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1 Introduction

This note is meant to be a summary of our first look at the combined analysis of four 57 data
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7 r°n°w°, pn — « °moron®

sets: pp — « 7T rTw°w°%, pn — 7 r°w°w°x°, and pp — w°7°w°w°w°. The
results are in no way final, but many of the conclusions will be important in the complete
analysis. In addition, these analyses indicate which data sets are sensitive to which partial
waves, and where it will be safe to extract resonance parameters. At this point in time, our
only purpose is to place all the results within a coherent framework. For consistency sake, we
have used the same number of data and Monte Carlo events for each sample. This allows a direct
comparison of the log-likelyhood. We are currently limited by the size of the pn — 7tx -7~ 7°%°
data set to 11445 data and 19824 Monte Carlo events. These numbers are expected to increase
after production of the April 96 data. Finally, not all fits shown in this report have properly
converged for all points in the scan — however sufficient point have converged that it is possible

to interpolate the true behavior of the functions.
2 An overview of the fitting procedure

In the following fits, the mass and width correspond to the mass and total width of the
particle. The formulas are derived from K-matrix and T-matrix formulations, but some ap-
proximations have been made to allow the fit to work quickly and efficiently. We have tried
to follow the formulations in reference [1], although we have made some approximations as
indicated.

The F—vector for the production and decay of a resonance as seen in two channels has been
written as follows. myg is the K-matrix pole, I'g is the total width of the resonance, p;(m) is
the phase space factor 2¢;(m)/m?* and 3 is a complex production amplitude which is fit. The



variables .1 and L2 are the relative L. between the two daughter products.

P = Bmely ( 1 B" (¢1, q0) )
mo? — m? — imoro(’th(m)(BLl(Qh 9’0))2 + ’722;02(771)(3]:2((]27 QO))Q) 72BL2(Q27 QO)

In the case of a particle decaying into ptp~ or (7777 )s(7°7°)s, oo we can write the ¢’s as
follows:

VIm? = (mgt + o) + (e 4 mgo) 2] [m? — ((mrs + mge) — (M + mge))?]

Gpp(m) = 9
i T ) § (e ) 21— (s s) — (e § 7))
Goo(m) = 5

We can now approximate ¢,, and ¢,, as

) = \/[m2 — (Mt + Mpo + Mp— + Myo)?] [m?]

2m

Gpp(m

In the case of a single fy decaying to pp and oo, we have . = 0 between both the pp and
between the oo. This leads to B%(g, qo), which is 1. We can now write the F—vector as:

P Bmelo ( 7 )

mo® — m? — imolop(m) \ 72

The total transition amplitude can then be written as
A = B0 BT

As an approximation, we sum over the amplitudes A when introducing additional f; reson-
cances. In reality we should place them within the K-matrix.

In the case of p' — po, we have two possible L values for the decay, 0 and 2. Here we
approximate the F—vector by assuming that in the denominator, we can set 4% = ~2 = 0.5:

F _ 5moro ( 7 )
mo? —m? — imolop(m) [v + 73 (B*(q,90))*] \ 72B%(¢, %0)

F 5moro ( 7 )
mo? — m? — imolop(m) [0.5 + 0.5(B*(q, q0))?] Y2B*(q, q0)

&

The T-matrix for the decay of p(770) — = is given as:

mprp(Bl(%QO))Q
(mp)2 —m? — impFP(Qq/m)(Bl(q, QO))Q.

The variables m, and T', are the mass and total width of p(770), B'(q,qo) is the ratio of Blatt—
Weiskopf factors for . = 1 and ¢ and ¢¢ are the decay momenta the p. The T—matrix for
the 77w S—wave, the ¢ is taken as the 4—pole solution to the coupled channel analysis of Stefan
Spanier [2]. The helicity amplitudes for the channels are as given in reference [3].

T =




3 The Fits

In the fits described below, not all data sets can couple to all channels. In addition, the
combinatorics are quite different in the different channels. As such, some of the data sets are
more sensitive to features than others. We will present a series of log-likelyhood (log £) plots.
These are produced by holding all masses and widths fixed, and varying the couplings and
phases to maximize the log £. This is then repeated for the 200 points in one of these scans.
The log £ procedure is described in reference [3]. There are several important features to look
for in these plots.

e All curves should have the same low—mass and high-mass value. If this is not true, then
the fit did not always find the true maximum.

e The large-width (I' = 1.5) curve should be smooth, and not vary by a large amount
across the plot. If this is not true, it could mean the fit did not converge, or that the
amplitude being examined is smaller than some other unimplemented amplitude.

o All curves of a given width should be smooth across the plot. If this is not true, then the
fit was jumping between local maxima, but probably did not find the true maxima.

e The variation in log £ is an indication of how important a given contribution is to the
entire final state. For a variation to be significant, it must be larger than statistical
fluctuations.

We will find that all of the above cases occur during the following fits. In most of the cases it
is not important that the true maximum was not always found as it is possible to interpolate
to its true position.

Another point to keep in mind is that the four examined final states represent extremely

different fractions of the total p/N annihilation rate. pp — wt7x~7°7x°7r°, is nearly 10% of

all annihilations, while pp — 7°7°7°7°x° is smaller than 1%. The other two channels fall
somewhere in between these. This means that something that is significant in one of the rarer
channels may be quite rare in the more common channels.

Finally, in all of these fits, we allow a flat background which is incoherent with the remainder
of the channel. In principle, we would hope that this is no more than a few percent once a good
fit has been achieved. However, as we are attempting to understand a particular channel, the

fraction of the data explained by our hypothesis is a good tool to watch.

3.1 Fit 1: fy — pp,oo and p' — po.

We treat this as the reference fit for all following fits. We introduce a single fo which is allowed
to decay to pp and oo. In addition, we introduce a p’ which is allowed to decay to po. Finally,
we allow for a flat incoherent background. In the initial scan, we take the values of the 7~ 7°7°
analysis for the p’, m = 1.411 and I' = 0.343 [4]. In table 1 we list the combinatorics which
apply to this hypothesis from the 4 data sets.

In table 2 are summarized the results of this fit. We will take these values as a base line for
comparison to later fits. It is interesting that the best log £ occurs for the most complicated
channel. However, this may simply be due to the fact that we include two initial states here,
where as we have not included initial P states for deuterium. In addition, the fit to 57° only
allows a single fo — oo.



Combinations ‘ Initial State ‘ Channel
pp — w¥r - womwon°
6 'S0 (PN) = for® — p*p7m°
3 1So (ﬁN) — fom® — ooT®
6 'S0 (pN) — p*r¥ — p tor¥(L =0)
6 1S (pN) — p*rF — p torF(L = 2)
6 351 (pN) — p'*7F — pEorT(L =0)
3 35 ( N)—)p’°7r°—>pa7r (L=0)
6 35, (pN) — p'*7F — pEorT(L = 2)
3 351 (pN) — p°n° — p°orn®(L = 2)
pn — T r n won®
4 'S0 (pN) — for~™ — ptp 7~
2 1So (pN) — for~™ — oor™
4 'S0 (pN) — p'~7° = p~or°(L = 0)
4 'S0 (pN) — p'~7° = p~on®(L = 2)
2 'S0 (pN) — p°n~ — p°on—(L =0)
2 'S0 (pN) — p°n~ — p°on— (L = 2)
pn — 7 n°w°ww°
3 1So (pN) — for~™ — oor™
12 'S0 (pN) — p'~7° = p~or°(L = 0)
12 'S0 (pN) — p'~7° = p~or®(L = 2)
pp — w°r°n°w°n®
15 | 'So ] (pN) — for~ — oon®

Table 1: The combinatorics involved in the four data sets.

Fit 2log L 2log L 2log L 2log L
atr 77wl | vt w770 | T nlwnlw° | ol lmon®
Fit 1 9000 6000 5000 6775

Table 2: Approximate maximum log £ for fit 1 in the 4 data sets.

3.1.1 The fy Scan

In figure 1 are presented the log £ plots for a scan of the mass and width of the f; resonance.
The peak region of each plot has been expanded in figure 2. The mass and width of the p’
have been held fixed in this plot. Note that the pn — 777~ 7~ 7°7x° data set does not converge
in the high—mass limit. This is not important as the peak region is well measured, and we can
guess what the high—-mass limit should really be.

The common feature of all data sets is that a single fy resonance will optimize around
the values of the fo(1370). All four data sets show a structure around a mass of m = 1.3 to
m = 1.45 with a total width between I' = 0.250 and T" = 0.400. The mass and width are not
well determined, but the approximate peak positions are as follows.

e m = 1.450, T' = 0.200 for 7T 7~ w°x°x°.
e m = 1.350, T' = 0.250 for 77~ 7~ mw°x°.

e m = 1.400, I' = 0.250 for #~7x°x°7°x°.



e m = 1.400, ' = 0.325 for 7°7x°#x°x°x°.

With a single fo resonance, it seems possible to reproduce the f,(1370).

Upon closer inspection of the peak region, all of these data hint at two fo objects. The
+

7 r" w7, 7T n’r°w°rw® and 7°x°x°w°x°. In all of these cases,

clearest evidence comes from 7
there appears to be a double structure, with a narrower object between m = 1.4 and m = 1.5,
and a broader object between m = 1.3 and m = 1.4. The last thing to point out is that
these latter three channels have the largest change in log £ as we scan mass and widths. All
have changes on order 1000, while in 7¥7~7°7°x°, the change is only 200. However, the 0%+
contribution in the latter is smaller. When we add an additional fy in section 3.2, we will fix
the mass and width of this first fo to m = 1.325 and I' = 0.325. These are not necessarily the

best values, but a good comprimise at this point.

3.1.2 The Background Scan

We can also examine the background plots shown in figure 3. We plot the fraction f of the
data explained as p’ plus fy as a function of the fy mass and width. The background is b = 1— f.
Perhaps the most interesting is the #77°7°7°x° data. For extreme values of the fy, we explain
about 42% of the data. When we introduce an fy whose mass is between m = 1.3 and m = 1.6,
and whose width is between I' = 0.100 and T" = 0.450. Then we explain nearly 82% of the
data. This striking jump is the clearest evidence on an fy in the data.

Next we examine the 77~ 7°7°7° and 7°7°7w°7°n° data sets. There is an interesting com-
mon feature that a broad fy of nearly any mass minimizes the background contribution, 20%
and 0% respectively. When we choose something like the fo(1500) parameters, the background
rises. The fo(1500) cannot be the only 0** state in these data. Finally, while the signal in the
57° sample varies between 30% and 100%, the variation in #T7~7°x°7x° is much smaller, 75%
to 80%. The fo contribution to the latter is small.

The final plot for #¥7#~ 7~ 7°x° is a bit more difficult to interpret. First we must discard
the high—-mass narrow—width points which clearly don’t follow the curve. These were exactly
the points where the fit had trouble. Then in the region where we saw evidence for our fy’s,
we are able to explain about 55 to 60% of the data. However, as we go to certain values of fy
mass and width, our understanding goes down to about 35%. This indicates that the p’ does
not play as large a role in these data as it does in the 777~ 7°z°x° data. In addition, only an
fo(1500) is not going to explain these data.
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Figure 1: Fix the p’ at m = 1.411, I' = 0.343, then scan the mass and width of the single f,

resonance. (a) pp — 7

pp — wornlwone.

+

- r°m°w°, (b) pn — 7tr 7~ 7°7°, (¢) pn — 7 w°7°7°7x°, and (d)
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Figure 2: Fix the p’ at m = 1.411, I' = 0.343, then scan the mass and width of the single fy
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Figure 3: The fraction of data which is explained by the two resonances. Fix the p’ at m = 1.411,
I' = 0.343, then scan the mass and width of the single fy resonance. (a) pp — 7wtz 7°x°x°,
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3.1.3 The p’ Scan

We will now fix the mass and width of the fy, and scan the p’ system. At this point, we have
not been entirely consistent in fixing the mass and width. Rather, we have taken something

near the maximum of the previous scan. For pp — mt7r~7°7°x°, we choose m = 1.500 and

I' = 0.150. For the pn — st7r 7 7°7° data we take m = 1.500 and I" = 0.150. For the
pn — 7 w°7°w°nw° data, we take m = 1.450 and I' = 0.150. There can be no p’ in the 57° data
set. The scans are now shown in figure 4 and a zoomed view of the peak regions is shown in
figure 5. The two sharp downward spikes in the 7t 7~ 7~ 7°x° scan are due to the fit jumping
to a false maximum, and are not physics. However, one can correctly interpolate where these
curves should be by examining the zoomed pictures.

From these plots, the largest change on log £ is observed in the 7t7~7°7°7° data where
log £ ranges over several thousand. It is interesting that there is no clear evidence of peaking
in these scans. The fit would rather select a low-mass p’ — this is the 17~ background found
in the earlier analysis of #T7~7°7°x° [3]. One should note that all three scans show a structure
between m = 1.3 and m = 1.5 that builds up for smaller widths, and then washes out as
we allow the width to become broader. We currently do not completely understand this, but
assume that it hints at a p’ in this mass region, in addition to either a second p’ or some other
intermediate state. For further analysis, we will assume that the is p’ — po, and fix its mass
and width to the values obtained in the #~#°x° analysis, (m = 1.411, I' = 0.343). This does
not give the best fit, but is not relevant to the remaining fits. A more detailed examination of
the p’ is done in section 3.5.
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3.2 Fit 2: Two fy’s — pp,oo and one p — po.

We will now introduce a second fy, and study what effect this will have on the fits. The results
are summarized in table 3, but the log £ improves by 200 to 600 in all cases. All of these are
significant.

Fit 2log L 2log L 2log L 2log L
rtr r’r°x° | st~ r7° | 7w ox° | #onlmonln®

Fit 1 9000 6000 5000 6775

Fit 2 9200 6550 5170 7150

A2log L 200 550 170 375

Table 3: Approximate maximum log £ for fit 1 and 2 in the four data sets.

3.2.1 The fy(1500) Scan

To begin we will fix the mass and width of one of the fy’s to m = 1.325 and T" = 0.325 and the
mass and width of the p’ to m = 1.411 and I' = 0.343. We then scan the mass and width of
the second fy. The results of these scans are shown in figure 6 and the zoom view of the peak
region are shown in figure 7. All sets show a peak in log £ near m = 1.5 and I' = 0.150. For
the 7t7~7°7°x° data we will read the mass and width figure 17 where we have used roughly
3.5 times the current statistics.

Sample Mass Width A(2log L)
atr r°x°7® | m = 1.500 | T = 0.200 30
atr r x°x° | m=1.550 | T = 0.150 150
7 r’wrm°7® | m = 1.500 | ' = 0.140 900
7°rmor°w® | m=1450 | I' = 0.125 350

Table 4: Optimum values for the fo(1500) in fit 2.

We summarize the results in table 4. First all of these results are all consistent with
m = 1.5 and I" = 0.150 and we will then take these latter values as the mass and width of
the second fy resonance. Several of these plots indicate that the mass and width of the first
fo are wrong, or that we might need a third fy. In particular, as the width of the second fq 1s
increased, we note that the mass of the peak has a tendency to shift towards lower values. This
is most clear in 7°7°7°7°x°® where the peak goes to about m = 1.1 with the largest width. In
order to settle this question, we will want to fix the mass of the fy(1500), and scan the mass of
the other fy. This will be attempted in section 3.2.3.

We can however perform some checks here by choosing different masses and widths for the
first fo. In figure 8 we show two plots. The first has an fj fixed at m = 1.1 and I" = 0.900, the
second has an fy fixed at m = 1.25 and I' = 0.600. We can draw on very important conclusion
here — regardless of the choice of fo(1300) mass and width within a wide range that most
of us would consider reasonable, the f,(1500) parameters are stable and the contribution is
significant. We do not need to clearly see the f3(1300) to understand the fo(1500) in this data

set.

12



2xlog(likelyhood)

2xlog(likelyhood)

8050
e =01 W [=0.125 A [=0.15 V¥ =025 O =03
[0 r=035 A =045 % =055 X =085 X =15
8000 [
—~
ie)
o
7950 S
-
Ba
(0]
X
7900 5
©
*
N
7850
7800
2750 el e e e
05 075 1 125 15 175 2 225 25 275 3
[GeV/c™
Mass of Particle
5200
| ® r=0.1 ® [=0.125 A [=0.15 V¥ =025 O =03
| O r=0.35 A =045 # =055 % =085 X =15
5000
—~
ie)
o
o
-
4800 >
(0]
X
=
(@)
©
*
4600 N
4400
4200 L Lo e
05 075 1 125 15 175 2 225 25 275 3
[GeV/c™

Figure 6: Fix the p’ at
and then scan the mass

pn

Mass of Particle

6500

6400

6300

6200

6000

7050

7000

6950

6900

6850

6800

6750

6700

6650

6600

O =03
X =15

® [=0.1
[ O r=0.35

B [=0.125 A [=0.15
A =045 % =0.55

v =0.25
X =0.85

.
a. 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
[GeV/c™
Mass of Particle
E ® =0.1 W =0.125 A 7=0.15 V¥ =025 0O =03
r b r=03s A =045 ¥ [=0.55 % 1=0.85 X =15
o b b b b b b b b b i
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
[GeV/c™

m = 1411, I' = 0.343, the first fo to m

and width of the second fy resonance. (a) pp — 7#tr 7°7°7°, (b)

Mass of Particle

1.325 and ' = 0.325

— 7t 7 7°7°, (¢) pn — 7 7°x°x°x°, and (d) pp — 7°7°wowORwC.

13



2xlog(likelyhood)

2xlog(likelyhood)

8020

8000

73880

7960

7940

7920

73900
1.1

5050

5000

4950

4900

4850

4800

4750

4700

Figure 7: Fix the p’ at m = 1.411, I' = 0.343, then scan the mass and width of the second fy

—® [=0.1
r O r=0.35

B [=0.125 A [=0.15
A =045 % =0.55

Y =025 O =03
¥ =085 X =15

Mass of Particle

[GeV/c™

Mass of Particle

resonance. (a) pp — 7

pp — wornlwone.

+

E ® =0.1 B =0.125 A =0.15 V¥ =025 O =03

0O r=03 A =045 ¥ =055 X =085 X =15

Lo chc e b e PN NN P

3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
[GeV/c™

-m°7°x° (b) pn — 7

14

2xlog(likelyhood)

2xlog(likelyhood)

+

6450

6425

6400

6375

6350

6325

6300

6275

6250

6225

6200 1

7050

7000

6950

6900

6850

6800 1

7-r~7°%°, (¢) pn — 7 x°7°x°x°, and (d)

® =0.1
0O r=0.35

B [=0.125 A [=0.15
A =045 % =0.55

v =0.25
X =0.85

O =03
X =15

1.35

1.4 1.45 1.5

Mass of Particle

1.55 1.6

1.65
[GeV/c™

® =0.1

[ O r=03s

B [=0.125 A [=0.15
A =045 % =0.55

v =0.25
X =0.85

O =03
X =15

Mass of Particle

[GeV/c™



2xlog(likelyhood)

2xlog(likelyhood)

3200

3000

2800

2600

2400

2200

2000

1800

3200

3000

2800

2600

2400

2200

Figure 8: Fix the p’ at m = 1.411, I' = 0.343 and examine the #~7°7°7°7° data. In (a) and
(c) the first fo has been held fixed at m = 1.1 and I' = 0.900. In (b) and (d) we hold the first

® [=0.1
0O r=0.35

B [=0.125 A [=0.15

A [=0.45

Y =0.55

¥ =0.25
* =0.85

O =03
X =15

I T B S T N S N
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
[GeV/c™
Mass of Particle
- ® =0.1 B =0.125 A 7=0.15 V¥ =025 0O =03
£ 0O r=0.35 A [=0.45 Y [=0.55 *X =0.85 X =15

1.35

1.4

1.45 1.5

Mass of Particle

1.55 1.6 1.65
[GeV/c™

2xlog(likelyhood)

2xlog(likelyhood)

3400

3200

3000

2800

2600

2400

2200

2000
0.5

[=0.125 A [=0.15
r=0.45

Y =0.55

v =0.25
X =0.85

O =03
X =15

0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
[GeV/c™
Mass of Particle
3300
[ ® 7=0.1 W =0.125 A 7=0.15 V¥ =025 0O =03
L O r=0.35 A =045 ¥ [=0.55 % 1=0.85 X =15
3200 —
3100 —
3000 —
2900 —
2800 —
2700 &=
2600 L1 Jaoh o e e e b b WA
1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
[GeV/c™

Mass of Particle

Jo fixed at m = 1.25 and ' = 0.600. We then scan the mass and width of the fo(1500).
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3.2.2 The p/(1450) Scan

We now fix the mass and width of the first fy’s to m = 1.325 and I" = 0.325 and the mass and
width of the second fy to m = 1.500 and I' = 0.150. We then scan the mass and width of the
p'. The results of these scans are shown in figure 9 and the zoom view of the peak region are
shown in figure 10. As before there is no strong peaking of log £, but the data still hint at
a buried p’ around m = 1.3 to m = 1.4. We will continue to retain m = 1.411 and I' = 0.343
for the p’ even though this is clearly not the best choice. We will return to this problem in
section 3.5.
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3.2.3 The fy(1325) Scan

Here we have fixed the mass and width of the second fo to m = 1.500, I' = 0.150, and the
mass and width of the p’ to m = 1.411, I' = 0.343. We then scan the first fy. The results are
shown in figure 11 and the zoomed views are shown in figure 12. We also plot the signal
fractions in figure 13. First of all we observe that all four of these fits are unstable. This
is probably coupled to the small statistics as discussed in section 3.4. However, we can still
attempt to draw some conclusions from this scan. First the 777~ 7°7°x° data are not very
sensitive to this second fy, with the optimum value found at low mass and broad widths. The
data are suggestive of a structure in the m = 1.3 region which is washed out as we scan. The
atr n 7°m° and 7 7°7°7°7° data also want to push the mass to a low value, and select a
broad width. In fact the preferred value is the lower mass limit, which is just a background
term. There is some hint in 7¥7 -7~ 7°7° of a shoulder at m = 1.2 to m = 1.3 with a width
of I' = 0.250 to I' = 0.550. In the #~747° sample, there is a hint of the washed out structure
noted above. Until the background is understood we are unable to accurately extract the mass
and width of this second f,. We may very well need three poles, one of which is quite broad.
Finally, the n°z°x°7°7° data show a broad fy with a mass of about m = 1.2. However, this
is not a very significant peak. Any mass value between m = 0.9 and m = 1.4, with a width
between I' = 0.400 to I' = 1.500 would give nearly the same fit.

Next, let us examine the signal fraction as shown in figure 13. As we saw in fit 1, the
ntr 77w data are not very sensitive to this second f,. The signal is typically 78% of the
data. The 7#tx~ 7~ 7°7° data show an interesting effect. Using a very broad f; would require
a 40% background contribution. This is als true for a very light or very heavy fo. In these
cases the tail of such an object tend to explain part of the broad background. Finally, for
masses around m = 1.5, and narrowish widths, we need 55% background. Essentially, we are
not explaining the broad flat background. Next, the #=7°7°7°7° data show us that for a light
fo, we can explain 70% of the data. With only an fo(1500) we accommodate about 50% of the
data, and oddly, a high-mass fy parametrizes the background worse than the low—mass one,
explaining only 60% of the data. Finally the 57° data again show us that with a very broad
fo, we can explain about 100% of the data. With any other combination, we need between 5%
and 25% background.

The role this second fy appears to be playing is two—fold. The fit is trynig to use a broad
fo, or the extreme tails of an fy to explain the background. Additionally, the fit is trying to
explain a broad, but presumably weak object in the range of m = 1.1 to m = 1.4. In order to
unravel this, a more complicated analysis will need to be performed.
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Figure 11: Fix the p’ at m = 1.411, ' = 0.343, the second fy to m = 1.500 and T' = 0.150

and then scan the mass and width of the first fy resonance.
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3.2.4 The p(770) Scan

It is also possible to check the mass and width of the p(770). In these fits, we have fixed the
parameters of the first fy to m = 1.325, I' = 0.325, the second fy to m = 1.500, I' = 0.325 and
the parameters of the p’ to m = 1.411, I' = 0.343. We then scan the mass and width of the
p(770) for values near the expected mass and width. The results are shown in figure 14 and a
zoomed view in figure 14. This is currently a disturbing point of this analysis, especially the

+

result from 77~ 7~ 7°7° which shows no maximum in the p(770) parameters, and is currently

not understood. It will be important to reproduce reasonable values for the p(770) in any final

fit.
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3.3 Decays of the f,(1500)
3.3.1 Sensitivity to fy(1500) — pp.

In the previous fits, we have allowed the fo(1500) to decay to both oo and ptp~. We now
would like to try and judge which of these decays is more significant. In order to to this we
have taken the fits of section 3.2.1 where we have two fy’s and a p’. We have then allowed the
fo(1500) to only decay to oo (figurels a and b) and to only decay to pp (figurels c and
d) The maximums are summaraized in table 5. The very interesting feature of these plots is
the fact that there is very clear peaking of the f3(1500) in the case of only oo decays. This is
more washed out with the addition of pp. When only pp is considered, there is no eveidence
of a peak, though there may be some small structure in the 1500 mass region. In terms of
significance of the pp decay, weconsider that change in 2In £ from only oo to both pp and oo.
This is 11 for 777~ 7°7°7° and 70 for 77~ 7~ 7°x°. The former is not at all significant, while
the latter is at the edge of significance.

Data Set | fo(1500) — pp | fo(1500) — oo | fo(1500) — pp and oo
L S o S 7930 7975 7986
troa T won 6230 6300 6370

s

Table 5: Comparison of maximum 2In £ for the pp and oo decays of the fo(1500). Note that
in the case of only pp, the maximum is not at the mass and width of the fo(1500).
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3.3.2 Sensitivity to fy(1500) — ='(1300)~.

In the publication on 57°, we claim to have observed the decay of the fo(1500) into 7'w. It
is now interesting to try and determine our sensitivity to this decay path. We have taken fit
2 and fixed the two fy states to m = 1.325, I' = 0.325 and m = 1.500, I' = 0.150. We fixed
the p’ to m = 1.411 and I" = 0.343. Now we allow a #'7 decay of the fy(1500), where the =’
then decays into ox. Finally, we have scanned the mass and width of the 7’ state. To date,
we have only considered the the 7747° (12 combinations) and the 57° (60 combinations) data
sets. The results of the log £ scans are shown in figure 16. The 7~47° data set shows a clear
peak with a mass in the range of m = 1.175 to m = 1.275, and a width between I' = 0.250
and I' = 0.550. The 57° data set shows a peculiar double-bump structure. The higher mass
bump is clearly not understood, but assuming that the lower mass bump is the 7', then we find
a mass bewteen m = 1.075 and m = 1.250, with a width between I' = 0.250 and T' = 0.550.
Clearly additional checks on the other data samples are necesary, but there does appear to be
good evidence for this decay from the Alog £ = 250 in the #747° data set. This is about 400
improvement over the fit without this decay in #747°, and 90 imporvement in 57°.
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Figure 16: Scan the mass and width of the #’(1300) from the decay of the fo(1500) — ='x
where 7’ — on. Fix the p’ at m = 1.411, I' = 0.343 and the two fy’s at m = 1.325, I' = 0.325

and m = 1.500, I' = 0.150. (a) pn — 7~ 7°

00,00

, and (b) pp — 7°r°m°n°xnC.
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3.4 Statistics

The number of events is also important in the analysis, particularly so in in the most complicated
channel, 7t7~7°7°x°. Here we show in figure 17 The effect on fit 2 when we vary the number
of data and Monte Carlo events. The main question to answer here is what is the appropriate
number of Monte Carlo events for doing the normalization. If we have too few events, we
will be fiting statistical fluctuations in the Monte Carlo, while too many events will make the
fits unmanagable. Given the formulation of the log £ function, we would expect the log £ to
be proportional to the number of events if we are insensitive to both Monte Carlo and data
fluctuations. Historically, a rule of thumb has been twice as much Monte Carlo as real data.
In fact there is certainly also a minimum number of Monte Carlo events needed.

In the following plots, we have taken the 7t7~7°x°r° data and fit it using fit number 2.
We hold the mass and width of one fy to m = 1.325 and I' = 0.325, and the mass and width
of the p’ fixed at m = 1.411 and I' = 0.343. The mass and width of the second f;, are then
scanned. We have considered the event samples given in table 3.4 and the results of these
scans are shown in figure 17 and figure 18.

Sample | Data | Monte Carlo | 2log £ | 2log L/Ny
11445 19284 7985 0.698
11445 40000 8000 0.699
20000 40000 13865 0.693
39000 78000 25760 0.661

a6 o

The first thing to observe is the difference between samples a and b. The former is more
susceptible to statistical fluctuations in the peak region. It is quite difficult to disentangle what
is happening. Sample b is more stable , and the peak near fy(1500) is better defined. The
conclusion to draw here is that the 19284 event Monte Carlo sample is too small, and 40000 is
probably a better number.

Next we compare samples b and ¢. Sample ¢ is more stable in the peak region, and the
fo(1500) is more significant above the surrounding data. Additionally, we may see what appears
to be a double-peak in the m = 1.2 to m = 1.5 region. This is smeared out in sample b. We
should conclude that for the number of parameters in this fit, the 11445 event data sample is
too small. We need the 20000 data events in sample ¢ to resolve details. Finally comparing
samples ¢ and d, we find very few differences. d is a bit sharper and cleaner, but there is no
new information beyond sample c.

If we now look at the log L/N, in table 3.4, we observe a function nearly proportional to
Ny. This is what we should observe. Note however that the highest statistics point is a bit low.
This is not completely understood and needs to be studied in more detail. The good point is
that for samples a and b which have the same number of data events, log £/N, is basically the
same.
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Figure 17: Fix the masses and widths for the first fo’s at m = 1.325, I' = 0.325, and the p at
m = 1.411, I" = 0.343. Scan the mass and width of the second f; resonance. pp — 7t 7~ 7°7°r°
data (a) for 11445 data and 19284 Monte Carlo events, (b) for 11445 data and 40000 Monte
Carlo events, (c¢) for 20000 data and 40000 Monte Carlo events, and (d) for 39000 data and
78000 Monte Carlo events.
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Figure 18: Fix the masses and widths for the first fo’s at m = 1.325, I' = 0.325, and the p at
m = 1.411, I" = 0.343. Scan the mass and width of the second f; resonance. pp — 7t 7~ 7°7°r°
data (a) for 11445 data and 19284 Monte Carlo events, (b) for 11445 data and 40000 Monte
Carlo events, (c¢) for 20000 data and 40000 Monte Carlo events, and (d) for 39000 data and
78000 Monte Carlo events.
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3.5 The p Signal

Returning to the p’ scan in section 3.2.2, we would now like to better understand the nature of
the 17~ wave in our data.

3.5.1 Two p/ — po

Looking at figure 19 a, which is a copy of figure 9 a, we notice two significant features. First,
the log £ varies from 4500 to 9500, with a striking dip for narrow widths near m = 1.7. Second,
there appears to be a structure near m = 1.3 which is washed out as the width is increased.
These taken together lead us to speculate that the data demand more than one p'. To test
this, we have introduced two p"’s, each of which decays to po. We begin by fixing the mass and
width of the first to m = 1.411 and I' = 0.343. In figure 19 b we show the mass and width
scan of the second p'.

There are three important changes to note. First the overall log £ has improved from 9200
to 9550. Next, the range of log £ has been decreased from 5000 to 1200. Finally, the buried
structure near m = 1.3 has been removed, but we do have a small structure near m = 1.5. All
three of these changes indicate that we have done the correct thing. The domiant p’ remains
the broad background term, m = 0.560, I' = 1.500, but the introduction of a second p’ with
the mass and width of the p’(1450) has improved the overall fit.

Next, we will fix the first p’ parameters to m = 0.560, I' = 1.50, and scan the second p'.
Because of statistics problems with this fit, we have now increased the event samples from 11445
data and 20000 Monte Carlo to 20000 data and 40000 Monte Carlo. In figure 20 we show the
results of this scan b compared to the previous scan a using the same statistics. Scanning the
p' yields a maximum 2log £ = 16425 at m = 1.6 and I' = 0.350. The actual peak could be
between m = 1.45 and m = 1.65 with a width between I" = 0.250 and T' = 0.550. The main
point here is that there is a peak in this latter scan, but that the p’ associated with it is weaker
than the background term. Additionally, the structure as we approach the peak position from
below may indicate the presence of a third p’. The data are not inconsistent with the two p"’s
of the 77 7°7° analysis plus a broad background term. It will be necessary to understand this
background before much more can be said about the p'.

3.5.2 The p' — pp Decay

Since we have now allowed ourselves the privilage of looking at 39000 data and 78000 Monte
Carlo events in the 777~ 7°7°r° data set, we would like to introduce a second decay of the p’
into pp. In this data set, we now allow:

L=1 L=0,5=0
—— —~—
15« — 1+ F + ¥
0(pp)—> port—  pFo o«
L=1 L=2,5=0
—— —
15« — 1+ F + ¥
olpp) = p Tt = pto 7
L=1 L=0,5=0
—— —
°S1(pp) — ErF to T
1\pp P P
L=1 L=0,5=0
—_—~— PNy
(o] [e]

Si(pp) = p°r° = poo 7
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Figure 19: Fix the masses and widths for the two fy’s at m = 1.325, I' = 0.325, and m = 1.500,
I' = 0.150. Scan the mass and width of the p’ resonance in the pp — 7#t7~7°7°7°, data sample.
(a) Shows the scan for a single p’. (b) Shows the scan for two p’. One is fixed at m = 1.411,
I' = 0.343, and the second is scanned.
16750 - 16500
r ® r=0.1 B [=0.125 A [=0.15 V¥ [=025 O =03 [ ® =0.1 W [=0.125 A [=0.15 V¥ [=025 O =03
16500 r b r=03s A =045 Y [=0.55 *X =0.85 X =15 : 0 r=0.35 A =0.45 ¥ [=0.55 % 1=0.85 X =15
. 16400 |-
16250 [ -
16000 |- %\ -
r S 16300 —
: o I
15750 — > =
L (0] L
r = I
15500 | "5 16200
i 3 I
r X 3
15250 | N -
E 16100 —
15000 |- -
14750 |- -
L 16000 —
14500 [ 5
e T T T S T P 15900 L Lol b e
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
[GeV/c™ [GeV/c™
Mass of Particle Mass of Particle

Figure 20: Fix the masses and widths for the two fy’s at m = 1.325, I' = 0.325, and m = 1.500,
I' = 0.150. Scan the mass and width of the p’ resonance in the pp — 77~ 7°7°x°, data sample.
(a) Shows the scan for two p’. One is fixed at m = 1.411, I' = 0.343, and the second is scanned.
(b) Shows the scan for two p’. One is fixed at m = 0.560, I' = 1.5, and the second is scanned.
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Because of the final state, the new decay must couple to pTp~, or must be p’°. This can only
couple to negative C—parity initial state, or 3S;. In the #*7~7~7°7° data set, we could couple
to the 'S, initial state via:

=1 L=1,5=0
— —~
15« — 10 __— + - —
o(pn) — P77 — p- T
L=1 L=1,5=1
— —
19 = 10 __— + - —
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=1 L=1,5=2
— /—_}_/H

but due to the limited statistics currently available in these data, this has not been tested.

In figure 21 we show the scan of the mass and width of the p’. In order to determine if
this 1s significant, we need to compare with the high statistics point in figure 18 which was
scanned for a p’ at m = 1.411, I' = 0.343, and has a maximum at 2log £L = 25740 for the
fo(1500). Figure 21 has 2log £ = 26400 for the p’ curve. While this change of 660 in 2log £

is significant, we can probably say little more until we better understand the p’ in these data.

4 Conclusions

There are several conclusions which can be drawn from this report. We begin with the statistics
of the Monte Carlo sample. In most cases, 20000 will be insufficient to properly integrate over
the 8-D phase space. Our feeling here is that 40000 events is probably sufficient. Early, we felt
that one should have twice as much Monte Carlo as data. This may not be true and should be
tested further. Reducing the total Monte Carlo from 80000 to 40000 will significantly reduce
the computer resources needed to perform the fits.

In regard to the data sets, we find that the 77~ 7°7°7° data set has little sensitivity to the
exact nature of the fy states though it clearly shows the f5(1500). Perhaps as a larger fraction
of the final state is understood, the sensitivity will improve. However, this channel should not
currently be used to extract these parameters. These data do have the most sensitivity to the
p'. This is mostly due to its production in the 25 initial state to which this channel can couple.
These data are probably the best place to extract information on the p’ from the 57 samples.

The 7~ 7°7°7°x° data set appears to have the greatest sensitivity to the fy states. This is
probably due to the minimum number of combinatorics involved. This is likely to be the best
data for extracting the fy parameters, and probably its oo coupling. It clearly shows the most
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Figure 21: Fix the masses and widths of the two fy states to m = 1.325, I' = .325 and
m = 1.500, I' = 0.150 and then scan the mass and width of p’. This p’ is allowed to decay to

both p(770)o and p*p~.

striking evidence of any data set for the fy(1500). These data are also sensitive to the 7/(1300)x
decay of the fo(1500), where #’(1300) — ox. However, these data tell us nothing about the pp
couplings of these states. The 777 7~ 7°7° data set may be the next most sensitive to the fy
and will also give us access to the p™p~ couplings of these states. It is also likely to be these
data that shed additional light on the #’(1300)7 decay of the fy states — particularly if the
7'(1300) — p(770)7 decay exists.

Finally, the 57° data with their rather large combinatorics will certainly provide additional
constraints on the fy states. Given the very limited number of initial states, it will be quite
important that any description of the data be able to explain these data as well. However,
given the ambiguities in the earlier publication, these data alone are not going to be able to
resolve the fy’s.

As a plan for proceeding with the analysis is first to increase all Monte Carlo samples to at
least 40000 events. In addition, the April ’96 data will be processed to increase the 7t 7~ 7~ 7°r°
sample to about 25000 events. We should then aim for a combined analysis using about 25000
events from each channel. In addition, we feel that the 7747° data alone make a very convincing
case for the 47 decay of the fy(1500). While we may be unable to settle the exact fraction of
7'(1300) 7, the fo(1500) does stand out like a sore thumb. These data should probably be used
to make a single-channel Physics Letters article concentrating on the f3(1500). The combined
data sets should then be used to write a long Physical Review D article which would explain in
detail how the fits work, the common features of the data, and how all of this relates to earlier
5 analyses.
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