resonances.  

Fig. 4.1 shows the result of the fit for the ποπο-invariant mass spectrum. It becomes evident that the
measured data cannot be described by this hypothesis. The reduced χ2 of the Dalitz plot fit is 6.8, the
value of NLL = -7520.8. Masses and widths of both resonances were fixed to 1270 MeV/c2 and
185 MeV/c2 for the f2(1270) and 1500 MeV/c2 and 100 MeV/c2 for the f0(1500), respectively.

The next step was to allow all partial waves, i.e. higher orbital angular momenta between the
f2(1270) and the recoiling pion. This results in NLL = -8516.7 and a reduced χ2 of 4.9. Starting from
this result and varying masses and widths of the resonances yields improved values NLL = -9001.7
and a reduced χ2 of 3.5 (fig.4.2).

Not only due to the NNL and χ2 value this result is not acceptable. The width of the f0(1500) is
determined to be 242 MeV/c2 and thus too broad. This is typical for a situation where the hypothesis
is too simple and the fitter tries to cover other structures with a broad Breit-Wigner shape.

Figure 4.1:  ποπο invariant mass spectrum. The plot 
shows the result of the simplest fit. Real data are shown 
as error bars, the solid line indicates the fit result.

0

250

500

750

1000

1250

1500

1750

2000

400 600 800 1000 1200 1400 1600 1800

mππ [MeV/c2]



Results of the analysis

29

A significant improvement can be achieved by adding amplitudes for a further tensor resonance.
Starting with a f2(1270) with a mass of 1270 MeV/c2 and a width of 185 MeV/c2, a f0(1500),
M = 1500 MeV/c2, Γ = 100 MeV/c2 and a tensor resonance f2’ , M = 1540 MeV/c2, Γ = 150 MeV/c2

with fixed masses and widths NLL = -9280 can be reached. Allowing for the variation of the three
masses improves the result to NLL = -9475.1, where the masses turn out to be 1257, 1533 and
1620 MeV/c2 respectively. Finall y varying additionally resonance widths results in NLL = -9510.8
and a reduced χ2 of 1.64 with 44parameters all together.

Masses, widths and the contribution of resonances and initial states as given by this fit are listed in
table 4.1. Here all resonance contributions from one initial state are summed coherently, separately

for the initial state‘s helicity substates ν in order to determine the relative contribution of the initial
states. The summation was always carried out by summing over 3πο Monte Carlo events distributed
according phase space without detector simulation. To determine the contribution of each resonance
all amplitudes belonging to it were summed according to the rules of the helicity formalism, coher-

Figure 4.2: ποπο-invariant mass spectrum. The fit 
shows the result of the simplest hypothesis with all par-
tial waves and free masses and widths. 

f2(1270) f0(1500) f2’
initial state 

contr ibution

mass 1260±2 MeV/c2 1534±2 MeV/c2 1640±4 MeV/c2

width 179±4 MeV/c2 131±4 MeV/c2 169±8 MeV/c2

1S0
4.2% 19.0% 1.1% 26.1%

3P1

l = 1 0.2% 6.6% 0.1%
7.4%

l = 3 0.5% 0.2%

3P2

l = 1 25.2% 10.4%
36.1% (0.39)

l = 3 1.3% 1.1%

1D2

l = 0 27.1% 0.8%

30.4%l = 2 1.9% 0.1% 0.1%

l = 4 0.2% < 0.1%

fraction 60.8% 24.6% 14.6%

Table 4.1: Fit result for the reaction pp→ποποπο at 600 MeV/c. The table shows the fractions of the contrib-
uting partial waves. Errors of masses and widths determined by the fit are also given. The value in brackets in 
the right most column gives the relative fraction from the initial state 3P2 originating from helicity substate 
ν = 0.
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ently and incoherently. The contribution of single partial waves were calculated without taking into
account any interferences and normalizing them to the incoherent sum.

Dalitz plot, spectrum of the invariant mass and distribution of production angle for different mass
regions are shown in figure 4.3. It is obvious that this hypothesis is able to reproduce simultaneously

the measured event density at high and at low masses. It also explains the production and decay
angular distributions of the dominant structures.

An attempt to describe the data with a new scalar resonance replacing the new tensor results in
NLL = -9240.1 and a reduced χ2 of 2.7 for the Dalitz plot description. The result is sown in
figure 4.4. Mass and width of the additional scalar are determined to be 1685 MeV/c2 and
277 MeV/c2 respectively with great uncertainties. The width of the f0(1500) reaches here the value
88 MeV/c2, which is not in agreement with other measurements, e.g. the 3πο-data from pp annihila-
tion at rest.

In figures 4.5 the χ2 distribution in the Dalitz plot is shown for the best fit. Both plots do not show
any structure.

Figure 4.3: Spectra from the best fit. The upper left plot shows the fitted Dalitz plot, the upper right plot the 
fitted spectrum of the ποπο invariant mass. The measured data are indicated by error bars, the solid line shows 
the fit result. The lower row shows the distributions of the cosine of the production angle for ποπο invariant 
mass regions 1450 MeV/c2 - 1550 MeV/c2 and 1550 MeV/c2 1750 MeV/c2.
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In figure 4.6 the contributions of the individual initial states to the Dalitz plot are shown. The contri-
butions of the three resonances are shown in  figure4.7.

4.2. The reaction pp→ποηη at 1940 MeV/c

Analysis in terms of the canonical description

The spectra of the data are shown in chap. 2.3.3. on page 15. Due to the high spins in the initial
states the complete helicity formalism could not be applied successfully to fit these data. The simpli-
fied ansatz using the canonical formulation was used instead With this method only the intermediate
state can be studied but not the initial states nor the partial wave contribution. Here again the starting
point was the simplest reasonable hypothesis in order to describe the most dominant features of the
measured Dali tz plot. These are the signals of the a0(980), the a2(1320) and the f0(1500). The
progress of this analysis is shown in table 4.3.

Figure 4.4: Result from the spin-zero hypothesis for the
third intermediate state. With this hypothesis the mass 
distribution can be described in the high mass region of 
the spectrum only.

parameter hypothesis NLL red. χ2

14

1S0, 
3P1, 

3P2, 
1D2

f2(1270), f0(1500)

only lowest partial wave

-7520.8 6.8  (fig.4.1)

22 all partial waves -8516.7 4.9

26 masses and widths -9001.7 3.5  (fig.4.2)

28

1S0, 
3P1, 

3P2, 
1D2

f2(1270), f0(1500), f0’

all partial waves

-9024.2

31 masses -9216.0

34 widths -9240.1 2.7  (fig.4.4)

38

1S0, 
3P1, 

3P2, 
1D2

f2(1270), f0(1500), f2’

all partial waves

-9280.0

41 masses -9475.1

44 widths -9510.8 1.64  (fig.4.3)

Table 4.2: Fit results of different hypotheses. The data require the assumption of an additional 2++reso-
nance. A scalar particle instead can not reproduce the measured event density.
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The first attempt fits the three parameters of the a2(1320) amplitudes and the three parameters for the
amount of coherence of these amplitudes with themselves. Self-coherence means the interference
between the amplitude evaluated for one ποη-combination with the same amplitude taken for the
other ποη-pair. One parameter is added for the f0(1500) intensity and another one for the a0(980) sig-
nal. Later on, interferences between all three resonances are included and the relative phases. The
strength of self-coherence of the a0(980) is fixed to a value of 1.5. Masses and widths of the isovec-
torial resonances are set to the values listed in [1]: M = 984 MeV/c2 and Γ = 85 MeV/c2 for the a0
and M = 1318.2 MeV/c2, Γ = 113 MeV/c2 for the a2. The f0 is fixed to values M = 1490 MeV/c2 and
Γ = 100 MeV/c2 which is a rough estimate from the ηη invariant mass spectrum. Fitting this ampli-
tude yields a NLL value of 277.The result of this fit is shown in figure 4.8. The χ2 for the
comparison of measured and the fitted Dalitz plot is 2242.3 for 723 cells and 11 free parameters. It
can be seen clearly that this fit does not describe the data. The differences are drastic at high ηη
masses and at ποη masses at 1600 MeV/c2. This is reflected in the low ηη mass region.

Note that only the NLL value is used for the comparison of fit results. The method of χ2 test is not
appropriate due the lack of statistics. Moreover the NLL uses the unbinned position of individual
events in the Dalitz plot, the χ2 does not. The value of the χ2 is again calculated ignoring the fact of
multiple entries per event in cells along the diagonal and double counting of events due to the sym-
metry of the Dalitz plot histogram. It is just an approximate estimate for the quality of a fit as the
absolute scale of the NLL value is arbitrary.

Adding an isoscalar tensor with M = 2100 MeV/c2 and Γ = 200 MeV/c2 and with a relative phase
and interference with the a0(980) improves the NLL significantly to -25.3. The χ2 of this fit is 1771
for 723 cells and 16 free parameters. Varying the self-coherence strengths of the a0(980) results in a
NLL of -32.2 at maximum coherence of the a0(980) amplitudes. The optimization of this hypothesis
ends up with allowing the fit to adjust the relative phase of the f0(1500) amplitude and yields
NLL = -79.9 and χ2 = 1739.2 for 723 cells and 18 free parameters. The spectra from this fit are
shown in  figure 4.9.

There is too much intensity at high ηη masses generated by the newly introduced tensor resonance,
but the a0(980) signal is reproduced fairly well. The remaining differences between data and theory
at low ηη invariant masses and high ποη invariant masses indicate the possible existence of a new
isovector with about M = 1600 MeV/c2 - 1700 MeV/c2. This became subject of a fit using an
extended hypothesis which assumes an additional a2(1650) with M = 1650 MeV/c2 and
Γ = 240 MeV/c2.

Figure 4.5: χ2-distribution in the Dalitz plot. Cells with a χ2 larger than 4 corresponding three standard 
deviations are marked black. The left picture shows the cells with more intensity in the fit result than in mea-
sured data, the right one the cells where there more intensity is exhibited by the real data than by theory. The 
background shows the measured Dalitz plot.
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Figure 4.6: Contributions of the initial states to the Dalitz plot according to the best fit. The 3P1 initial state 
contributes most to the f0(1500) whereas the 1D2 initial state produces dominantly the f2(1270). The signals of 
the new f2(1640) show up in the corners of the Dalitz plot of the 3P2 contribution.

Figure 4.7: Dalitz plot intensities of the resonances contributing to the best fit. MonteCarlo simulated 
events are filled into the histograms weighted with the fitted intensity from the amplitudes of single resonances.
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This fit describes the data much better using additional eight free parameters for the a2(1650) inten-
sity, its interference with the a2(1320) and the f0(1500) and its relative phase. The resulting NLL is
-446.6 with χ2 = 1376 at 723 cells and 26 free parameters. The mass spectra (fig.4.10) are now
reproduced much better. The weak point of this fit is the description of the event density at the edges
of the phase space at low ηη masses and high ποη masses.

Further improvement is achieved by adding intensity from the f0(975) with M = 975 MeV/c2 and
Γ = 60 MeV/c2, the phase of its amplitude and the strength of interference with the a2(1320) and the
a2(1650). The NLL drops to -528.9 at a χ2 of 1200 at 723 cells and 30 free parameters. A Breit-
Wigner amplitude for a resonance far below the ηη threshold is tried in order to achieve a parametri-
zation of threshold effects due to unitarity conservation. By adjusting masses and widths of the
f0(1500), the f2(2100) and the a2(1650) to (1477, 142), (2135, 245) and (1650, 260) MeV/c2, respec-
tively, a good fit is obtained (fig.4.11). The lowest value of NLL reaches -553.4 with χ2 = 1153.8 at
finally 36 adjusted parameters.

Figure 4.8:  Invariant mass spectra of the final state ποηη. The error bars shows the distribution of real 
data. The fit result is given as solid line. Obviously there are more than three intermediate states involved in 
the reaction.

Figure 4.9: Mass spectra from a fit with a heavy tensor state. The signal of the a0(980) can now be 
described well by the interference of the crossing band of the heavy tensor. But there is too much calculated 
intensity at high ηη masses. Still the fit cannot explain the mass distribution at 1600 MeV/c2 in the ποη inva-
riant mass.
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Masses and widths of the final fit are listed in table 4.4. The estimated errors of the masses and
widths are extracted from the study of the behaviour of the NLL values in the neighborhood of the
optimum. In figure 4.12 the dependence of the NLL values of masses and widths of the f0(1500), the
new isovector and the heavy isoscalar is shown. As the NLL behaves as a real parabola only near the
minimum the error can only be estimated in very approximate manner.  

In table 4.5 the results of best fits assuming different spins for the intermediate states f(2100) and
a(1650) are listed. Spin 2 is preferred for the description of a(1650), but for f(2100) the results for
spin 2 and spin 4 are equivalent. Any further distinction is not possible with the data available. Also
the spin 0 fit for f(2100) yielding a much worse value of NLL should not be completely excluded. It
turns out that the few amount of events in the corner of phase space with strong interferences cannot
be used to draw any conclusion about the spin of this resonance. I personally favor the spin 2 solu-
tion because the additional parameters for the spin 4 fit lead to no significant improvement.

Figure 4.10: Mass spectra with a new isovektor. A significant improvement can be achieved by adding a new 
tensorial isovector state.

Figure 4.11: Mass spectra from the final fit result. 
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parameter hypothesis NLL χ2

11

a0(980), a2(1320), f0’(1500)

interferences a0+a2, f0’+a2, a2+a2

Phase a2

277.0 2242.3  (fig.4.8)

16

f2’(2100)

interferences a0+f2’

phase f2’

-25.3 1795.4

17 interference a0+a0 -32.2 1771.3

18 phase f0’ -79.9 1739.2  (fig.4.9)

26

a2’(1650)

interference f0’+a2’ , a2+a2’

phase a2’

-446.6 1376.0  (fig.4.10)

30

f0(975)

interference f0+a2, f0+a2’

phase f0

-528.9 1200.0

36 masses and widths -553.4 1153.8  (fig.4.11)

Table 4.3: Proceeding of the analysis pp→ποηη at 1940 MeV/c. The assumption of further resonances 
improves the quality of the description significantly.

mass width Table 4.4: Masses and widths from 
the best fit. The errors can be esti-
mated very roughly only.f0(1500) 1477± 6 MeV/c2 142± 8 MeV/c2

f2(2100) 2135± 5 MeV/c2 245±10 MeV/c2

a2(1650) 1650±15 MeV/c2 260±15 MeV/c2

spin hypothesis NLL Table 4.5: Comparison of different 
spin assumptions for f(2100) and 
a(1650). Spin 4 requires two further 
parameters to describe the heavy 
isoscalar. A clear distinction between 
spin 2 and 4 is therefore not possible.

f2, a0 -490.1

f0, a2 -488.1

f2, a2 -553.4

f4, a2 -554.6



Results of the analysis

37

Figure 4.12: Dependence of the value of ∆NLL of mass and widths. Ideally the NLL behaves as a parabola 
near the optimum.
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A Formulae for kinematic quantities

The experiment measures the four-vector components of the three pseudoscalar mesons
pi = (ei, ). The invariant mass of a meson pair is given by:

, . (4.1)

As all quantities are measured in the laboratory frame they boosted to the overall c.m. system of the
reaction by applying a Lorentz transformation:

(4.2)

with β the velocity of the pp system in the laboratory frame in units of the speed of li ght c and

 the corresponding relativistic dilatation factor. Given a system with rest mass m, abso-

lute momentum p and energy e in any frame the relativistic quantities in the same frame are then β
= p/e and γ = e/m and hence βγ = p/m. For pp annihilation in flight at 1940 MeV/c their values are:

β = 0.627, γ = 1.284, βγ = 0.805. (4.3)

The four-vector of a meson pair in the overall c.m. system is the sum of the two vector of the
mesons:

. (4.4)

The spherical angles Θ and Φ of production of this pair are given by:

, and (4.5)

.

In order to obtain the four-vector  and  of the decay production in their common c.m. system

they are rotated by -Φ around the beam axis and then by -Θ around the y-axis of the overall c.m. sys-
tem. Afterwards all vector are boosted by :

pi

mi j
2 pi pj+( ) 2 eiej pipj–= = pi xi y i zi, ,( )=

pi' Lz p–
p

( ) pi

γ 0 0 βγ–

0 1 0 0

0 0 1 0

βγ– 0 0 γ

ei

xi

yi

zi

= =

γ
1

1 β2–
------------------=

ri j' pi' pj'+=

Θi jcos
zi' zj'+

ri j

----------------=

Φi jsin
y i' yj'+

xi' x j'+( ) 2 yi' yj'+( ) 2+
----------------------------------------------------------------=

Φi jcos
x i' xj'+

xi' xj'+( ) 2 yi' y j'+( ) 2+
----------------------------------------------------------------=

pi' pj'

Lz ri j''–( )
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(4.6)

(4.7)

The spherical angles ϑ and ϕ of the resonance decay in the helicity frame are given analogously to
eq. 4.5:

, etc. (4.8)

In the canonical formulation a subsequent rotation has to be applied:

(4.9)

pi'' R 0 Θ– Φ–, ,( ) pi'
Θcos Φcos Θcos Φsin Θsin–

Φsin– Φcos 0

Θsin Φcos Θsin Φsin Θcos

x i'

y i'

zi'

= =

pi''' Lz ri j''–( ) pi''=

ϑi jcos
zi'''

pi'''
----------=

pi
˜ R 0 Θ Φ, ,( ) pi'''=
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B Formulae used in the best fits

B.1.Weight function for the reaction pp→ποποπο at 600 MeV/c

w(τ) =

This weight function is used in the best fit (see chap. 4.1., table4.1 and  figure 4.3). The symbols are
defined in chap. 3.1.1., Ωk substitutes (Φk,Θk,0), ωk substitutes (ϕk,ϑk,0). Free parameters of the fit
are all partial wave amplitudes Gl, the helicity amplitudes H of the initial states and the nominal val-
ues of resonance masses and widths, which are implicitly contained in the dynamical functions ∆.
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The hypothesis of the fit assumes contributions of the initial states JPC = 0-+, 1++, 2++ and 2-+ and of
the resonances f0(1500), f2(1270) and f2’ (1640). The first expression in the sum in the formula given
above is the contribution from the spin singlet pp-scattering states, the second considers contribu-
tions from spin triplet amplitudes with helicity substate ν = 0 (here only transitions from3P2 to
πο+tensor appear). The last two expressions contain the amplitudes from transitions from spin triplet
initial states with helicity substates ν = -1 and ν = +1.

B.2.Weight function for the reaction pp→ποηη at 1940 MeV/c

w(τ) =

The weight function uses the amplitudes of the simpli fied canonical formulation. The fitted hypo-
thesis assumes the isoscalar resonances f0(975), f0’(1500) and f2’(2135) (first row in the formula)
and the isovectors a0(980) (second row), a2(1320) (fourth and fifth row) and a2’(1650) (third row)
(see chap. 4.2., figure 4.11). Also taken into account are the interferences between a0 and a2 (sixth
row), a0 and f2’ (seventh row), f0 and a2 (eighth row), f0’ and a2 (ninth row), f0’ and a2’ ( tenth row)
and a2 and a2’ (eleventh row). Additionally the interferences of the crossing a0 bands in the Dalit z
plot (third expression on the second row) and the crossing a2 bands (fifth row) are fitted. The free
parameters of the fit are the couplings a, the strengths of interferences c, the relative phases ϕ and
the masses and width of the resonances, which are impli citl y contained in the dynamical
functions ∆.
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