CB-Note 296 Addendum

Addendum to Technical report: Antiproton-proton annihilation at rest into $K_L K_S \pi^0 \pi^0$

Kersten Braune and Christian Felix Ludwig-Maximilians-Universität München

October 15, 1996

PWA Fits

This note describes additional fits done since the publication of the technical report last April. The large width of the h_1' always bothered me since it seemed to take care of some background or an altogether forgotten amplitude. This amplitude is the $\phi(1680)$ which was introduced in Fit 8 and subsequently discarded. It should have been part of the fits hunting for a $J^{PC}=1^{+-}$ contribution. Following the numbering of the technical report, this is now done in Fit 12.

Fit 12 amplitudes: (vb-fith1masswidthphi1680) The amplitudes for this fit are the basic amplitudes (Fit 3) plus an amplitude with the PDG parameters for the $\phi(1680)$. An additional $J^{PC}=1^{+-}$ amplitude, representing the h_1' , is given to the fit with free mass and width. This fit has the same likelihood and $\langle \chi^2 \rangle$ as Fit 11, $\log \mathcal{L}=3186$ and $\langle \chi^2 \rangle=1.68$, i.e. it is a very good fit. The h_1' mass comes out to be the same as before, $m_{h_1'}=(1430\pm 60)\,\mathrm{MeV/c^2}$, but the new width is much narrower, $\Gamma=(133\pm 50)\,\mathrm{MeV/c^2}$, due to the introduction of a $\phi(1680)$ amplitude.

This result leads to the final fit, where other decay modes of $h'_1(1430)$ and $K_1(1270)$ and $K_1(1400)$ are allowed.

Fit 13 amplitudes: (plusk1amp) Having found a very good description of the data, we now try some fine tuning by considering additional decay amplitudes for the particles in the last fit. First the decay $h'_1(1430) \rightarrow (K\pi)_S K$ is added(best-h1kpis). The likelihood does not increase and the intensity of this decay is negligible (smaller than 0.5%). The next fit contains all decay modes of $K_1(1270)$ and $K_1(1400)$, which are: $K_1 \rightarrow K^*\pi$ with $L(K^*\pi) = 0.2$, $K_1 \rightarrow (K\pi)_S \pi$ and $K_1 \rightarrow K(\pi\pi)_S$. The fit shows that these decays do not contribute for the $K_1(1270)$, but they are accepted for the $K_1(1400)$ (plusallk1s). I consider this fit to be the final answer to this analysis of the $K_L K_S \pi^0 \pi^0$ final state. The final fit parameters are shown in Table 11 and the experimental projections are compared to the fit in Fig. 20.

Fit 13 final	$\log \mathcal{L} = 3222$			$\langle \chi^2 angle = 1.7$		
Amplitude	Intensity [%]			Phase [deg]		
$(K\pi)_{\mathrm{S}}K^{*}$ S-wave	3.3 ± 6			0 fixed		
$K^*\bar{K}^*$ S-wave	3.7	\pm	2	152	\pm	5
$K^*\bar{K}^*$ D-wave	2.1	土	1	349	土	6
$K_1(1270) \rightarrow K^*\pi^0$ S-wave	2.4	±	3	130	±	5
$K_1(1400) { ightarrow} K^*\pi^0$ S-wave	53.6	\pm	13	71	\pm	5
$\mathrm{K}_{1}(1400){ ightarrow}\mathrm{K}^{st}\pi^{0}\;\mathrm{D ext{-}wave}$	1.2	±	8	49	±	39
$K_1(1400){ ightarrow}(K\pi)_{ m S}\pi^0$ P-wave	5.9	\pm	5	38	\pm	6
$\mathrm{K}_{1}(1400){ ightarrow}\mathrm{K}(\pi\pi)_{\mathrm{S}}$ P-wave	3.3	土	4	36	土	5
$\phi(\pi\pi)_{\mathrm{S}}$ S-wave	2.1	±	3	34	±	12
$\phi(1680){ ightarrow} { m K}^{st}ar{ m K}^{st}$ P-wave	1.0	±	0.6	33	\pm	7
$X(1^{+-}) \rightarrow K^*K$ S-wave	9.0	土	4	322	土	5
Incoherent background	12.4	土	27			

Table 11: Amplitudes and phases for fit 12.

Figure 20: Comparison of data (points with error bars) and fit 12 (solid line). Two- and three-particle invariant mass distributions.