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Abstract

Mesons are the most fundamental objects allowing a study of quark and gluon con-
finement and, more generally, the strong interaction at low energy. The spectroscopy
of light mesons is a challenge: the glueballs predicted on the basis of Quantum
Chromodynamics are expected amidst the light mesons. However, identifying light
mesons and determining their quantum numbers are particularly difficult tasks due
to their extremely short lifetimes. The strangeness quantum number is easy to de-
tect and indicates the presence of a strange quark. Thus the field of (openly) strange
mesons is relatively well explored. However that of mesons with hidden strangeness,
more directly relevant to the glueball search, still needs more experimental input,
in particular from studies of final states with kaon—antikaon pairs.
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1 INTRODUCTION

Niels Bohr first heard of the Balmer formula, known since 1885 on 7 February 1913.
By March 6, he had completed a paper containing its interpretation. This event marked
the beginning of quantum mechanics [1]. The spectral lines of hydrogen, the simplest
atom, bound by the electromagnetic force, played a leading role at several stages in the
development of the present theory of the electromagnetic force, Quantum ElectroDynam-
ics (QED).

Now, if you learn during this summer school, perhaps for the first time, about the
spectra of mesons — the simplest systems bound by the strong force — it is not very
likely (although a great hope of the teachers) that in a month from now you will come up
with an elegant theory explaining all their properties.

Firstly, all experts are convinced that we already have the best theory of strong in-
teractions, Quantum ChromoDynamics (QCD). The ground states of mesons and baryons
have played a key role in the first big step on the way to QCD, the conception of the
quark model. But the proper domain of QCD nowadays concerns rare processes, where
quarks are asymptotically free. ‘Asymptotically’ implies that truly free quarks have never
been observed; they are confined to hadrons. And our best theorists have so far failed to
apply their pet theory (QCD) to the simplest bound states. In this latter domain of ‘non-
perturbative’ QCD, the calculations become so complex that nobody has yet succeeded
in deriving a truly quantitative description of meson spectra from QCD. Clearly, one may
comfortably live with such a situation and look for other interesting objects like the Higgs
particles. However, there have been quite a few similar situations in history which serve
as a warning. Think of Ptolemaios who had a simple and elegant theory postulating just
epicycles and epicentres as basic elements of the orbits of stars and planets. As more and
more orbits were observed, application of the theory became increasingly complex. In the
end the theory turned out to be a rather bad approximation of nature.

The second reason for being unable to find an elegant description of the spectra of
mesons may be that the experimental input is too fragmented. Ultimately, the strength
of the interaction is to blame for this, as it is for the difficulty in applying QCD to non-
perturbative processes. As the interaction is so strong, the meson states, whenever their
decay is induced by the strong force, are extremely short-lived. Bound by the strongest of
all interactions, their constituents stay together for a shorter time than any other bound
state of nature. Their extremely short lifetime renders identification particularly difficult.
Detected through their decay, these bound states do not show up as narrow, distinct
lines on the scale of invariant energy or mass of the decay products, but as broad diffuse
enhancements of intensities, called resonances. (The line width T is inversely proportional
to the lifetime, I' = &/7). In general, the various resonances with different quantum
numbers produced in a given process overlap in energy. This renders the determination
of the quantum numbers cumbersome. Thus, even after several decades of research the
measurements are still not as complete as one would wish.

The subjects of these three lectures are light strange mesons, i.e. those containing
a strange quark (s) or antiquark (3), and mesons with hidden strangeness, i.e. those
containing an (3s)-pair. The following two chapters are fairly fundamental. They are
intended as an introduction for an audience of students or physicists with a general physics
education but not yet experts in particle physics and hadron spectroscopy. Chapter 2
ends with a survey of known quantum states of light mesons, which can be considered as
a starting point for experts in the field. Chapter 3 outlines the experimental methods of
meson spectroscopy, in particular detection of mesons with strange quarks. Chapter 4 is



a review of some of the open problems in the special field of strange and hidden strange
light-mesons. The lectures, as they are given by an experimentalist, focus on experimental
rather than theoretical work in the field of meson spectroscopy.

2 QUANTUM STATES OF LIGHT MESONS
2.1 The basic constituents

The systematics of hadrons (mesons and baryons) first observed in the 1950s and
1960s, have led to the quark model, which describes hadrons as composite objects made
of hypothetical constituents, the quarks. These quarks had to carry the quantum num-
bers or fractions thereof which had been observed to be conserved in strong interactions,
such as charge, spin, baryon number (also conserved in other interactions), isospin and
strangeness. Since these are lectures on strange mesons it seems appropriate to recall
briefly the discovery of strangeness. Soon after the existence of hyperons (unstable par-
ticles heavier than a nucleon) and K mesons (particles with masses between those of pions
and nucleons) had been established through various decay modes, and the rate of produc-
tion had been studied in a pion beam at the Brookhaven Cosmotron, it was noted that
there was a problem. These particles were copiously produced by the strong interaction,
at a rate of 10% of that for pions; but their decay was very slow (mediated by the weak
interaction). As an explanation, Pais (1952) and Nambu introduced the rule of ‘associated
production’, requiring hyperons and kaons to be produced in pairs by strong interaction,
for example

at4+n > A+ KT

Inverting this process, the strong decay of A and K would be
A—-rt+n+ K- and K—oat+n+A

Both decays are forbidden by energy conservation. An explanation of the rule was given
by Gell-Mann (1953) and Nishijima (1955) by inventing a new additive quantum number
called strangeness (S), conserved in strong interactions. The A and K~ were assigned the
same S, and KT was given the opposite S. Strangeness non-conservation in the decays
rules out the action of the strong force; since the decays are left to the weak force, they
are slow.

The point-like nature and other properties of the quark constituents were inferred
from many subsequent experiments which studied hard interactions involving hadrons.
‘Hard’ means that high-momentum transfers are involved; to probe short distances, large
momentum transfers are needed according to the Heisenberg uncertainty relations. The
present theory of strong interactions (QCD) has emerged as the best description of all
these experimental data. Ironically, the ‘stable’ hadrons and their lowest excitations, which
started this chain of progressive understanding, are the objects where the theory fails most
strikingly to produce a quantitative description. Nonetheless, the qualitative description
provided by QCD for the laws governing how hadrons are built from basic constituents
is a good starting point, which we will use as a guideline. Of course, in doing so we are
starting from the back end of research, i.e. from the theory instead of the empirical basis
which led to the theory. However, there is a definite advantage to this approach to the
subject: the quantum numbers and names of mesons are much more easily memorized if
one already has an idea of how the mesons are formed.

QCD is a gauge theory modelled on QED and incorporating the quark model.
It describes a world where the elementary fermions are the quarks and antiquarks, with
spin quantum number 1/2, baryon number +1/3 for quarks and -1/3 for antiquarks,



charge +1/3 or £2/3 of the proton charge and a quantum number, called flavour, which
is peculiar to each quark species (Table 1).

Table 1: Quarks, their quantum numbers and masses. Flavour quantum numbers: I, =
isospin z-component, S = strangeness, C = charm, B = bottomness, T = topness, Q =
charge in units of the proton charge, m = current quark mass, M = constituent quark
mass. The corresponding antiquarks have equal masses but opposite signs for all other
quantum numbers.

Name |Symbol| I, |S|C|B|T| Q m[MeV/c?] |M [MeV/c?|
down d -1/2(0(0| 0(0|-1/3 10+5 300 + 100
up u +1/2/ 00| 0|0 |+2/3 5+3 300 + 100
strange s 0 |-1{0| 0|0 -1/3 200 £+ 100 | 450 £ 100
charm c 0 0/1]0[{0(+2/3| 1300+ 300 ~ 1500
bottom b 0 0/0[-1{0| -1/3| 4300 =+ 200 ~ 5000
top t 0 0/0| 0]|1|+42/3|174000 + 1700

An additional property of the quarks, called colour charge, plays an analogous role
for the strong interaction, as does electric charge for the electromagnetic interaction and
mass for gravitation. Colour charge can have 3 different non-zero values. The sum of
3 different colours, or of a colour and the corresponding anticolour, yields zero, which
is analogous to the additive mixing of three primary colours, hence the name ‘colour
charge’. The quanta of the strong force field, analogous to the photon (the quantum of
the electromagnetic field), are the gluons. There are 3 x 3 — 1 = 8 gluons because there
are three colours and three anticolours. Gluons have a spin quantum number of 1; their
electric charge, baryon number and flavour quantum numbers are all zero. But they carry
colour charges, and as a consequence gluons interact directly not only with quarks and
antiquarks but also with other gluons. For comparison, the gauge boson of QED, the
photon, can interact with another photon only via charged particles.

Neither quarks nor gluons have ever been observed as free particles. Therefore, they
are believed to be confined within hadrons. Confinement is built into the theory by
assuming that free particles have to be colourless or, more precisely, singlets with respect
to colour SU(3) transformations.

2.2 Hadrons

A hadron is, according to QCD, a very complex object, consisting of an indefinite
number of quarks and/or gluons such that together they form a colour singlet. Two dis-
tinctions must be made when talking about the constituents of hadrons: between valence
quarks and sea quarks, and between current quarks and constituent quarks. Va-
lence quarks are those responsible for the quantum numbers like charge, baryon number,
isospin and strangeness. Sea quarks are present as pairs of a quark and the correspond-
ing antiquark, so that they do not contribute to these quantum numbers. They may be
considered as vacuum fluctuations. The strong field, whose quanta are the gluons, cre-
ates virtual quark-antiquark pairs as the electromagnetic field creates electron—positron
pairs (the latter effect is known from the Lamb shift in the hydrogen atom). The num-
ber of sea quarks is indefinite. Current quark is synonymous with elementary quark. The
usual description of a constituent quark is that it contains an elementary valence quark



surrounded by a ‘polarization cloud’ of sea-quark pairs and gluons. A similar distinction
is made between elementary gluon and constituent gluon.

The known hadrons are divided into three classes: mesons, baryons and antibaryons,
according to their baryon number, which has been observed to take the values 0, +1 and
-1, respectively. The baryon number equals the sum of the baryon numbers of the valence
quarks contained in the hadron. The simplest hadrons are the mesons, which contain a
valence quark ¢; and a valence antiquark g;, and an indefinite number of sea-quark pairs
and gluons. The indices i and j stand for the five quark flavours — the sixth, recently-
discovered top quark is too short-lived (although elementary!) to build a hadron. Using
the notion of constituent quarks, these mesons, called normal or quark-model mesons
consist of a constituent quark and a constituent antiquark.

Baryons like protons or neutrons contain 3 valence quarks, and antibaryons contain
3 valence antiquarks. The proton comnsists of uud, the neutron of udd and the antipro-
ton of %id. According to the prescription mentioned above, the colour combination has
to be singlet. This would not be possible for one or two single quarks, but it is for the
combination to a normal meson, baryon or antibaryon. In addition to these three classes,
there ought to be other possible combinations to obtain a colour singlet; for instance, two
or three constituent gluons (‘gluonium’ or ‘glueball’), quark, antiquark and a constituent
gluon (‘hybrid’), or two quarks and two antiquarks (4-quark meson). These other combi-
nations, predicted in principle by QCD, are assigned to the category ‘exotic’ mesons,
since they have not yet been proven to exist.

2.3 Constructing mesons: spatial quantum numbers

The normal mesons are the simplest systems bound by strong interaction. Given
the fact that single free quarks or gluons have not been observed, we should expect that
these objects are particularly important for an understanding of both the strong force
and the nature of the constituents. We should expect them to play a similar role in
the development of the theory of strong interactions as did the hydrogen atom in
the development of QED. However, so far this has not been the case. The mesons, in
particular the light mesons built from the light quarks (u,d, and s) and their antiquarks,
have scarcely penetrated the textbooks of particle physics. The reasons have already been
indicated above: the lack of a true understanding and the incompleteness of the data.

Not only the key role of the H-atom in the development of QED, but also its level
scheme (Fig. 1) can serve as a reference. It is useful for a comparison because it is the
best-known scheme of quantum states. Moreover, the spin and orbital angular momentum
structure of mesons is very similar to that of the H atom. Both bound systems consist
of two fermions (spin 1/2). For an orbital angular momentum L = 0 between the two
fermions there are two states, the ‘para’ configuration with antiparallel spins, total spin S
= 0 and total angular momentum J = 0, and the ‘ortho’ configuration with S = J = 1. For
a relative orbital angular momentum L = 1, there are 4 states with total angular momenta
J=0,1,1, and 2. Using a notation which is customary for atoms with several electrons
25+1[; where L = 0, 1, 2,.., is expressed by the letters S, P, D,.., the corresponding six
meson states are:

180, 351, 3Py, Py, 'Pi, 3Ps.

A different notation, also frequently applied for mesons, uses the total angular mo-
mentum J, the parity P and the C-parity C, when the state is an eigenstate of the
charge conjugation operator C. The strong interaction is symmetric for an inversion of the



coordinates, i.e. reflection at the origin or the parity operation P. The eigenvalue P can
be +1. For a normal (¢;G;) meson it is given by the expression

P = (—1)F+,
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Figure 1: The 8 lowest energy levels of the hydrogen atom. Horizontal axis: total angular
momentum (sum of electron and proton spin and orbital angular momentum). Vertical
axis: excitation energy relative to the n = 1 ground states. HFS = hyperfine splitting, LS
= Lamb shift, FS = fine structure splitting

The factor (—1)% is due to the action of P on the spatial wave function and the
additional factor —1 is due to the opposite intrinsic parities of fermions and antifermions
(derived from the Dirac equation). The charge conjugation C transforms a particle into its
antiparticle, Cu = %4, Cd = d, Cs = 5. The C-parity is another conserved quantum num-
ber. Mesons which consist of a quark ¢; and the corresponding antiquark g; are eigenstates
of C and of the total spin S. The C-parity is given by

C = (-1,

This relation is derived by writing the wave function as a product of a spin part, a spatial
part and a flavour part and applying the generalized Pauli principle, which requires the
complete wave function to be antisymmetric with respect to the interchange of the two
fermions.

With these relations we can now make the transformation from one notation to the
other (Table 2).

The two axial-vector mesons are distinguished by their C-parity in the case of eigen-
states of C: JP¢ = 1+ for P, and JP¢ = 17~ for ' P,. For mesons which are not eigen-
states of C, like the K mesons, the two components P, and ' P; can mix. These mesons
are eigenstates of L and J but not of S.



Table 2: Names and quantum numbers of normal mesons for L =0 and L = 1

Name JEP| 2511,
pseudoscalar |0~ 1So
vector 1- 38,
scalar 0t P
axial 1t (3P, or 1P
tensor 2t 3P,

Only the eight lowest-energy spatial configurations of mesons are discussed above;
they correspond to those shown for the hydrogen atom in Fig. 1, which included the first
radial excitations of the S states and the lowest orbital excitations with L = 1. Of course,
as for the H atom, higher orbital and radial excitations (L > 2 and n > 2) are possible.

All the listed quantum number combinations are typical for normal mesons. Several
combinations are excluded even if higher orbital angular momenta are considered,
e.g. JF¢ =077 or 17F. These exotic JF¢ combinations are, however, possible for gluonia
and hybrids since the gluon constituent has integer spin (J¥¢ = 177). If found, they would
constitute direct proof of the existence of exotic mesons.

JPC

2.4 Constructing mesons: flavour quantum numbers and the nonet

Combining the first three quarks with the first three antiquarks yields a nonet of
normal quark model mesons for each spatial configuration (Fig. 2a). They are called
the light mesons, whereas those containing at least one charm or bottom quark are
called heavy. There is, for instance, a nonet of vector mesons, as shown in Fig. 2b. All
the (additive) flavour quantum numbers and the charge can be obtained by adding the
corresponding quantum numbers of the quark constituents. The 6 states at the corners
of the hexagon are easily distinguishable by their external quantum numbers, strangeness
and charge. The three states in the centre of the hexagon, with S = I, = 0 are less easy to
identify. Their wave functions are superpositions of the 3 combinations @u,dd,ss. They
are shown, for the ideal case of perfect SU(2) and SU(3) symmetry, in Fig. 2a and for a
real case, the vector mesons, in Fig. 2b.

0 — uU—da
2
Ko* K+* ¢: SS
~ ut+dd
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(Us) (ds) K™
a) b)

Figure 2: The flavour nonet of mesons and the wave functions of the three states in the
centre (horizontal axis isospin z-component I,; vertical axis strangeness S). For the case of
(a) ideal SU(2) and SU(3) symmetry and (b) the vector mesons, where the two isosinglet
states are ‘ideally’ mixed, i.e. almost pure s5 and @u + dd.



Without describing details of SU(2) and SU(3) which can be found in textbooks, the
following explanation is intended as a mnemonic for the signs and weights contained in
these wave functions. It is assumed that the isospin formalism is known, e.g. from nuclear
physics courses. It is an empirical fact that the strong interaction does not distinguish
between up and down quarks, to a very good approximation. (QCD incorporates this fact
by the assumption that the strong interaction only couples to the colour charge of quarks
and by having nearly equal masses of up and down quarks.) We may then consider the up
and down quarks as the two states of an isospin doublet (u,d) = (+1/2, -1/2), as is done
(following Heisenberg’s suggestion) for p and n in nuclear physics, in analogy to the two
orientations up and down for a spin 1/2 particle. The doublet of the antiquarks is (41/2,
~1/2) = (d, —%) with a minus sign in front of @ , such that this doublet transforms properly
under isorotations [2]. Combining the doublet with the antidoublet, we obtain 4 states (as
in atomic physics when combining two spin doublets, i.e. combining two particles with
spin s = 1/2 and s, = +1/2). Remember the four states obtained when the spins of two
electrons are added together. Using the notation T, | for spin up and down, s, = +1/2,
-1/2), the four spin wave functions are

§=0,5.=0 = (1l-11)/v2
1S =1,5. = +1) 1
$=1,5
$=1,5

. =—1) H
=0 = (TL+11)/Vv2

For the combination of our two isospin doublets, or more precisely, of an isodoublet with
the isodoublet of its antiparticles, the only difference is that the signs in the wave functions
with I, = 0 are reversed because of the minus sign in front of the % quark:

I = 0,1, =0) =
I = 1,1, =0) =

The first state is the isosinglet, which behaves like a scalar under SU(2) transformations,
i.e. rotations in isospace. The second state is the neutral partner of the three isovectors
(the isotriplet); for the case of pseudoscalar (J¥ = 0~) mesons this triplet consists of the
three pions, 7%, 7%, 7.

Now let us add a third quark, the strange quark. Four additional particles are
obtained at the corners, the K mesons with ‘open’ strangeness and two more particles
in the centre, (S = I, = 0) with ‘hidden’ strangeness (Fig. 2). These 6 meson species
form the subject of the present lectures.

The nonet of mesons is divided into a singlet and an octet. The combination
I =0); = |au + dd + 5s)//3

behaves like a scalar under flavour-SU(3) transformations; it is the SU(3) singlet, and the
subscript ‘1’ refers to this property. (For the colour SU(3) of QCD, it is the corresponding
colour singlet which is realized in free hadrons; it is found by combining either three
different quark colours or colour and anticolour. Correspondingly, there are only 8 coloured
gluons, since one SU(3) combination is colourless.)

With SU(2) symmetry for v and d, the state [ = 1,1, = 0) remains the same as
for SU(2) and forms the second state in the centre of the nonet.



The third state in the centre can now be found by requiring orthogonality to the
first two states |[I = 1,1, = 0) and |I = 0);:

I =0)g = |au + dd — 25s)//6

The index 8 refers to the fact that it is a member of the octet. Thus it can be seen that
hidden strangeness is mixed with au + dd in a certain ratio for this ideal SU(3) case.
If nature were flavour-SU(3) symmetric, all the members of the octet would be mass
degenerate. This is not the case, the presumed reason being the significantly heavier mass
of the s quark compared to the masses of the u and d quarks (see Table 1). Nature also
mixes the two states |[I = 0); and |I = 0)g. We will return to the octet-singlet mixing angle
later. For the moment, let us assume that flavour SU(3) is not a good symmetry, unlike
SU(2) for up and down quarks. This explains why in Table 1 the up and down quarks
appear to play a special role. Instead of assigning them the quantum numbers ‘upness’ and
‘downness’, they were labelled I, = +1/2,—1/2. As a consequence of SU(2) symmetry,
total isospin I and I, are good quantum numbers, i.e. conserved in strong interactions,
and hadrons with the same I but different I, are approximately mass degenerate.

Thus the mesons of every nonet can be grouped into four multiplets of particles
with (almost) degenerate masses:

— the 3 isovectors (an isotriplet, I = 1);

— the two doublets (I = 1/2) of K mesons, K+ K° K° K-;
— the first isosinglet (I = 0);

— the second isosinglet (I = 0).

The mesons ‘constructed’ in the last two sections were all normal or quark-
model mesons. So far, the existence of mesons with flavour-exotic quantum numbers,
like strangeness S = 2 or charge = 2, has not been proven. It would indicate that bound
states of more than one quark and antiquark exist. In addition to the notion flavour-exotic
and the notion J¥¢-exotic explained above, there is also the notion crypto-exotic for
conceivable meson states which have the same quantum number combinations as normal
mesons but a different composition, for instance, gluonia with JZ¢ = 0*+,2%+ or 0¥,

and S=1=0.

2.5 A survey of all mesons

We are now ready for a general survey of all mesons observed so far, in four decades
of research, after which the lectures will specialize in the strange sector. A complete and
up-to-date survey of mesons with reference to every single measurement can be found in
the Review of Particle Properties (the ‘bible’ of the particle physicists) by the Particle
Data Group (PDG) [3], pp. 1443-1672. There is also a handy resumé of the quark model
in this review, pp. 1319ff. The book is indispensible for any meson or hadron expert.
Figure 3 compares the level schemes of the majority of mesons as compiled in the meson
summary table of the PDG [3]. This figure also serves to introduce all the symbols for the
different mesons (According to E. Fermi, you have to be a botanist to remember these
names). Only states with L <1 and n < 2 are displayed in Fig. 3, as in Fig. 1 for the H
atom. Most known mesons are included in these plots. The omissions are 11 higher radial
and angular excitations of non-strange light mesons, 5 higher radial excitations of strange
mesons, 4 higher J/v states and 4 higher T states. The 9 known ‘D’ mesons with open
charm and the 4 ‘B’ mesons with open bottomness have also been omitted.
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Figure 3: Level schemes of mesons, for L < 1 only, corresponding to the levels shown
in Fig. 1. The vertical axis represents the energy difference to the 1~ ground state. This
scale was chosen to facilitate a comparison of the level schemes of mesons with different
total masses. The horizontal axis represents J¥ or JF¢. The symbols for the different
mesons are given under the figure titles for each J¥¢. Each state is represented by a box
or line, the height of which corresponds to the width I'. The number in the box or above
the line indicates the rest energy in MeV. a) Bottonium; b) charmonium; c) kaons (two
isodoublets per box); d) isovectors (I = 1, a triplet of states per box). The isoscalars have
been separated according to their dominant quark content. Those with more @u + dd have
been put in (e), those with more ss in (f). The fraction of the dominant component is
indicated by X? = ..% if the nonet mixing angle is known. Otherwise the dominant decay
modes are indicated. There are three exceptions to this rule of classification: the f,(980)
has been assigned to both (e) and (f), and fp(1500) and fo(1590) have been put into (f)
because the corresponding place in (e) was already too crowded. Based on the present
knowledge of their decay modes, fo(1500) at least should be in (e); however perhaps it is
not a normal meson.

Charmonium and bottonium (Fig. 3a and b) are eigenstates of the charge con-
jugation operator C, hence can be characterized by the three quantum numbers JFY
(horizontal coordinate). The vertical coordinate is the energy of the state relative to the
lowest state with JP¢ = 17~. All the displayed states are very narrow, i.e. have a long
lifetime in comparison with most of the light mesons. This is one of the reasons why these



two-level schemes have found their way into high-energy physics textbooks more rapidly
than the light mesons.

The reason for the long lifetime is described by the so-called OZI rule [4]. According
to this rule, decays where éc and bb annihilate are suppressed compared to those decays
where these quarks are transferred to the decay products. An example of an OZI forbidden
decay is éc — ud + du (Fig. 4a).
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Figure 4: Examples of OZI forbidden and allowed processes: (a) forbidden decay of char-
monium into non-charmed mesons; (b) allowed decay of charmonium into mesons with
open charm; (c) forbidden ¢ meson production in pp annihilation; (d) allowed production
of mesons with open strangeness.

An example of an OZI allowed decay is ¢c — &d + cd (Fig. 4b). The OZI rule also
applies to decays of 3s pairs and to the inverse processes when heavy quark pairs (5s, cc, bb)
are produced (Fig. 4c and d). The thresholds for the OZI allowed decays to DD and BB
are shown in Fig. 3.

Comparing with the H atom (Fig. 1), one notices — apart from the gigantic differ-
ence in the energy scales (a factor of 108) — that the splitting between S (L = 0) and P
(L = 1) states is significant in both cases, and that the hyperfine splitting between 7, and
J /v is large. A comparison of éc and bb shows that, in spite of the vastly different rest
energies, 3097 MeV for J/v and 9460 MeV for T(1S), the energy separations between the
levels are very similar, which is a remarkable fact.

The most prominent difference between the above level schemes and that of K
mesons (Fig. 3c) is that, for the latter, all but one states are represented by boxes. The
height of the boxes is equal to the width T' of the resonance. Only the pseudoscalar ground
state of the kaons cannot decay by strong interaction; it decays weakly. All others decay
strongly and rapidly; there is no OZI suppression of the decay. The first radially-excited
state with J¥ = 0~ has not yet been established with certainty. The hyperfine splitting
between 0~ and 1~ ground states is 400 MeV, much larger than the corresponding splitting
of the ¢éc mesons. The first radial excitation of the 1~ and the P states appear as almost
degenerate, at least relative to their widths. The gap between the 1~ ground state and its
first radial excitation is 500 MeV, which seems to be a canonical number for all mesons.
The K mesons are not eigenstates of C, therefore the states with J¥ = 1 (1P1 and 3P1)
mix.

The isospin triplet states 7, p, ao, etc. are shown in Fig. 3d. Only the neutral member
of each triplet is an eigenstate of C. The similarity of the energy gaps to the previous
schemes is striking, apart from the hyperfine splitting between m and p, which is further
increased compared to the previous cases. The a(980) looks like an outsider because of its
mass, width and decay branching ratios. It is discussed as a candidate for a K K molecule,
together with the f5(980) which appears to be the I = 0 partner of this state. The scalar
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state at 1450 MeV has been discovered only recently [5] and needs confirmation. It could
be another candidate for the quark model ground state.

For the isoscalars shown in Fig. 3e and f, the mixing of the SU(3) singlet and octet
states makes the identification of the two physical states even more difficult. (Moreover,
if glueballs exist, additional states come in and mix.) If we take as a new basis for the two
quark model states |@u + dd)/./2 and |3s), since we are interested in the 55 component
of mesons, the physical states are given by

I =0)4, = X|au+ dd)/\/2 + Y|3s)

I =0), = —Yl|au+dd)/\/2 + X|3s)

with X2+Y?2 =1. Here X = cos(6 — bideal), Where 6 is the conventional nonet mixing angle
and 6;geq is the ideal conventional mixing angle of 35.3°. For X > 0.5 the state | = 0)4,,
consists dominantly of @u + dd, and |I = 0), consists dominantly of 5s.

According to their dominant gg content, the mesons have been assigned to either
(e) or (f) if the mixing angle is known (taking the average of the mixing angles obtained
with the linear and quadratic mass formulae). If the mixing angle is not known, the meson
is assigned to (e) if the decay is dominantly into non-strange mesons and otherwise into
(f). The three exceptions are fo(980) which is displayed in (e) and (f), and fo(1500) and
fo(1590), which are assigned to (f) for the sake of clarity.

3 DETECTING STRANGE MESONS AND HIDDEN STRANGENESS

How are mesons detected and how does one determine whether they contain s,3
or 3s? This will be our next subject. I shall first describe the basic features of a modern
detector for meson spectroscopy (of course, this will be the one I am involved with). I
will then describe how stable strange mesons, unstable strange mesons and mesons with
3s content are identified with this detector. First of all it is necessary that we understand
the time and space evolution of events in which mesons are produced and detected.

3.1 Space—time evolution of events

As an example, let us consider pp annihilation. This is a process which is especially
well suited to meson spectroscopy. When a p annihilates at rest, practically only mesons
are produced. Among them, exotic mesons (gluonia, hybrids, etc.) are expected.

An interesting sequence of events takes place even before the annihilation. The
antiproton, slowed down in the target, is caught by an H, molecule in some high atomic
orbit, ejecting an electron if the binding energy of the p is larger than that of the electron.
From the ratio of reduced masses of the pp atom and electron, the initial main quantum
number can be estimated to be around 30. After formation, the pp atom is de-exited by
radiation and the Auger effect until p and p have approached close enough to each other
for the strong force (range of about a femtometre) to start acting.

What are the elementary QCD processes that take place at annihilation? The
incoming p consists of three valence antiquarks and of sea quarks and gluons; the p consists
of 3 valence quarks, sea quarks and gluons. The elementary processes are (Fig. 5)

— rearrangement of quarks and antiquarks into pairs (mesons);

— fusion of a quark with the corresponding antiquark into a gluon, and the reverse
process — dissociation of a gluon into a §q pair;

— dissociation of a gluon into two gluons, and the reverse process — the fusion of two
gluons into one;
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— scattering of two gluons (4-gluon vertex).

D :>ngj““<: L,

Figure 5: QCD processes taking place in pp annihilation: (a) rearrangement, (b) fusion
and pair creation, (c) gluon dissociation, (d) 4-gluon vertex.

ol

©

It is obvious that by appropriate combination of these processes, normal meson
states, gluonia, 4-quark states or hybrids can be formed. These processes are confined in
hadrons and take very short times, of the order of 1072* s. The lifetimes of the hadrons
emerging from the interaction vary from 1072* to 5 x 1078 s. Consider a specific example,
the annihilation

pp — KTK~,

which implies the fusion of an incoming %u and a dd pair and the creation of an 3s pair:
atd + uud—u3 + is

The K** decays with a lifetime 7 = /T of about 107%* s into K, i.e. either K*7° or
K°r*. In the laboratory, due to time dilation, the distance the K** traverses before it
decays (its decay path) is

T-7-v=cr-pc/(mc’) ,

where v = (1 — 82)~%/2, with 8 = v/c , v = the velocity, p = the momentum, mc? = the
rest energy of K™*. For a typical momentum of around 500 MeV/c the decay path is 3 fm
— short indeed! Due to its short lifetime the state K™ K~ is called an intermediate
state.

Let us assume that after the decay of the K™ we have the three particles K+ and
7% K ~. This state is called the ‘final’ (hadron) state, although it is only final with respect
to the hadrons. The final hadrons decay due to the action of weak and electromagnetic
forces. The 7° decays electromagnetically in 8.4 x 1077 s, mainly (99%) into two photons,
27. The corresponding decay path is still very short, some tens of nanometres. The K+
and K~ decay weakly, most frequently into pv or 77; and the charged pions decay into
pv. Finally, the p’s decay into et and a pair of v’s. The relevant lifetimes 7 and the
products cr are listed in Table 3.

Table 3: Lifetimes (7) and products (c7)

K* 70 Kg K; K+ o+ put
r[s] | 10722 [8.4x10717(8.9 x 10711[5.2 x 1078]1.2 x 1078 |2.6 x 10-8[2.2 x 10~¢
er [m][3 x 10715 |2.5 x 1078 |2.7 x 1072 15.5 3.7 7.8 659

The decay paths of the weakly decaying particles are several metres long or more.
The truly final, truly stable particles are the photons, electrons or positrons and neutrinos.
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In vacuo they would live forever. In the real world they interact; this is how they are
detected (it is difficult to detect the interaction of neutrinos but possible).

Our presumed detector, about 2 m in diameter, will intercept the sequence of events
before 10~8 seconds have passed, i.e. the 7° has decayed but K™ and K~ are still alive.
Hence these are the detected particles in this special event. In the general case of pp
interaction at rest, the detector has to detect 7% and 7~ in addition to v, K* and K.

3.2 Detecting strange mesons and 3s components
It is now easy to understand how (openly) strange mesons, i.e. those containing
one s or § quark, are detected. Since strangeness is conserved in strong interactions, the
strange quark has to be found in the decay products. There has to be a K™, K—, K° or
K° in the final hadron state. If a meson resonance is found to decay into an odd number
of K mesons, it must be strange.
Because strangeness is conserved in strong interactions and the initial state has
S = 0, even numbers of Ks, i.e. KK pairs, are always observed in pp annihilation. They
can come from three sources:
(i) a pair of strange mesons in the intermediate state;
(ii) a meson with hidden strangeness;
(iii) a meson without any strange quark constituent where 3s is created in the decay.
An example for a prediction from flavour SU(3), relevant to sources (ii) and (iii), is
given below.

If fo = (4u + dd)/\/2 then BR(fo — KK)/BR(fy — mr) = 1/6;

if f5 = (3s) then BR(fy — KK)/BR(f) — =m) = 1)0;

if fo = glueball then BR(f, — KK)/BR(fo — 7m) = 4/3;

if fo = meson-antimeson (M M) molecule, then BR(f, — M M) is dominant.

3.3 A modern detector — the Crystal Barrel spectrometer

The detector is required to detect photons, charged kaons and charged pions, and to
measure their momenta and angles for momenta up to about 2 GeV/c. In order to detect
all particles produced in an event, it has to cover the complete solid angle 4 sr, or at least
a big fraction of it. Figure 6 shows how this is achieved with the Crystal Barrel detector
at LEAR (the Low Energy Antiproton Ring at CERN). The p beam from LEAR enters
from the left, along the 2z axis. This beam is the best antiproton beam in the world, with
the following characteristics, compared to the values for a conventional p beam, such as at
BNL (USA) or KEK (Japan), in brackets. Intensity: 10*~107 p/s (< 10° p/s); momentum
resolution: Ap/p = 1073(3 x 1072); purity: 100% p(1% p); beam cross-section: 1 mm?
(5 cm?).

The beam is stopped or interacts in flight in a tiny target containing liquid or
gaseous Hy or D,. The target can be so small because of the beam quality. A tiny target is
a big advantage: precise definition of the primary interaction vertex, few secondary inter-
actions in the target, close approach of detectors to the point of interaction. The target is
surrounded by a 2-layer multi-wire proportional chamber (PWC) or, more recently, by a
silicon microstrip vertex detector (SVX). The PWC or SVX is surrounded by a cylindrical
Jet Drift Chamber (JDC) with 23 layers of wires and 30 azimuthal sectors. The JDC is
located inside a cylindrical photon calorimeter consisting of 1380 Cs(T1) crystals, each
30 cm long. This crystal barrel gave its name to the whole spectrometer. All the active
detectors are embedded in a solenoidal magnet which produces a homogeneous axial field
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(parallel to the cylinder, beam or z axis) of strength 1.5 T. The detector is described in
detail in a long paper [6]. Here we only want to outline the particle detection methods
with this apparatus.

With the JDC, charged tracks are measured at up to 23 space points. The wires are
parallel to the z axis. Thus, each drift time provides precise information on r (distance of
the wire to the beam axis) and ¢ (azimuthal angle). The left-right ambiguity is solved by
staggering the wires. The spatial resolution (o) in the r-¢ plane is about 100 gm for each
point. A measurement of the z coordinate is provided by charge division: the sense wires
have a suitable resistance and the signal is read out on both sides of the wire. From the
charge ratio, the z location of the track can be determined with a precision (¢) of 5 mm.
The total charge is proportional to the energy loss of the particle in the chamber (dE/dz).
This energy loss is useful to distinguish between K* and 7*. Since the tracks are curved
in the magnetic field | pc/MeV= 300 - (B/Tesla)(p/m), where p/m is the radius of the
orbit in metres for p orthogonal E], the momentum can be measured with a precision (o)
of between 2% and 6% for momenta pr between 0.1 and 1 GeV/c (pr is the momentum
component orthogonal to z).

e

Figure 6: The Crystal Barrel spectrometer at LEAR cut along the cylinder symmetry axis
(z axis). Components: (1) magnet yoke, (2) magnet coil, (3) electromagnetic calorimeter,
(4) jet drift chamber, (5) proportional chamber and (6) target.

The main role of the PWC or SVX is to provide a fast trigger on the multiplicity
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of charged particles in the final state. For instance, if one wants to record only events
in which no charged particle emerges from the target, PWC or SVX are used as veto
counters and events are rejected if a charged particle is detected. In combination with the
requirement of observing charged tracks, this can be used to set up a powerful trigger for
events with strange particles, see below.

The CsI(T1) crystals of the calorimeter are read out by photodiodes via a wavelength
shifter. Inorganic crystals are the best but also most expensive material for detecting high-
energy photons. The granularity of the calorimeter has been chosen such that for the given
distance to the target optimal angular resolution and shower separation are achieved.
Each high-energy photon induces an electromagnetic shower (a cascade driven by pair
production and bremsstrahlung, which involves thousands of photons and electrons). Each
shower is distributed in general over several crystals. From the centre of gravity, the impact
point of the primary photon is determined. The energy resolution of the calorimeter for
photons is

og/E = 2.5%(E/GeV)™/4,

Great care has been taken to minimize the electronic noise in the read-out of the crystals
in order to be able to extend the measurement to the lowest possible energy. The noise
of the crystals corresponds to less than 300 keV. However, the lowest reasonable energy
threshold is 5 MeV. At these low energies ‘physical’ noise (statistical shower fluctuations
which seem to come from separated showers) becomes dominant. These fluctuations are
called ‘split-offs’. The collaboration has learnt progressively how to recognize split-offs,
employing neural networks among other techniques in order to improve the calorimetry
in the low-energy region.

3.4 Detecting stable mesons

The weakly-decaying charged kaons and pions live long enough that they decay
outside our detector, which occupies a cylinder of 1.5 m diameter and 1.5 m length.
Together with the long-lived neutral K meson (the Kz to be discussed below) they are
the only neutral mesons with such long lifetimes.

How are the charged kaons detected? First, their momentum is measured in the
JDC. In many cases, this is enough to identify them, i.e. to distinguish them from the
other charged mesons (the pions). Take for example the annihilation into two charged
stable mesons,

pp — KtYK~, pp — ntn~

The particles are monoenergetic, their momentum is determined by energy and momentum
conservation and related to the mass of the particles produced (Fig. 7a).

If there are more than two particles in the final state, and if one wants to distin-
guish for instance between the two reactions pp — KTK 7° and pp — w7~ 7°, energy
and momentum conservation in general allow this to be achieved, although the particle
momenta vary. This is done in the kinematic fit. (The higher the precision of energy and

momentum measurement, the clearer the distinction.)
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Figure 7: a) Momentum distribution of particles in colinear two-prong events due to the
reactions pp — K+*K~,pp — w77 ~; (b) energy loss versus momentum for charged tracks,
measured in two-track events with two to four additional showers in the calorimeter (from
a study of pp — K K*n¥x°, C. Kolo, thesis, University of Munich 1995).

The additional tools for distinguishing between kaons and pions are in general,
measurement of time of flight, Cherenkov radiation and energy loss dE/dz. All these
measurements provide information on the velocity v of the particle which, combined with
the momentum p = mv, fixes m. Figure 7b shows a dF/dz measurement in the JDC of
the Crystal Barrel detector as a function of momentum. The bands which can be seen are
associated with 7’s and Ks (and p’s and d’s from secondary interactions). The separation
is good for momenta up to 400 MeV/c.

3.5 Less stable mesons

Neutral 7° ,  and 7’ mesons have very long lifetimes on the scale of strong in-
teractions, but decay practically at the primary interaction vertex. These particles are
identified through their decay products. All of them have a decay mode into two photons,
with the following branching ratios: 99% for ©°, 39% for 5, 2% for 7'

They are identified by calculating the invariant mass M., of any pair of 4’s produced
in the event,

M, = (P1 -|-pz)2 )

where p; and p, are the 4-momenta of the two photons. This invariant mass is equal to
the mass of the mesons within the measurement errors expected if the two 4’s were indeed
the decay products (Fig. 8) [6].

In the sort of event used for Fig. 8 there were 6 photons and hence 15 possible
pairs. Assuming that all photons come from either one of the possible 3-meson final states
(n%7°7°, 7%xn, «%%n, w°x%', etc.), there are only three good combinations for each
event. The remaining 12 wrong combinations are called combinatorial background. This
usually flat background sits under the signal peaks. Since a photon pair is associated
with a meson if the invariant mass falls within an appropriate window containing the
signal peak, it is obvious that a smaller window implies a smaller contribution from the

combinatorial background. This is why good energy and momentum resolution of the
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detector is a definite advantage. The better the mass resolution, the cleaner the selected
sample of events.

24000 800 f n
600 |
400 |
20000 200 |
o L

~ é 0 250 500 750 1000
L S MeV/c2
> 16000 -
= £
N =
=~ L
[7]
9o
S 12000
[
Ll

8000 0 800 1000 1200

MeV/c2
|
- L\\
0 200 400 600 800 1000
M (w) MeV/c2

Figure 8: Invariant mass distribution of two photons, M,.,, for 6 photon final states in
pp annihilation at rest (pp — 67v). The insests show the mass distribution after pairs of
4’s have been removed which fall into the 7° window (upper inset) and into the 7° or 7
window (lower inset).

The figures of merit of the Crystal Barrel detector for the mass resolution of 7°, 7,7’
in 6-photon events are

o 0= 10 MeV , o, =16 MeV , Tt = 17 MeV .
Other decay modes can also be used to identify these particles (e.g. 7 — 37%) by calculating
the invariant mass of all the particles produced in the decay.
In the latter case

M= \/(Pl + p2 + p3)?

In Fig. 8 a signal called w can be seen. The w decays 8% into 7%y and is frequently

produced in the reaction
0,0

pp — T W
It is background from this channel which is seen in Fig. 8. Suppose a very low-energy 7 is
lost from the decay of the w, such that the loss is not noticed by the requirement of energy
and momentum conservation. The event will only have 6 photons and the invariant mass
of the remaining two photons from the w decay will be almost correct. This is the origin
of the signal in Fig. 8 and it demonstrates again the importance of good momentum and
energy resolution and a low energy threshold for detecting photons in this kind of physics.
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3.6 Neutral K mesons

The neutral K mesons are very special in many respects. They are described in all
particle physics books. A superb chapter of the Feynman lectures (Vol. 3) is dedicated
to them; it was even written before the discovery of CP violation, which added another
exciting chapter to neutral K physics.

For the present context of detecting kaons, it is important to realize that the particles
observed are not K° or K°, the eigenstates of the strong interaction, but K; and K,
which are introduced in textbooks as the two eigenstates of CP with the eigenvalues
CP = +1, plus some small CP-violating admixtures of the eigenstate of opposite CP.
Ignoring these small admixtures, which lead to barely any observable effects in meson
spectroscopy, we may consider them as CP eigenstates and as eigenstates of C and P,
separately, with respect to the strong interaction. With CK® = —K° CK° = —K° (see
Appendix), PK® = —K° and PK° = — K° (pseudoscalars, i.e. P= -1) the eigenstates are

Ks~K,=(K°+K%/y2; CP=+1, C=-1

Kp~K,=(K°— K%/y2% CP=-1, C=+1

The lifetime of the Kg is such that it decays a few centimetres from the vertex (see
Table 3). This is normally within the detector but well away from the primary interaction
vertex. The secondary interaction vertex provided a powerful tag to identify Ks in bubble
chambers many years ago. It can also be used in electronic counter experiments to provide
a trigger on events with a Kg. This is an interesting possibility since these events are
relatively rare, and enhancement by a specific trigger is in general required to obtain
samples with a high number of events for final states which are rare. The dominant
decays of the Kg are

+ 0.0

Ks — nrm™, Kg — 7

The K is identified by calculating the invariant mass of the two pions (see Fig. 9).
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Figure 9: Identification of Kg via its decay into two charged or neutral pions. Invariant
mass distributions of (a) 7%r° from an analysis of the reaction pp — KsKr7n°% (b) of
77w~ from an analysis of the reaction pp — KsKsm° with one K5 decaying into 27°%, the
other one into 77 ~; (c) identification of Kz’s by the missing mass technique. (Thesis of

H.P. Dietz, University Munich 1994.)

The charged decay mode is used to trigger on events with a Kg. The trigger of the
Crystal Barrel spectrometer requires simply that in the JDC two additional tracks are

detected compared to the SVX (or PWC before it was replaced by the SVX). The PWC
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had a radius of 2.6 cm, the SVX has a radius of 1.2 cm. The smaller radius of the SVX
significantly improves the trigger efficiency at lower K momenta (100-200 MeV/c).

The lifetime of the K1 and its decay path are so long (Table 3) that it usually
decays outside the detector. Since it is neutral it is not seen in the tracking chambers,
but there is a 50% chance that it interacts in the crystal calorimeter. These properties of
the K7 can be used to identify it, as long as all the other particles in the final state are
detected. For this purpose, the detector has to be hermetic, i.e. cover 47 sr. If the K, has
not interacted, the missing mass

Mmiss = \/(pmiss)z = \/(Elgniss - ﬁfniss)

can be calculated from missing energy and momentum, (Emiss; Pmiss), 1-€. the differences

between the sum of detected particle energies and momenta and the incoming energy
and momentum (Fig. 9b). If it has interacted, the energy deposit in the crystals does
not provide any good information on the energy of the K, since the fluctuations of such
hadronic showers are very large; however, the information on the angle is still useful. This
technique allows identification of events of the type

pp — KpKpz°
and determination of their complete kinematics.

3.7 Short-lived states

Short-lived states, also called resonances (between the hadrons into which they
decay), are in principle detected, like ‘stable’ hadrons, by calculating the invariant mass
of the decay products. Whereas the width of a stable or very narrow resonance is usually
determined by the detector resolution, broad resonances have a natural width which is
much larger than the detector resolution.

Detecting and identifying resonances is, in general, much more difficult if they are
broad than if they are narrow. In many cases, there is even justification in saying that for
the hunters of short-lived hadrons the real data analysis work begins where it ends for other
particle physicists. After selection of the final state and subtraction of the background
(this is the point where the normal particle physicist is ready to publish the observation
of a signal or an upper limit) an amplitude analysis has to be performed, which can
be very tedious. The main reason for the difficulty is that short-lived resonances, since
they are broad, very rarely ‘stand alone’ but rather overlap and interfere with each other.

Let us first consider the hypothetical production of an isolated resonance in pp
annihilation (Fig. 10).

In order to form a resonance in production, the final state has to contain at least
three particles and the total energy V3pp = Mgpp = (pp + p,)?, i.e. the available phase
space, must be sufficiently large. The case of 3 particles is of course the simplest. Such
a final state can be described by two kinematic variables if we assume that there is no
preferred direction, as is the case for the annihilation of unpolarized pp at rest. The usual
variables are the invariant masses squared between pairs of particles, for instance
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mi, = 812 = (p1 ‘|‘P2)2
s13 = (p1 +P3)2 )

3
Il

Figure 10: (a) Production of a 3-body final state in pp annihilation with a resonance
between particles 1 and 2; (b) definition of the corresponding kinematic variables s12, 813
(invariants), p'and L (defined in the pp cm system), and ¢, 6 (defined in the rest system
of the resonance the Gottfried—Jackson system, see text).

The third invariant mass is then given by the relation
812+ 823 + 813 = Spp + 81+ 82+ 83

where s; = m?. Each event can be represented by a point in the plane s;3 versus s;5, and
the collection of points (scattergram) corresponding to a sample of many events is called
a Dalitz plot. It can be shown that a homogeneous distribution of points corresponds to
a homogeneous phase-space distribution of the final-state particles.

Now suppose that only one initial pp state with quantum numbers
and only particles 1 and 2 resonate with angular momentum [. Assuming for simplicity
that all three final-state particles are (pseudo)scalars, [ equals the spin of the resonance.
Then the observed intensity (normalized density of points in the Dalitz plot) is

JPC contributes

I(s12,813) =| > Aspc,i(s12,813) |°

where the sum )’ runs over L, the possible angular momenta between particle 3 and the
resonance. The total amplitude is a (coherent) sum over L since, in general, different L
may combine with a fixed [ to the same J. The partial amplitude A;p¢ 1 is given by the
following product:

Ajgpc,pi(s12,513) = Zypeni(P/p,4/9)Di(p)Fi(q) ,

where p/p is the direction of the resonance in the laboratory and ¢/q is the direction of
particle 1 relative to the p after a Lorentz boost into the rest sytem of the resonance
(Gottfried—Jackson system), see Fig. 10.
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The momenta p and ¢ are given in terms of s;2, ;3 by
p’ = [Sﬁp — (ma2 + m3)2][3ﬁp — (m1z — m3)2]/4313p )

qz = [s12 — (M1 + m2)2][312 —(my — m2)2]/4312

The angle 6 (Fig. 10) between p and ¢'is given by

2813 = [($13)max + (513)min) + [(513)max — (513 )min] cOS 0

where (513 )min,max depend on si2. The function Z;jpc,r,:(p/p, ¢/q) is the spin-parity ampli-
tude describing the angular correlations between the final-state particles due to angular
momentum conservation. We have used notations which are customary when the non-
relativistic Zemach formalism [7] is applied. Other formalisms are in use: the helicity
formalism [8] and the Rarita—Schwinger formalism [9]. Recently, covariant formulations of
the two former methods have been advocated [10, 11]. The spin-parity function Z seems
to depend on more variables than s, s13; however, when the sum of partial amplitudes is
squared, the squares or mixed products of the Z functions (which are in reality tensors)
are reduced to scalar functions of the angle 8. The function D (p) is the ‘angular momen-
tum barrier’ or ‘penetration factor’, taken to be proportional to p” or a more complicated
expression acccording to Blatt—Weisskopf [12]; and the factor Fj(gq), the ‘dynamic func-
tion’, describes the dynamics. For the case of a single isolated resonance it is given by the
relativistic Breit—-Wigner amplitude [13]

Fy = g*/(mj — 512 — 1pg”)

with p = 2¢/,/s12 , Mo the nominal resonance mass and g* = mol'oDi(q)?/p.

The process leading to the production of the resonance may be conceptually fac-
torized into two: first, the production of the three-body final state — described by the
Q blob in Fig. 10a — and second, by the resonance or, more generally, final-state interac-
tion between particles 1 and 2, described by the T blob in Fig. 10a. Thus this production
process can be related to a different kind of process, the scattering of particle 1 on particle
2, described by the scattering amplitude T. If the scattering can be inelastic (i.e. in addi-
tion to the elastic scattering, e.g. 7™ — 7w, other final states are possible at the energy
\/$12, €.8. T — KK) then T has to be extended to be a matrix, the ‘T-matrix’. For our
example with two possible channels, 77; and Ty, describe the elastic scattering 7w — 77
and KK — KK, respectively, and Ty, and T, describe the transitions 7@ — KK and
KK — 7r, respectively. The factor Q turns into a vector, the ‘Q-vector’, where Q; de-
scribes the production pp — w7 + spectator and @, the production pp — K K + spectator.
In our example, two diagrams contribute to the final state, with the intermediate particles
1 and 2 between the Q and T blobs being 77 or KK.

We have outlined here the Q-vector approach [14] to the production. Other descrip-
tions — the P-vector approach [15] (see, for example, [16]) or the N/D method (see, for
example, [17]) — are being used to describe the production of resonances which couple
to more than one continuum state. So far, we have made the simplifying assumption that
only one resonance is being produced between 1 and 2. However, there may be more than
one resonance between 1 and 2, with different [, and there may also be resonances, or
more generally, final-state interactions between 1 and 3 and 2 and 3 and even between
all three particles (like the rescattering of one of the decay products of the resonance on
the spectator, which of course can then no longer be called the spectator). Usually, the
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interactions involving three particles are ignored and it is assumed that the intermediate
state always consists of a resonance and a stable hadron (the spectator or ‘bachelor’),
which do not interact (isobar model). Extending this model to final states with more
than three particles, it is assumed that these states are reached by this kind of sequence,
e.g. two resonances are produced which then in turn decay into two resonances and so on.
All these amplitudes interfere with each other as long as they involve the same initial state
and overlap in phase space, which is more likely for broader resonances. (If different initial
states are involved, the corresponding intensities are added incoherently.) For instance, in
one of the examples given above, the annihilation

pp — K"K~ —(Ktn%)K~

the same final state can also be reached by annihilation via different intermediate states,
pp — KYK~" — K*(n°K") or pp — ¢n° — (KTK)n® |

from the same initial state. The brackets signify a resonance between the final-state par-

ticles within them. As in the ‘classic’ 2-slit experiment of quantum mechanics, the corre-

sponding three amplitudes have to be added coherently.

Thus the sum over L in the expression above for the intensity has to be extended
to a sum over various 1, L and over all permutations of particles in order to also include
resonances of other pairs of particles. Taking this extended sum, phase correlations fol-
lowing from symmetries should be respected. If, for instance, 1 and 2 are identical bosons,
the sum of amplitudes has to be symmetrical with respect to the interchange of particles
1 and 2 (this automatically eliminates all odd angular momenta [ in our example). If the
final state is an eigenstate of C or G, various terms contributing to the total amplitude
are connected by plus or minus signs (relative phase of 0 or 180°). For the case of states
with KK pairs these eigenfunctions are derived and explicitly listed in the Appendix,
since they are relevant for the search for mesons with open or hidden strangeness.

In Fig. 11 a series of four Dalitz plots for K K final states with different charge com-
binations are shown as examples. The possible quantum numbers of the K K resonances
are listed in Table 4.

Table 4: Quantum numbers of K K resonances.

KK C |Isospin Jre Possible resonances
KiKg -1 0,1 1 qﬁ
KLKL7KSKS 1 Oa]- 0++72++ a'Oaf07a'27f2
KiK*,KsK* 1 0t,1-,2% Ao, Az, P,y .-
KTK~- +1| 0,1 [0t+,177,..| &,a0,fo,az2, fz,..

Our first example (Fig. 11a) from the reaction
pp — Ky Ks7°

is a particularly simple one since only a few resonances occur. Remember that if no reso-
nances at all occurred and the events were homogeneously distributed over the available
phase space, the density of points in this Dalitz plot would be homogeneous within the
kinematic boundaries. Resonances show up as vertical and horizontal bands for Kpn°
and Ks7m° and as anti-diagonal bands for the third pair of particles, K Ks. Fig. 1la
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shows exactly one resonance for each case: a vertical and a horizontal band due to
pp — K*(890)K + cc, forming a ‘K* cross’, and an anti-diagonal band due to pp —
#(1020)7° [cc stands for charge conjugate, here K*(890)K]. The combination K1 Ks with
C parity = -1 acts like a filter on possible C eigenstates, leaving in this case only a

JPC =177

resonance, the ¢. Since the whole final state is a C-parity eigenstate, each

individual particle K1, Ks or w° being a C-parity eigenstate, there is a phase relation
between the two amplitudes K7 Ks and K3Ky, where K} ¢ means that this K* decays
to Ksm° (see Appendix). There is no overlap of the three bands, except in the crossing
of the vertical and horizontal bands. This is a classic example of a clean Dalitz plot with
nothing but three resonances and little interference.
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Figure 11: Dalitz plots for four different K K final states produced in pp annihilation at
rest: (a) pp— K Ks7°; (b) pp—Kr K7 (c) pp— K K*n¥; (d) pp— K+t K~ n°. All data
are from the Crystal Barrel experiment.
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The next example, the Dalitz plot of Fig. 11b for the reaction
pp — KrKpz°

still shows the K*(890) as the dominant neutral K7 resonance, but different KK reso-
nances are now filtered out: those with positive C parity,i.e. fo’s and ay’s. Here interference
plays a much stronger role. Through interference with the diagonal K K bands, the upper
parts of the K* cross are almost wiped out.

Now, let us see (Fig. 11c) what happens in the final state with a charged pair of Ks,
where ¢’s and fy’s cannot be produced (see Table 4). This Dalitz plot is ideally suited to
extract the strength of ag and a4 production, without the problem of overlap with nearby
fo and f5. Some indications of diagonal activity which interferes with the K* cross can be
seen.

The last Dalitz plot (Fig. 11d) shows a fascinating alternative interference pattern,
although the plot is a little crude. Interference between the K* cross and the diagonal a’s
and f’s is constructive in the upper right and lower left quarter and destructive elsewhere.
It changes sign on the middle lines of the cross, e.g. the left side of the vertical K3 band
is eaten up in the upper part and the right side in the lower part.

These Dalitz plots, not completely analysed as yet, show in a qualitative way the
power of interference. It was stated above that interference adds another complication.
Whilst true, this sounds too negative a statement. Once interferences are understood and
the right formalism is found to describe them, they are a powerful tool in determining
amplitudes. Interferometry is in general one of the finest and most powerful techniques
in physics and elsewhere. It was by measuring interference of X-rays that the double
helical structure of the DNA was discovered; by comparing the X-ray picture and the
corresponding structure of DNA (Fig. 12) it can be seen that some experience is needed
to interpret these patterns.

Figure 12: (a) X-ray diffraction photograph of crystalline DNA by Rosalind Franklin and
(b) the structure of DNA.

4 BIOGRAPHIES OF STRANGE CHARACTERS

The sector of strange mesons is particularly rich in experimental information, mainly
thanks to many productive years of the LASS experiment at SLAC. Among the lowest
lying kaons, only the first radially-excited pseudoscalar, K(1460), needs confirmation.
An extraordinarily large number of higher kaon excitations has also been found. I will
discuss in the following sections only some of the open problems for mesons with hidden
strangeness. Let us first discard those mesons in this sector which apparently do not
pose any problem. These are the ¢ mesons — ground state and first radial excitation
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are confirmed — and the tensor meson f;(1525). For the vector ground state, and first
excited state, and for the lowest tensor state, the whole nonets are in ideal shape; ideal
in a general and a specific sense, in that complete information is available and the two
isoscalars are ideally mixed, i.e. almost pure s and (@u + Jd) The nonet mixing angles

can be found on p. 1320 of the Review of Particle Properties [3], hereinafter referred to
as the ‘bible’.

4.1 Who or where is f}?

The scalar nonet is a mystery and, in particular, the lack of a confirmed f; seems
scandalous. Since this nonet is the subject of lectures by T. Burnett (0" and 2% mesons)
and also by M. Boutemeur (Glueballs and Hybrids), I will restrict discussion to the ques-
tion where or what is the isoscalar scalar meson consisting dominantly of ss, which should
be detected via the preferred decay mode into K K (for instance KsKs, KrKr).

According to the ‘bible’ there were three confirmed f, mesons in 1994: f,(980),
f0(1300) and fo(1590). The fo(1500) [16], not in the 1994 list of confirmed mesons, will
certainly make it into the next edition of the ‘bible’ and fo(1370) [18] will probably be
merged with the fo(1300). Reading the ‘Note on S-wave 77, K K and 77 interactions’ in the
‘bible’ [3], p. 1478, one gets an idea of how complicated and interesting the real situation
is and how different its interpretation may be from what we think now. The dominant
prejudices are that f5(980) is a K K molecule; f5(1300) is a good, normal meson, mainly
@y + dd; fo(1500) is marketed as a glueball and f5(1590), which had been one of the best
glueball candidates before the arrival of fy(1500), has been pushed into a corner. In a
recent letter by Amsler and Close [19], the f5(1590) is not even mentioned once.

According to prejudice, the f; should be about 200-300 MeV (twice the quark mass
difference m, — m,) heavier than the f;(1300) and thus be situated around 1500 MeV.
There is a candidate for a fj which has been seen in only two experiments and therefore
omitted from the summary table in the ‘bible’. Figure 13 shows the modest evidence
presented by the LASS collaboration [20] for a KgKg S-wave resonance fj. The perfect
degeneracy with the strong peak f;(1525) seen in the D wave is suspicious, although there
is no strong reason to exclude the possibility that f; and f, are indeed degenerate, see
Fig. 3. The possibility that this resonance has the same origin as the f,(1500) of the
Crystal Barrel is not excluded either.
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Figure 13: Invariant mass distribution for S-wave KgsKgs produced in K~p — KsKsA
(LASS experiment).
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From a bubble chamber experiment (pd), an upper limit has been published for
the production of a fy(1500) decaying to KsKg [21]. This experiment has by the way,
observed the first indication of this resonance, which they called f;, in 7#*7~ and it has
been given a tentative assignment J = 0, which turned out to be correct! Their limit on
the KsKg decay can be translated into a conservative upper limit of 0.1 for the ratio of
phase-space corrected branching ratios f3(1500)— KK to f3(1500)— 7. This value was
used in the letter [19] as the key result to prove that the fy(1500) found by Crystal Barrel
is a glueball. We discuss their argument below for the sake of its didactic value.

The evidence for fo(1500) being a scalar glueball is based on the ratios of decay

branching ratios for fo(1500),

T oM s oy : KK
100 : 0.27+0.11 : 0.19+0.08 : <0.1(95% CL) ,

corrected for phase space. The first three branching ratios were measured by the Crystal
Barrel experiment, the last one is the limit from the bubble chamber experiment [21].

The key point is that the branching ratio into K K is too low in comparison with
the other numbers to be accommodated by any quark composition (mixing angle) of
normal mesons. This can be seen in Fig. 14, which shows the relative invariant couplings
(phase-space corrected decay branching ratios predicted from flavour-SU(3) symmetry)
as a function of the octet—singlet mixing angle for the decays of a fo into various pairs of
pseudoscalars. The nn/77 ratio puts us in the range 90° < 6 < 140° (the small range near
6 = 0 allowed by this ratio is excluded since it demands a dominant K K decay). The ratio
nn/nmm’, which can be anything between 0.6 and 3, favours the region 110° < 6 < 135°. By
rough estimation, the mixing angle should therefore be around 120°-130°. But then the
KK /77 ratio ought to be between 0.2 and 0.5, clearly larger than the limit of reference
[21].
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Figure 14: Relative couplings (arbitrary units) to ==, 5, 77, KK as a function of the
nonet mixing angle from reference Amsler and Close.

It remains to be seen what the analyses of the Dalitz plots in Fig. 11b—d will teach
us about contributions of fo(fy). A preliminary analysis of the Kz Krn® and KgKsn®
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Dalitz plots has found a fo resonance at 1600 MeV with mass and width compatible with
the GAMS f,(1590) [22]. Its contribution to the intensity of the final state was 30%, which

combined with the branching ratio
BR(pp — KsKsn°) = (7.8 £0.6)107* ,
yields a branching ratio
BR(pp — £0(1600)7° — KsKs7m°) = (2.3 £0.3)107* .

Now let us assume that f3(1500) and fo(1600) are the same particles, since rumours have
spread that representatives of GAMS and Crystal Barrel at a recent meeting on a remote
island agreed that the GAMS f;(1590) and the Crystal fo(1500) can be identical. Whilst
this assumption may not be completely absurd, it should not be taken too seriously at
present. Comparing the last branching ratio with

BR(pp — £o(1500)7° — 37°%) = (8 £3)107° ,
we obtain a ratio of branching ratios
BR(f0(1600)—KsKgs)/BR(fo(1500) — 7r) ~ 0.3 .

After correcting for phase space (px/p, = 580/750) and applying a weight of 4 to the Ks
and of 3 to the 7’s we get

BR(fo(1500/1600) — K K)/BR(f5(1500/1600) — w7) ~ 0.5 .

Thus, this object fo(1500)/(1600) could indeed be a Gg meson with a mixing angle of
120°.

However, we may have been presumptuous since analysis of all data is not yet
complete. Determining the nature of the fy(1500) and searching for the 3s partner f; of
f0(1300) remains a great challenge.

The main content of this section was based on a common prejudice: the f,(980),
although it prefers to decay into K K, cannot be the 3s meson f} because its mass is too
low relative to that of the @wu + dd resonance fo(1300). In a recent, highly-sophisticated
paper (discussed in detail by Burnett in his lectures) Térnqvist [23] presents a coherent
interpretation of the lowest scalar mesons f4(980),a0(980), K;(1430) and f,(1300) within
the framework of the unitarized quark model. The f,(980) emerges as a dominantly 3s
resonance with a large KK component. If all this is true, the f3(1500/1600) has to be
considered as candidate for a radial excitation! Or, alternatively, it may be produced by a
similar mechanism as f5(980) since new strong thresholds (pp,ww) are opened just around
this mass.

4.2 The radially-excited pseudoscalar 7’

The lower of the excited 7 mesons, 7(1285), has been detected in four experiments.
It has been seen to decay into pm 7~ and agw. It is natural to identify this meson with a
dominantly (@u + Jd) radial excitation of the 5(547).

Under the entry 7(1440) in the ‘bible’ there is a plethora of experimental references
and a special ‘Note on the 7(1440)’. This material is too extensive to be covered in a
lecture such as this.
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In short, an E meson with JP¢(I¢) = 0*(0") was first seen in a bubble chamber
experiment pp — (K K7)mm at a mass of 1425 MeV with a width of 80 MeV by Baillon et
al. [24], decaying via ao(980)7 and K K* to K Km. Some time later, confusion was created
when in the reaction 77p — (K K7)n a 17+ resonance was observed [25] at almost exactly
the same mass, also decaying to K K. It was decided that the E meson was a f; rather
than a . However, years later a 0" resonance was rediscovered in radiative J/% decays
[J/¢Y — (KK)y] and was called ‘iota’ (). Two groups (Mark III [26] and DM2 [27])
studying radiative J/v¢ decays concluded that there were two overlapping 0~ resonances,
one at 1420 MeV decaying into K K7 and agm, and another at 1490 MeV mainly decaying
into KK~ (see Fig. 15a and b and Fig. 16b-d).
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Figure 15: Measured invariant K K7 mass spectra from three experiments: (a) and (b)
DM2 (J/4 radiative decay) [27]; (c) WAT6 [28] (7~p — KsK*7Tn) compared with LASS
[29] (dashed line); and (d) LASS [29] (K~ p — KsK*nTA).

Today, the most likely interpretation of all the results is that there are indeed, in
addition to two f; mesons at 1420 and 1510 MeV, two 0~ ( 7 or ) mesons in this narrow
mass range, and perhaps an k] meson as well, see the following section in Fig. 3e only
one 7’ state has been plotted.

Recently, even more experimental data has been obtained, which has to be in-
serted into the framework known as the ‘E/iota’ puzzle. Some of the data come from
the Crystal Barrel [30]: a 0~ resonance has been observed in pp — npn°r°rtr~ at rest,
decaying into 7w via aom and n(77)s and having a mass of 1409 + 3 MeV and a width
of 86 + 10 MeV; it is perfectly consistent with the lower iota. Other data come from the
OBELIX experiment, which studied pp — K Knnm with larger statistics than the earlier
bubble chamber experiment [31]. OBELIX finds evidence for two pseudoscalar states, at
1406 and 1499 MeV with widths 75 and 240 MeV, respectively; the first one decays mainly
via ao7, the second one via K*K to KK, in agreement with the results from radiative

J /¢ decays.

4.3 The axial-vector meson ground-state A}

The experimental data are rather restricted for h; and 2}. A very wide pr resonance
with JPC = 1*=(I = 0) has been seen in three experiments at a mass of 1170 MeV. The
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width is &~ 340 MeV! This resonance is identified with the dominantly (ﬁu—l—ch) meson hq.
The 3s partner h/ is expected to decay dominantly to K K. So far, in a single experiment,
by the LASS collaboration, a candidate has been observed in K~p — KsK*7TA at a
mass ~ 1380 MeV, with a width ~ 80 MeV, decaying into K*K (+cc) [29]. The invariant
mass distribution of KgK*7rF shows a prominent peak around 1.5 GeV (Fig. 15d), and
more structure at higher masses, not discussed here. The partial wave analysis finds that
the 1.5 GeV mass region is dominated by K*K + cc with JP = 1. However, the structure
cannot be due to a single resonance. The sign of the interference of the two K* bands
changes between the two K K mass windows, 1.34-1.46 GeV and 1.46-1.58 GeV (Fig. 1b
and c of [29]). The interference appears to be destructive at the lower mass, indicating a
G = -1 object there, whilst for the higher mass it is constructive as expected for G = +1,
see Fig. 18e and f. From the measured K°K~ and K°K* intensities and the interference
between these two amplitudes, the intensity of the G-parity eigenstates has been extracted
and is shown in Fig. 17a and b; the authors conclude that two 17 resonances are observed
in this mass region, one with G = -1 and the other with G = +1. Arguing that isospin
= 0 is more likely in the peripheral hypercharge exchange reaction K~p — KsK*nTA
and hence G = C, and that the production of 5s dominates in this reaction, it is then
claimed that the | ground state (Fig. 17b) and an f;(1520) meson (Fig. 17a) have been

observed.
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Figure 16: Results of partial wave analyses: (a)-(f) from Mark III (J/¢p — yKsK*n¥n)
[26]; and (g)—(j) from WAT6 (7~p — KsK*nTn) [28].

4.4 Axial-vector mesons f;

According to the ‘bible’ there are three narrow f; resonances in the mass range
1250-1550 MeV where only two quark model mesons are expected: the f1(1285), f1(1420)
and f1(1510), with widths of 24, 52 and 35 MeV, respectively. The first one decays with
probabilities of 54% to pmm [mainly ao(980)7], 30% to 47 and 10% to K K. It appears
to be a reliable wu + dd quark meson. The other two mesons have both been observed
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exclusively through their decay into K Kr; thus they are a priori candidates for 5s mesons.
The f1(1510) was seen in the LASS experiment, which also observed the 2] meson [29], and
in two other experiments. The f;(1420) has been identified in many different experiments
in pp annihilation, J/v decays, vy collisions, and in 7p interactions (see, for instance,

Fig. 15a—c [28], Fig. 16a and i [28] and Fig. 17d [25]).
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Figure 17: Results from partial wave analyses: (a) and (b) from LASS (K7 p —
KsK*rFA) [29]; (c)-(f) from MPS (7~p — KsK*n~n) [25].

On the one hand, it is completely excluded in the quark model to have two narrow
states with identical quantum numbers only 90 MeV apart. Moreover (still on the same
hand), the situation reminds us of that for the 5(1410)/7(1490) and makes us wonder
what the presence of these doublets might signify. The ‘bible’ quotes as the preferred
interpretation that one of them, the f;(1420), is not a normal meson, whilst the f;(1510)
is the dominantly ss f; meson.

On the other hand, a close inspection and comparison on the same mass scale of
the LASS [29] and the WAT76 [28] data (Fig. 15¢) makes one wonder whether these two
f1 mesons are really different from each other. Why is the f;(1420) meson only seen in
one experiment and not in the other and vice versa for the f1(1510)? The questions raised
here at the end of the lectures do not really concern the f;(1420)/f1(1510) problem. (I am
not in a position, at present, to judge the quality and consistency of various experiments).
But they do have a rather general didactic purpose. After having referred to the Review
of Particle Properties [3] of the Particle Data Group throughout these lectures as a bible
for the meson and baryon spectroscopist, it is a moral duty to say at least once that even
this bible should sometimes be questioned. It is our bible; therefore, whilst we try to get
as many of the miracles that we, the experimentalists achieve into this book, we should
not believe that every miracle that has been included in the meson (or baryon) summary
table, exists beyond doubt.
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APPENDIX: C AND G PARITY EIGENSTATES OF KK PAIRS
We adopt the following sign convention for the charge conjugation C and the G-
parity operation [2]:

Cu=4a|Cd=+d |Cs=4+35|Ci=4u|Cd=+d | C5=+s

Gu=4+d|Gd= -4 |Gs=4+35|Gd= —u|Gi=+d| G5 = +s

where C is the charge conjugation operator and G = ™ (.
The flavour wave functions of Table 4.2 in [2] are adopted. Thus, for instance:

Tt = +u(1)d(2) + d(1)u(2)]/ /2
w0 = +[d(1)d(2) — w(1)a(2) + d(1)d(2) — u(1)u(2)]/2
K™ = +[u(1)3(2) + 5(1)u(2)]/ /2
K= = —[s(D)a(2) + u(1)s(2)]/v2
K° = +[d(1)5(2) + 5(1)d(2)]/v/2
K® = —[s(1)d(2) + d(1)s(2)]/\/2
pr = Hu(1)d(2) — d(1)u(2)]/v/2
K™ = +[u(1)5(2) — 5(1)u(2)]/v2
K™ = —[s()a(2) —u(1)s(2)]/v/2
K = +[d(1)3(2) - 5(1)d(2)]/v/2
K® —[s(1)d(2) — d(1)s(2)]/v2 -

The following signs for the action of C, G and G? on pseudoscalar mesons are obtained:

Cr% = +7° Gr® = —7° @70 = +7°
Crnt = -7~ Grt = —nt | GPxt = 47t
Cr~=—-7t |G = -7 |G*r~ =47
CKt=—-K |GKt=—-K°| Q?Kt = —-K*
CK-=-Kt|GK-=—-K°G?K~ =—-K~
CK°=—-K° |GK°=+K | G?K° = —K°
CK°=—-K° |GK°=+K* | G?K°=—-K°

For the strange vector mesons one obtains just the opposite signs for C and G:

CK+* = —|—K_* GK+* = —|—I_{0* G2K+* = —K+*
CK—™ = +K*" |GK—" = +K° | *K~" = —K~~
CK° = +K% |GK° = —K~" | G*K* = — K"
CK® = +K* |GK* = —Kt" | ?K® = — K"

The action of G? causes a minus sign for all kaons. A 27 rotation in isospace for an isospin
1/2 particle has the same effect as the corresponding rotation in space on the wave func-
tion of a spin 1/2 particle.

Pairs of KK.

Here we are mainly interested in the C and isospin eigenstates or, alternatively, G eigen-
states. The |I,I, = 0,0) and |I,I, = 1,0) wave functions of KK, combinations of an I
doublet with an I antidoublet, such as p° and w, or 7° and 7%, are

11,1, = 0,0) =|K°(1)K°(2) + K*(1)K~(2))//2
11,1, =1,0) =[K°(1)K°(2) - K*(1)K~(2))/v/2.
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Figure 18: Dalitz plots (Monte Carlo generated by C. Kolo) showing the interference
patterns for various J¥ and G combinations of a meson with mass 1530 MeV decaying
into KK7 via K*K +cc. JF¢ =(a) 07+, (b) 07—, (c) 17F, (d) 17—, (e) 1*+, (f) 177, (g)
27*, (h) 2.
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(Note that the signs are opposite to those of the standard Clebsch-Gordan coeflicients
(see Section 2.4 for an explanation). These are not yet eigenfunctions of C, but from the
action of C on the Ks the eigenstates can be constructed. (In the following, the particle
indices in brackets which refer to a given spatial state of one particle will be omitted).

I/1,|C | KK flavour wave functions G |L

00 |+1|[K°K°+K*K-+ K°K°+K-K*]/2 |+1]0,2,..
0/0 |1 [K°K°+K+K_—(K0K0+K_K+)]/2 —-1|1,3,...
1|0 [+1|[K°K°— K"K~ +(K°K°— K K%)]/2|—1]0,2,...
1/0 |—-1|[K°K° - K*tK~ —(K°K°—- K-K*%)]/2|+1]|1,3,...

What do these eigenfunctions tell us? For meson—antimeson pairs, parity P, C-parity
and G-parity are related to L, S and I by similar relations as for fermion—antifermion pairs
(we use capital L here for the orbital angular momentum, S for the total spin of the pair):

P=(-1)*

C = (-1)t+
G = (—=1)1C = (—1)T+E+5,

Thus it can be seen from the expression for P (or more directly, from the symmetries of
the wave function with respect to particle interchange) that the first and third of the 4
eigenfunctions correspond to a wave function with L = 0, 2, ... and that the remaining
two have odd L (see the last column). This can be confirmed with the relation for G, or
directly by applying the rules listed above for the action of G on the Ks and Ks, that G
takes the values given in the next to last column.

Similarly, the wave functions for other pairs, like K K*, K*K* can be obtained. The
C, I and G eigenstates for neutral (I, = 0) pairs of K*K~ + cc have the same sequence of
signs:

C | K*K* flavour wave functions G |S+L
+1[[K¥K” + KY"K-" + K"K + K-—"K*7]/2 [ +1]0,2,...
—1|[KK” + K"K~ — (KK + K~"K+")]/2 | -1 | 1,3,...
+1 | [K”K* — K¥"K~—" 4 (KK — K~"K*7")]/2 | -10,2,...
—1|[K”K - Kt*"K-" — (K K° — K~—"K*")]/2 | +1|1,3,...

O O~
OOOO&\q

For pairs of KK*, K*K, the signs in the middle are reversed because the C parity of K*
is opposite to that of K:

I|/1,|C | KK*(K°K*) flavour wave functions G

010 | +1|[K°K” + K*K~" — (K°K°" + K" K*7)]/2 | +1
0/0 | —1|[K°K°" + K*K—" +(K°K°" + K"K*7)]/2 | -1
1{0 |+1|[K°K —K*K~" — (K°K°" -~ K-K*")]/2 | -1
110 | —1|[K°K” —K*K~"+(K°K" — K~"K*7)]/2 | +1

In the last case, the four terms in the sum seem to be physically distinguished, not just
permutations of particle indices as in the case of KK and K*K . However, the final states
resulting from the decay of the K*s overlap in some regions of phase space and therefore
interference between the various terms takes place. We need additional relations to obtain
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the correct signs of interference in the final state, namely those which connect the various
K*s with their decay products:

K+ = —\/1/3(K*7° + \/2/3(K°+)
K~ = +/1/3(K~7% + /2/3(K°r")
K = +,/1/3(K°1°) —/2/3(K*7")
K> = —\/1/3(K°x°) — ,/2/3(K =)

Here, we have used standard Clebsch—Gordan coefficients for the isospin coupling with
two exceptions where the signs are opposite [32]: the K~ and K~", which contain the %
quark, have to be given a minus sign, consistent with the change in sign of the isospin wave
functions of K K pairs (see above). In the old literature, see for instance [33, 34], standard
Clebsch—Gordan coefficients were used throughout, which may lead to some confusion
today. However, their final result for the sign of interference in the final state is consistent
with ours.

Since the experiments identify and distinguish certain charge combinations in the
final state, for instance, in the case of K K*, the combination K+ K%~ (with I = 1 or
0,I., =0)or K°K~7° (with I = 1,1, = —1), only some of the terms have to be considered
at the end. With the formulae given above one can derive the expression for the G-parity
eigenstates, valid for arbitrary isospin I and I,:

(KKr)e = [K(1)K(2)r(3) + GK(1)K(2)n(3)]/4/1/6 ,
where G refers to the state K K. For specific charge states one obtains, for instance,
(KKm, I =0 or 1,I,=0)¢ = (K*K°r~ + GK°K*n~)/4/1/6

or

(KKm,I1=1,I, = —1)g = (K°K~7° + GK~K°x°)/4/1/6 .

A positive G parity does not necessarily imply that the interference in the region of overlap
is constructive. It depends, in addition, on the spatial, or more specifically on the angular
wave function, i.e. its symmetry for interchange of the particle indices. Figure 18 shows
some interesting cases of J¥C, G eigenstates decaying into K K*. These patterns can be
used to deduce the G parity from the observed interference pattern if JX¢ is known or
assumed to be known.

If the final state under consideration is not a C eigenstate, the G eigenstates are
still useful since G is conserved in the strong interaction. We consider as an example
pairs with negative charge only, having isospin I,I, = 1,—1, i.e. K°K~,K°"K~" and
K°K~",K°"K~. The G eigenstates can be constructed as above.

KK flavour wave functions |G | L
(K°K-+ K~ K%/\/2 —-110,2,.
(K°K- — K~ K%/\/2 +11,3,..
K*K* flavour wave functions |G | S+ L
(KK~ + K—"K°)/\/2 -110,2,...
(KK~ - K~"K°)/\/2 +11,3,...
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KK* flavour wave functions | G
(K°K—"+ K- K°)/\/2 +1
(KOK_* — K‘KO*)/\/2 -1

Now there is another set of expressions which is useful when dealing with neutral
Ks. The eigenstates above were expressed in terms of K K°, which are eigenstates of
the strong interaction but not the mesons seen by the detector. The observed particles
are the K7 and K, which are to a good approximation C eigenstates, as explained in the
text, and to a better approximation CP eigenstates. For our purpose we can use

¢ |P |CP
Ks~ K, =(K°+K°%/y2|-1|-1]+1
Kp~Ky=(K°—K°/y2|+1|-1|-1

The K, has exotic quantum numbers JF¢ = 0=~ ! but no defined isospin. For pairs

of neutral K's one finds the following identities by substitution:

C=+1|K°K°+ K°K° | KsKs — KK
C=-1|K°K° - K°K° | K Ks — KsKg,

It seems as if we have too many terms here since each pair (e.g. KsKg) is in itself already
an eigenstate of C, each particle being a C eigenstate. However, substituting the inverse
relations

K° = (Ks + Kr)\/2
K° = (Ks — K)\/2
it can be seen that both terms are necessary to cancel pairs with double strangeness, like
K°K?°.
As an example, consider the final state K7 Ksn° for a neutral KK pair decaying
to neutral Ks. The C eigenstates are

C=+1|K°K” — K°K® | K;K;* — KsKs*
C=-1|KK° + K°K° | KsK;.* — K. Ks*

where K7 ¢ is shorthand for K°(K°) decaying to Kz, s7° with angular momentum L = 1.
Similarly, for K*K",

C =+1 KO*I_(O*—I-I_(O*KO* K"Ky — Ks"Ks™
C=-1| K"K - KK | K;*Ks* — Ks*Kr*

Again, each term in the right-hand column is a C eigenstate and the differences are
necessary in order to cancel double strangeness terms.
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