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1 Introduction

When performing partial wave analyses, one typically must compute helicity amplitudes many thou-
sands of times in one run of a fitting program. The program SPIN can perform such calculations for
almost any decay chain, but its generality has a cost in terms of speed. It is common, therefore, to
develop program modules for computing amplitudes for those specific decay chains which are being
analyzed. It is necessary to obtain formulas for these specific cases in order to implement them in a
programming language. The computer program Mathematica is well suited to this task. Its use in
such situations is described in the following sections. Firstly, though, the equations to be used will be
presented.

2 Helicity Amplitudes

Consider the decay @ — 1+ 2, where « has spin .J, particles 1 and 2 have spins s; and s, respectively,
and particles 1 and 2 have relative orbital angular momentum L. Richman’s equation 5.13 (see
Reference [1]) gives the transition amplitude for the decay from magnetic substate M to the state with
helicites Ay and A, for particles 1 and 2, with particle 1 going in a direction defined by the angles 6y, ¢,
relative to the quantization axis for particle a:
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Taking the third angle in the D function to be —¢ is a matter of convention; henceforth the third
angle will be taken to be zero, with DﬁA(H, ¢) meaning D]‘(J*A(qb, 0,—¢). With the notation changed
to a more convenient form, the amplitude is:
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The angular distribution, assuming the final state helicities are not measured, is
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for the decay from magnetic substate M. If the various initial magnetic substates M are populated
with probabilities Py;, then the total angular distribution is
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These Py are the diagonal elements of the density matrix p. If the initial state is described by a density
matrix, then

W01, 61) =3 > Lm0, 00)parufi, (01, 1) = Te(fpfoT).

M,u A1,
Now consider the situation where one of the decay products of o decays:
a—1+2, 1 —3+4.

The amplitude for this decay chain is the product of the amplitudes for the individual decays, summed
over the unobservable helicity of particle 1:
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Take note of the fact that, for the decay of the particle @, A = Ay — Xy and that the angles in the D
function are those of particle 1. This correspondence between how the A’s are combined and which
particle’s angles are used is important, and will be adressed further in an example.

One can easily see that this can be interpreted as matrix multiplication and tensor products, as in
the paper by Amsler and Bizot [2]. For use in computer programs for symbolic mathematics, though,
it will be easier to leave the expressions for the amplitudes in the form of sums over products of
D functions. Mathematica is such a program, and it has proven to be quite effective in computing
simplified analytical expressions for helicity amplitudes for complicated decay chains. Examples of its
use follow, beginning with outlines of simple decay chains.

3 Using Mathematica to Compute Helicity Amplitudes

Appendix A explains some aspects of Mathematica which are used in the following examples; those with
no experience with the program may need to refer to that material while reading the following examples.
Of particular interest will be the use of such built-in functions as ClebschGordan[], Table[], etc. In
the first example, the essential elements concerning the use of Mathematica in this type of calculation
are shown, without the clutter of details such as output from the program, how to load files, etc.
Subsequent examples will present all of the details needed in order to carry out the calculation from
beginning to end.

3.1 An Outline of the Procedure

Consider the process
pp(*S1) — p°n°, p° — whaT



which is addressed in section 2.3.1 of the paper by Amsler and Bizot [2]. The p° and 7° must be in a
P-wave, and the total spin of that system is s =5, = 1. So

Tff,?pw = (Jopi AlL, 530, A) (85 Als, Sm03 Apy —Aze) = (L3 A,[1,1;0,A,) (13 A, (1,054, 0).

In Mathematica, it is useful to put these values in an array:

tpbp = ( Table[ ClebschGordan[ {1,0}, {1,1rho}, {1,1rho} ] *
pbp
ClebschGordan[ {1,1rho}, {0,0}, {1,1rho} ],
{1rho,1,-1,-1} 1 )

This creates a table (in this case, a 1 x 3 array) containing the 7' values for A\, = +1,0, —1 in elements
1, 2, and 3, respectively (see Appendix A on the use of Table[] and ClebschGordan). In order to
avoid indexing complications, defining a function to return Tff;pr given A, is helpful:

tpbpf[ 1lrho_ ] := tpbpl[[ 2-1rho ]]

The p decay produces two pions in a P-wave, so
T§o™ = (1;0]1,0;0,0)(0;0/0,0;0,0) =1,

so no function needs to be defined for this. Then a table containing the helicity amplitudes for each
magnetic substate of the pp system can be computed:

fm = Z %Tffquprlrj,/\p(epv¢P)\/§D§:,O(0W+v¢w+)
Ap=1,0,—1
amplitude = Table[ Sum[ tpbpf[ lrho ] * Ds[1,m,lrho, q,r] *
Sqrt [3/(4Pi)]
* Ds[1,1rho,0, s,t] *
Sqrt [3/(4Pi)]

{1rho,1,-1,-1} 1,
{m,1,-1,-1} ]

The amplitude is a matrix with one row per final state helicity and one column per initial state helicity.
In this case, there is one row (no spin in the final state), and three columns (one for each magnetic
substate of the initial state). This expression can then be simplified using the Mathematica built-in
functions Simplify[], Expand[], Factor[], Collect[], etc., along with the package Trigonometry.
The function Ds[J,m,1,q,r] = Dﬁl(q, r) must be defined by the user; a sample Mathematica file for
doing so is shown in Appendix B.

To compute a formula for the angular distribution, one must form fI, the complex conjugate of the

amplitude:

astar = ( ( Conjugatel amplitude ] //. {conjsum,conjprod} )
/. {conjsin,conjcos } )



This statement takes the complex conjugate of each element of amplitude, then recursively applies the
user-defined rules conjsum and conjprod (which define how to take complex conjugates of sums and
products), then applies (once) the user-defined rules conjsin and conjcos (which define conjugates
of sines and cosines of real variables.) These rules are shown in Appendix B. One can form a density
matrix,
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with the statement

density = { {a,0,0}, {0,b,0}, {0,0,a} }

then form the product W = fpfT, which is the angular distribution:

ang_dist = amplitude . density . astar

The dot operator in this statement indicates matrix multiplication; Mathematica makes no distinction
between row vectors and column vectors. To check the normalization, integrate over all of the angles:

g 2m g 2m
N = / sin 0,0, / ds, / sin 0,4 df, 4 / s W (B, by, 0ty brt) = 1
0 0 0 0

Integrate[ ang_dist Sin[q] Sin[s], {s,0,Pi}, {t,0,2Pi}, {u,0,Pi},
{v,0,2Pi} ]

The steps described above are the main steps involved in producing formulas for helicity amplitudes
and angular distributions; some details have been omitted for the sake of clarity. Some illustrative
examples are included below, which include all of the statements necessary to make Mathematica
produce the desired output.

3.2 Complete Examples

Consider the decay chain:

pp('So) — pm
/5—> bl’/T
by — wm
w— 7y

The p is a predicted hybrid meson with quantum numbers /¢ JP¢ = 1717+, Parity requires that the
p and 7 be in an L=1 state, so the angular momentum coupling constants for the pp reaction, T) .,
are created by the following statements:

Clear[ tpbp, tpbpf ]

tpbp = Table[ ClebschGordan[ {1,0}, {1,1rh}, {0,1rh} ] =*
ClebschGordan[ {1,1rh}, {0,0}, {1,1rh} 71,
{1rh,1,-1,-1} ]

tpbpf[ 1rh_ ] := tpbpl[[ 2-1rh 1]



The p can produce a by system with L=0 or L=2, so the function to return 7}, », is formed in such
a way as to allow either possibility:

Clear[ trhlLO, trhlL2, trhf, c, 4 ]

trhl0 = Table[ ClebschGordan[ {0,0}, {1,1b1}, {1,1b1} 1 *
ClebschGordan[ {1,1b1}, {0,0}, {1,1b1} ],
{1b1,1,-1,-1} ]

trhl2 = Table[ ClebschGordan[ {2,0}, {1,1b1}, {1,1b1} 1 *

ClebschGordan[ {1,1b1}, {0,0}, {1,1b1} 71,

{1b1,1,-1,-1} ]

c/; (b1 == 1) || (1b1l == -1)

d /; 1bl == 0

trhf[ 1b1_ ]
trhf[ 1b1_ ]

The first three statements are not really necessary; they merely show the user that for L.=0 all three

constants are 1, and that for L=2 they are /1/10,—4/2/5,1/1/10 for A;, = 1,0,—1. This gives

guidance in defining the function to allow for either state in the decay.

Similarly, the by decay produces an wr system with L=0 or L.=2:

Clear[ tb1L0O, tbiL2, tbif, a, b ]

tb1L0 = Table[ ClebschGordan[ {0,0}, {1,1w}, {1,1w} ] *
ClebschGordan[ {1,1w}, {0,0}, {1,1w} 1,
{1w,1,-1,-1} ]

tb1L2 = Table[ ClebschGordan[ {2,0}, {1,1w}, {1,1w} ] *

ClebschGordan[ {1,1w}, {0,0}, {1,1w} 1,

{1w,1,-1,-1} ]

a/; (lw==1) || (lw == -1)

b/; 1lw==0

tb1f[ 1w_ ]
tb1f[ 1w_ ]

The 7° and 7 from the w decay are in a P-wave, so the T, ’s are defined by the following:

Clear[ tw, twf ]
tw = Table[ ClebschGordan[ {1,0}, {1,1g}, {1,1g} 1 *
ClebschGordan[ {1,1g}, {0,0}, {1,1g} 1,
{1g,1,-1,-1} ]
twf[ 1g_ 1 := twl[ 2-1g 1]

Now the full amplitude can be formed:

Clear[ amplitude, Ds, q,r,s,t,u,v,y,z ]

*
*

amplitude = Table[ Sum[ Sqrt[1/(4Pi)] * tpbpf[ 1rh ]

Sqrt[3/(4Pi)] * trhf[ 1bl ] *
Ds[1,1rh,1bl,s,t] *

Sqrt[3/(4Pi)] * tb1f[ 1w ] * Ds[1,1b1,1w,
u,v] *

Sqrt[3/(4Pi)] * twfl 1g ] * Ds[1,1w,1g,



{1rh,1,-1,-1}, {1b1,1,-1,-1}, {1w,1,-1,-1} 1,
{1g,1,-1,-1} ]

Since the initial state has J = 0, no D function is needed (D}, ,(6,¢) = 1). The angles are described
in Table 1. Clearing the definition for Ds[] ensures that the sums and multiplications will be done in

Mathematica variables Description

s,t Oy, , dp, in the rest frame of the p
u,v 0., b, in the rest frame of the b,
V,2Z 0., ¢~ in the rest frame of the w

Table 1: Definition of the angles used in the example.

terms of D* functions instead of trigonometric functions, allowing this part of the calculation to be done
quickly, with as few terms as possible. In order to get a simplified formula containing trigonometric
functions, one must read in files containing definitions of the D* functions and rules for simplifying
such expressions:

<<Trigonometry.m
<<Dfunc.m
Now Mathematica can be instructed to simplify the expression for the amplitudes:

Clear[ al, a2, a3, a4 ]
al = TrigReduce[ ComplexToTrig[ amplitude 1]

a2 = ExpandAll[ al ]
a3 = Simplify[ a2 ]
a4 = Factor[ a3 ]

This leaves a formula which is easy to implement in FORTRAN:

{ (3 ( ac Cosl[u] Coslv] Cosly] Cos[z] Sin[s] +
a d Cos[s] Cosly] Cos[z] Sin[u] + I a ¢ Cos[z] Sin[s] Sin[v]

9]

b d Cos[s] Cos[u] Sin[y] - b ¢ Cos[v] Sin[s] Sin[u] Sin[y] +
I a c Cos[u] Cos[v] Sin[s] Sin[z] + I a d Cos[s] Sin[ul

a ¢ Cosly] Sin[s] Sin[v] Sin[z])) / (32 Pi"2),

( 3 (a c Cos[u] Cosl[v] Cosly] Cos[z] Sin[s] +
a d Cos[s] Cosly] Cos[z] Sin[u] - I a ¢ Cos[z] Sin[s] Sin[v]

b d Cos[s] cos[u] Sin[y] - b ¢ Cos[v] Sin[s] Sin[u] Sin[y] -

I a ¢ Cos[u] Cos[v] Sin[s] Sin[z] - I a d Cos[s] Sin[u]
Sin[z] -

a ¢ Cosly] Sin[s] Sin[v] Sin[z])) / (32 Pi"2) \}



This is a 1 x 3 table, one element for each ~ helicity. Of course, the amplitude is zero for A, = 0. This
just happens to work out in this case due to the Clebsch-Gordan coefficients for the w decay, but one
can set it to zero by hand if necessary, since it must be so from a physics perspective.

To check the normalization, one must read in rules for taking complex conjugates, then form the
conjugate of the amplitude:

Clear[ astar, asa, wt ] ;

<<conj_rules.ma ;

astar = (( Conjugatel a4 ] //. {conjsum,conjprod} ) /.
{conjsin,conjcos} ) ;

The initial density matrix is just 1, since the initial state has J = 0, so fpf! will be a 3 x 3 matrix.
The angular distribution will be the trace of that matrix, which is just 3, |12

asa = al astar ;

wt = Sum[ asal[[2-1g]], {1g,1,-1,-1}] ;

Integrate[ wt Sinl[y] Sin[u] Sin[s],
{Cos[ql,1,-1}, {r,0,2Pi},

{s,0,Pi}, {t,0,2P1i},
{u,0,Pi}, {v,0,2P1i},
{y,0,Pi}, {z,0,2Pi} ]

The answer is, of course, one. Note the not so subtle difference between table multiplication with a dot
(matrix multiplication) and without a dot (element by element multiplication). Since the formula for
the amplitude has no dependence on the angle q, the integration is more efficient if done over d(cos q).

In this example, all of the decays occur sequentially, that is, only one meson from each decay undergoes
a subsequent decay. When both decay products of a resonance decay, one must be careful to use the
correct angles and helicities in the D functions. This is illustrated by the following example.

Consider the decay chain:
pp(1So) —  aqm

ay —r pw
p— T
w— 7y

Both decay products of the as decay. The orbital angular momentum between the a; and 7 (from the
pp reaction) is L=2, so the Ty, ) ’s are defined by the following:

Clear[ tpbp, tpbpf ]

tpbp = Table[ ClebschGordan[ {2,0}, {2,1a2}, {0,1a2} ] *
ClebschGordan[ {2,1a2},{0,0}, {2,1a2} ],
{1a2,2,-2,-1} ]

tpbpf[ la2_ ] := tpbp[[ 3 - la2 ]]

For the ay decay products, L=0 and the total spin s = 2:

Clear[ ta2, ta2f ]



ta2 = Table[ ClebschGordan[ {0,0}, {2,1rho-1w},{2,1rho-1w} ] *
ClebschGordan[ {1,lrho},{1,-1w}, {2,1rho-1w} 1,
{1rho,1,-1,-1}, {1lw,1,-1,-1} ]

ta2f[ lrho_, 1lw_ ] := ta2[[ 2-1rho, 2-1w 1]

The following defines the 7'y, s:

Clear[ tw, twf ]
tw = Table[ ClebschGordan[ {1,0}, {1,1g}, {1,1g} 1 *
ClebschGordan[ {1,1g}, {0,0}, {1,1g} 1,
{1g,1,-1,-1} 1
twf[ 1g_ 1 := twl[ 2-1g 1]

For the sake of illustration, the T)_,_’s can be defined for the p decay:

Clear[ trho, trhof ]

trho = ClebschGordan[ {1,0}, {0,0}, {1,0} 1 *
ClebschGordan[ {0,0}, {0,0}, {0,0} 1]

trhof := trho

Now the amplitude is computed in terms of D functions:

Clear[ amplitude, Ds, al, a2, s,t,u,v,y,z ]
amplitude =
Table[ Sum[ Sqrt[1/(4Pi)] * tpbpf[ la2 ]
Sqrt[5/(4Pi)] * ta2f[ lrho, 1w ] * Ds[2, la2, lrho-lw,

s,t] *

Sqrt [3/(4Pi)] * twfl 1g ] * Ds[1,1w, lg,
y,z] *

Sqrt [3/(4Pi)] * trhof * Ds[1,1rho, O,
u,v],

{1a2,2,-2,-1}, {1lrho,1,-1,-1}, {1w,1,-1,-1} 1,
{1g,1,-1,-1} ]

Note that A for the ay decay is A, — A, so the angles s,t are 0,, ¢,, the angles of the p in the frame
of the ay. This definition A was also used in the construction of T \,. When A = Ay — Ap, use the
angles of particle A in the D function. The following commands simplify the result:

<<Trigonometry.m

<<Dfunc.m

al = ExpandAll[ TrigReducel ComplexToTrigl[ amplitude ]]]
a2 = Simplify[ al ]

a3 = Expand[ TrigReducel a2 ]]

a4 = Factor[ a3 ]



For A, =1, the result is:

Sqrt[3/2] (3 Cos[s] Cos[u] Cosly] Cosl[z] Sin[s] -
2 Cos[v] Cosly] Cos[z] Sin[u] +
3 Cos[s]"2 Cos[v] Cosl[y] Cos[z] Sin[u] +
I Cos[z] Sin[u] Sin[v] +
Cos[u] Sinl[y] -
Cos[s] "2 Cos[u] Sin[y] +
Cos[s] Cosl[v] Sin[s] Sin[u] Sin[y] +
I Cosl[s] Cos[u] Sin[s] Sin[z] -
I Cosl[v] Sin[u] Sin[z] +
I Cosl[s]~2 Cos[v] Sin[u] Sin[z] -
Cos[y] Sin[u] Sin[v] Sin[z]) / (32 Pi"2)
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For A, = 0, the amplitude is zero, and for A, = —1, the amplitude is the complex conjugate of that

for A, = 1.

The following example has a .JJ = 1 initial state. Consider the decay chain:

pp(PP) — pr
pA—> bl’ﬂ'
b — wm
w— my

The p and 7 are produced in an S-wave, so Ty, = 1 for all \’s. The p decay products can have L = 0
or 2, so Ty, o will be formed as in the previous example involving this decay:

Clear[ trhf ]
trhf[ 1b1_ ]
trhf[ 1b1_ ]

c /; (1b1
d /; 1bil

1) |l (1bl == -1)
0

Similarly, the by decay produces an wr system with L=0 or L.=2:

Clear[ tbif ]
tb1f[ 1w_ ]
tb1f[ 1w_ ]
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]
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The 7° and « from the w decay are in a P-wave, so the T, ’s are defined by the following:

Clear[ tw, twf ]
tw = Table[ ClebschGordan[ {1,0}, {1,1g}, {1,1g} 1 *
ClebschGordan[ {1,1g}, {0,0}, {1,1g} 1,
{1g,1,-1,-1} 1
twfl lw_ 1 := twl[ 2-1g 1]

Now the full amplitude can be formed:



Clear[ amplitude, Ds, al ]
amplitude = Table[ Sum[ Sqrt[3/(4Pi)] Ds[1, m, 1rh, q,r] *
Sqrt[3/(4Pi)] Ds[1, 1rh,1b1l, s,t] trhf[ 1b1

1 *

Sqrt[3/(4Pi)] Ds[1, 1bl,lw, wu,v] tbif[ 1w ]
*

Sqrt[3/(4Pi)] Ds[1, 1w, 1lg, vy,z] twfl 1g ],

[1rh,1,-1,-1}, {1b1,1,-1,-1}, {1w,1,-1,-13}
1,

{1g,1,-1,-1}, {m,1,-1,-1} ]
<<Trigonometry.m
<<Dfunc.m
al = Factor[ Simplify[ ExpandAll[ TrigReduce[ ComplexToTrigl[
amplitude 11171

Note that the table of amplitudes has three rows (one for each helicity of the final state v), and three
columns (one for each ® P; magnetic substate). Seeing the result of this calculation (which is too long to
show here) will heighten your appreciation for why one would use Mathematica instead of performing
these calculations by hand.

4 Using SPIN to Test Helicity Code

After one has implemented the formulas for helicity amplitudes in a FORTRAN program, a convenient
way to test them is to send identical events through that program and through SPIN (see Reference [4]).
The following comments may be helpful in making such comparisons.

SPIN stores the angles which it uses in the common block JACKAN. These are the angles of the second
daughter particle of the decaying resonance, so be sure to order the particles appropriately in the SPIN
input file.

Specifying the width of a resonance as -1 will make SPIN calculate the helicity amplitudes only; the
Breit-Wigner and centrifugal barrier functions will be set to 1. This allows one to compare computa-
tions of the helicity amplitudes without complications from kinematics. Remember that if the initial
state decays with L # 0, a centrifugal barrier will be computed. It is important to set the width of
the initial state to —1 when comparing helicity amplitudes.

SPIN does not include the constants /(2. 4+ 1)/47 in its calculation, so the results from Mathematica
will differ from those from SPIN by these multiplicative constants.

A  Some Mathematica Hints

Reference [3] is the definitive source for information on Mathematica. The following hints may be
useful in following the examples in the text, though.

To run Mathematica on Unix, just type mathematica. This uses an X interface, so issue the command
setenv DISPLAY ... first.

Hit Shift-Return to execute a statement.

Putting a semicolon after a Mathematica statement suppresses the output.



Below are descriptions of some statements used in the text:

Table[expr,{i,i firstsliastyistep }] Returns a table of expr evaluated at each value of the index ¢ between
tfirst and 17,5 at intervals of 14.,. Additional indexes can be used to generate tables of higher
dimensions.

ClebschGordan[{ji,m1},{j2,m2},{J,M}] Returns Clebsch-Gordan coefficients with the same phase

convention as is used in the Particle Data Book.

Sum/[expr,{i,i firststiastsistep }]  Returns the sum of expr with the index ¢ running from ;.5 10 745
at intervals of 14.,. Additional indexes can be used to evaluate a multiple sum.

Integrate[expr,{z,2 firstyTiast }] Returns the integral of expr with respect to x over the interval from
T first 10 145 Additional integration variables can be used to evaluate a multiple integral.

tf[ 1. ] := t[[ 2 - 1 ]] Defines a function tf which takes one argument, 1, and returns the (2-1)th ele-
ment of table t.

tff 1] :=a /;1 == 1 || | == -1 Defines a function tf which takes one argument, 1, and returns a
IF | is equal to 1 OR 1 is equal to -1.

<<filename Reads in a Mathemalica file and evaluates each expression in it.
expr /. {rules} Applies the set of transformation rules rules to expr.

expr [/ /. {rules} Recursively applies the set of transformation rules rules to expr.

B Some Mathematica Files

One can create a file containing rules for manipulation of expressions. The package Trigonometry.m
is such a file which is provided with Mathematica. Two other files have been useful in simplifying
expressions for helicity amplitudes. Below is a listing of the file Dfunc.m:

dfuncl[J_,m1_,m2_,t_] :=
( Sum[
Power[-1,n] Sqrt[Times[(J+m2)!,(J-m2)!,(J+m1)!,(J-m1)!]1]
/Times[(J-m1-n)!, (J+m2-n)!, (n+m1-m2)!,n!'] *
Power[Cos[t/2],(2 J+m2-m1-2 n)] *
Power[-Sin[t/2], (m1-m2+2 n)],
{n,0,2 J}] );

Dfunc[J_,mi_,m2_,t_,p_] Exp[ -I m1 p ] dfunc[J,ml1,m2,t];

Ds[J_,mi_,m2_,t_,p_] Expl I ml p ] dfunc[J,ml,m2,t];

Notice that this definition of dfunc[] is that of Richman [1], and that it differs from that of Amsler
and Bizot [2] in the order of the indices. Careful inspection of these two publications, though, will
assure you that the two treatments produce identical results.

Below is a listing of the file conj_rules.m:



conjprod = Conjugate[ x_ y_] -> Conjugate[x] Conjugately] ;

conjsum = Conjugatel x_ + y_] -> Conjugate[x] + Conjugately] ;

conjsin = Conjugatel Sin[ x_ ] ] -> Sin[ x ] ;

conjcos = Conjugatel Cos[ x_ ] 1 -> Cos[ x 1] ;

Clear[ Ds, Dfunc ] ;

conjDs Conjugate[ Ds[j_,mi_,m2_,t_,p_] 1 -> Dfunc[j,ml,m2,t,p]

conjDfunc = Conjugate[ Dfunc[j_,mi_,m2_,t_,p_] 1 -> Ds[j,ml,m2,t,p]

The rules for sin(z) and cos(z) are, of course, valid only for real arguments. A more complete set of
macros is available via WWW from http://www.phys.cmu.edu/cb/cb.html.
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