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Abstract

Antiproton-proton annihilation at rest into 7% and nw was used to study ra-
diative decays of the w meson, in particular to determine the branching ratio
BR(w — ny) and to search for the direct decay w — 3. Out of 15.5M pp anni-
hilations into final states with no charged particles, 63k 7w and 55k nw events
were reconstructed requiring 7%, n — 2y and w — 3v. The resulting w — 3~
Dalitz plots were analysed.

From the channel pp — nw, the branching ratio BR(w — 7y) was measured
by assuming no coherent contribution from p:

BR(w = nY)pe = (7.05+1.19) x 107

The corresponding branching ratio measured in 79w ((14.74£4.6) x10~*) is a factor
of 2 larger due to the strong coherent contribution from pp — 7%, p — 1. The
coherent admixture from p can therefore not be neglected, at least in the 79w
channel.

To gain information on the sign of p — w interference, and to prove that
the coherent contribution from p can be neglected in the nw channel, a coupled
analysis of both w production channels was performed. The p contribution was
simulated using Monte Carlo events. The final results are:

BR(w = 1Y) p0wme = (6.6£1.7) x 1074,
¢p—w (_181—327;)0'

The relative phase ¢ between p and w is therefore consistent with zero (construc-
tive interference). No ambiguities between constructive and destructive interfer-
ence were found. The coupled analysis furthermore determines the branching
ratio BR(p — n7y) = (9.1 £ 6.8) x 10~* with very large errors.

In addition, an upper-limit for the direct radiative decay w — 37 (without
intermediate resonances) was measured in the 7% channel:

BR(w — 37) < 1.9 x 107* at 95% CL.
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1 Introduction

In the quark model [1], mesons are bound states of a quark and an antiquark.
With three flavors of quarks, (u, d, s), there are nine possible ¢g combinations for
given spin and parity. The resulting multiplet structure is usually described by
‘flavour SU(3)’ symmetry. Since the masses of (u,d) and s quarks are different,
SU(3)s is not an exact symmetry. However, even in the absence of knowledge
about the potential which binds the quark to the antiquark, the model is very
predictive. Many decay amplitudes and masses can be calculated using SU(3)
[2].

In QCD (quantum chromodynamics), the field theory of strong interactions,
the coupling constant «; increases with distance between the quarks, due to the
self-coupling of gluons which themselves carry colour, the charge of the strong
interaction. Thus only at very short distances (< 0.1 fm), equivalent to high
energies, perturbation theory can be used. Calculations in the low energy region
are therefore very difficult.

Thus SU(3) is still used to classify and explain the spectrum of mesons,
despite that the symmetry is not exact. SU(3) is used particularly to determine
the content of new mesons and assign them to ¢g nonets. If the decay modes of
a meson is not compatible with SU(3), it is possible that this meson is not a ¢g
state but a hybrid or glueball (see, for instance, ref. [3] for an the interpretation
of fo(1500) as the scalar groundstate glueball). It is therefore crucial for the
understanding of the strong interaction at low energy to test the quark model
and its extensions.

Radiative decays of light mesons provide a good testing of the quark model
since radiative decay amplitudes can be calculated reliably [4]. The calculation
of the decay width for w — 7%y was one of the first triumphs of the quark model
in the mid-sixties.

On the other hand, the experimental situation is not very satisfying. Many
radiative decay amplitudes are not well-known or different experiments measure
incompatible values. In particular, the sign of the interference of the two mesons
w and p has not yet been unambigously determined.

The aim of this analysis is to improve the measurement of radiative decays of
the w meson, to solve the open problem of p—w mixing and to search for the direct
decay w — 37v. Since the decay w — 7% is already well-known, special emphasis
was put on the decay w — 7y. Only one experiment claims to have measured
this decay amplitude in a ‘model independent’ way [5], while other experiments
obtain equailly good solutions for constructive and destructive p — w mixing [6]
[7]. So far, no experiment could unambiguously determine the relative phase.
However, constructive interference is much favoured by the ‘model independent’
measurement and by the quark model.

The Crystal Barrel experiment [8] [9] at CERN, which studies proton-antipro-
ton annihilation at rest and in-flight, is specially well suited to measure radiative
decays of light mesons because of its 47 electromagnetic calorimeter. In this
work, the reactions pp — 7w — 5y and pp — nw — 5y were used as a source



of w mesons. The analysis required 5 detected photons in the crystal calorimeter
and no charged particles in the drift chambers. The w mesons were reconstructed
with a kinematic fit and the w — 3+ Dalitz plot was analysed.

The open problem about the sign of p — w interference is solved in the present
work. Since two different production channels for the w mesons are analysed, and
hence two different the relative contributions from p, the sign of p—w interference
can be determined unambiguously by comparing of the two channels 7w and nw.



2 The Crystal Barrel Detector

The Crystal Barrel experiment at the low energy antiproton ring (LEAR) at
CERN was designed to study meson spectroscopy. It was proposed in 1985 [8]
and came into operation in 1989. It is presently located on beam line C2 at
LEAR.

Its main purpose is to investigate pp annihilation at rest. The central issue is
to search for glueballs and hybrids decaying into neutral mesons such as 7%’s, n’s
and K’s. A second goal is to measure radiative and rare decays of well known
mesons. For these two issues, special emphasis has to be put on photon detection.
But, since only about 4% of all pp annihilations have no charged particles in the
final state, an efficient tracking and trigger on charged multiplicity is also crucial
for the identification of charged 7’s and K’s.

A detailed description of the apparatus can be found in ref. [9]. The overall
layout of the detector is shown in figure 1. Antiprotons of 200 MeV/c are ex-
tracted from LEAR for annihilation at rest. They stop in a target (6) filled with
liquid hydrogen and form protonium which annihilates mainly from S states.
The target is surrounded by two proportional wire chambers (PWC’s) (5) which
give the first measurement of charged particles close to the interaction vertex and
serve as fast charged multiplicity trigger. The wires of the inner chamber are at a
radius of 25.5 mm from the beam axis while those of the outer chamber are at a
radius of 43 mm. The inner chamber covers 99%, the outer chamber 97% of the
full solid angle. The total detection efficiency for charged particles exceeds 99%.
Leaving the proportional chambers, a particle enters the jet drift chamber (JDC)
(4) with 30 azimuthal sectors and 23 radial layers which give the ¢ coordinates
as well as the z position along the beam direction through charge division. The
innermost wires of the JDC are at a radius of 63 mm, the outermost at 239
mm. An electromagnetic calorimeter of C'sI(Tl) crystals (3) surrounds the drift
chamber and measures the energy deposit of photons and charged particles. All
subdetectors are inside a magnetic coil which produces a uniform magnetic field
of 1.5 T along the beam axis.

The present work is based on all neutral triggered events (e.g. final states
with no charged particles), for which the the measurement of photons in the
calorimeter is essential. The two PWC’s and the JDC are only used to veto
charged particles.

2.1 The Crystal Calorimeter

Photons with energies from 10 MeV to 2000 MeV can be measured in the elec-
tromagnetic calorimeter consisting of 1380 C'sI(T'l) crystals of 30 cm length (16
radiation length) each. The geometrical cross section of the crystals is that of
a trapezoid. They are arranged in 26 rings pointing to the interaction region.
Each crystal is a separate unit enclosed in a 0.1 mm thick titanium can. The
calorimeter covers polar angles 6 between 12° and 168° with full coverage in az-
imuthal angle ¢. Each crystal covers 6° in § and 6° in ¢, except for the last 3



Figure 1: The Crystal Barrel detector. (1) magnet yoke, (2) magnet coils, (3)
CsI barrel, (4) jet drift chamber (JDC), (5) proportional chambers (PWC’s), (6)
liquid hydrogen target, (7) one-half of the endplate.

rows of crystals near the beam axis (# < 15° and 6 > 168°) where A¢ had to be
increased to 12°.

Since the whole detector is located in a strong magnetic field, the crystals are
read out silicon photodiodes glued to the edge of a wavelength shifter plate The
C'sl emission spectrum, which peaks at 550 nm, and the absorbtion spectrum
of the wavelength shifter, consisting of a plexiglas tile doped with an optically
active pigment, are well matched and the quantum efficiency of the photodiode is
around 80% in the emission range of the wavelength shifter. The employment of
a wavelength shifter ensures a high light collection efficiency by the photodiode.
An arrangement without wavelength shifter would require several photodiodes
to cover the back end of a crystal in order to absorb most of the light. The
luminescene signal of the CsI is reflected in the photodiode signal which has
about 40 ns risetime and decays over several us. A preamplifier, mounted behind
the photodiode, integrates and amplifies the signal after which a differential driver
sends it over a twisted-pair cable of 18 m length to the main electronics hut. In
the hut, the signal is again amplified and shaped into an approximate gaussian,
divided into two outputs and finally fed into two charge integrating ADC systems.
One (LeCroy 2282) covers the energy range between 0 and 400 MeV, whereas the
other (LeCroy Fera) covers the full range from 0 to 2000 MeV. The Fera ADC’s
have a fast conversion time of 9 us and can be used in a height level software



trigger.

Before the calorimeter was assembled each crystal module was pre-calibrated
with 6.1 MeV photons from a Pu'3C source. The final calibration (the method
which yields the highest energy resolution) is done the following way: events with
several photons are used to to find a 7° invariant mass peak. The calibrations
constants for each crystal can now be adjusted until the 7° has the required mass.
The energy resolution of a photon after the calibration is

o(E,) _ 2.5% (1)
E,  YE[GeV]

The spatial resolution is also energy-dependent and typically 25 mrad in # and

o.




3 Data Reconstruction and Offline Analysis

The identification of charged and neutral particles and the reconstruction of their
energy and momenta is done by an offline analysis package (CBOFF), which has
been developed during the past years. The whole software is written in Fortran
77. The user can provide several analysis and selection routines to obtain his
own analytical software.

This work is based on zero-prong triggered events (events with no charged
particles in the PWC and JDC). Of particular interest in this case is the re-
construction of energy deposits in the calorimeter and the assignment of these
Particle Energy Deposits (PED’s) to photons. The JDC and PWC data are only
used to veto residual charged tracks.

3.1 PED Reconstruction

A photon which is absorbed in the crystal calorimeter induces an electromag-
netic shower, a cascade of secondary photons, electrons and positrons. Due to
the statistical nature of this process, the shower is not restricted to one crystal
but spreads over several neighbouring crystals. The primary photon therefore
deposits its energy in several neighbouring crystals. Such a cluster of crystals
can reach up to 20 crystals. Each crystal measures the energy deposit through
the scintillator effect. The aim of the reconstruction algorithm is to assign such
a cluster of crystals to a photon and extract the energy as well as 6 and ¢.
The user can set two values for the reconstruction:

e ECLUBC': Minimal energy in MeV for the sum over neighbouring crystals
to generate a cluster, typically between 4 and 20 MeV.

e EPEDBC('" Minimal energy in MeV for a single crystal to count as a Particle
Energy Deposit (PED), typically between 10 and 20 MeV.

The algorithm performs the reconstruction in several steps. First, clusters of
neighbouring crystals with energy deposits above 1 MeV are searched for. Local

maxima are then searched for within the clusters which have energies greater
than ECLUBC.

1. When only one maximum is found within the cluster, the photon energy is
then defined as being the total energy deposit in the cluster. The direction
of the photon is given by the energy-weighted angles of the crystals in the
cluster.

2. When two or more local maxima are found in the same cluster, it is assumed
that the cluster originates from more than one photon. The total cluster
energy is therefore divided between the photons. Each local maxima ex-
ceeding the value EPEDBC;, together with its eight neighbouring crystals,
is defined as a subcluster. Let us define



n : Number of subclusters
Eiuster : Total energy of the parent cluster (2)
Ey; : Energy of a subcluster i.

The energy of the photon associated with the subcluster j is given then by

Ey ;
E 'ZiJ'Ecuser- 3
V5] ?:1 Eg,i lust ( )

Such a reconstructed photon is called PED (particle energy deposit). With
this method, the energy of the cluster is shared among the n PED’s so that

Z E i — Lecluster- (4)
=1

The number of reconstructed PED’s depends strongly on the two values pro-
vided by the user, FCLUBC and EPEDBC. The higher these two parameters
are, the more 7’s fall below the energy threshold and are not reconstructed by
the offline program. The lower these parameters are, the more PED’s are found
which might originate from real ¥’s but also from electromagnetic fluctuations
(so called split-off’s, see section 3.2). The optimum set of parameters depends
on the type of analysis. The calibration method for the crystal calorimeter and
the energy resolution for a photon is discussed in section 2.1.

3.2 Split-Off Recognition

Secondary photons from the electromagnetic shower in the calorimeter can travel
more than one crystal without interactions. These photons deposit their energy
several crystals away from the impact point of the primary photon. The algorithm
described in section 3.1 associates these energy deposits to additional photons.
Such a split-off PED lies near the parent PED and has in general a lower energy.
One therefore defines

_'ﬁ
S5 = [Tl
il |Dj
v 6)
R;; = FZ_SL
J

where the indices ¢ and j run through all PED’s, ¢ # j. The variables cos ¢;;
vs. R;; are plotted in figure 2 for a subsample of the 5 PED data sample. The
enhancement visible in the upper left corner at low ¢;; and R;; is due to split-off
events. The band at cos ¢;; ~ 0.9 originates from 7% — 2+, where the 7° decays
through the minimum opening angle. For 7%’s, a low ratio E,, /E,, corresponds
to a large opening angle and an angle near 0° is not possible!. This feature is
used for a sophisticated cut on split-off events.

!The n’s decaying into 2 4’s do not appear in the region where cos ¢;; ~ 1 since the low
kinetic energy of the ’s does not permit such a small opening angle.
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Figure 3: Same as in figure 2, but after
the split-off cut.

Assume a 70 with total energy Ero = 7 - myo decaying into two 7’s with

energies F1, Fy. The 7° mass is given by

2
mﬂ_o

= (B + E5)? — (1 + p2)?

= B} + B+ 2B Ey — pf — Py — 2P\ (6)
= 2E,Ey(1 —cos o),

where ¢ is the opening angle. Solving equation 5 for cos ¢, one finds:

_ 2E1E5 — m?
cosp = —2E1E2

_ FE?+ FE2+2E\E,

2v2E E, (7)
_ R*+2R+1

2v2R
_ (1+ R)?

2v2R

Split-off events show a systematically larger cos ¢ than two +’s from 7° decay and
a cut on split-off events is therefore defined, rejecting events whenever

cos ¢ > 1 —

2 Yiimit - Rij

(1 + Rij)2 (8)

occurs for at least one 2 PED combination ¢j. The value ;s is the cut param-
eter, which has to be set significantly higher than the highest possible v in the

reaction being analysed.



For the reaction pp — 7w, which is dominant in the 5 PED final state, the
maximum 7 momentum is the one from w — 7%y which has a maximum .0
of 6.92. In figure 3, cos ¢;; vs. R;; is plotted after the cut for vy = 8. The
split-off events in the upper left region vanish completely, while the 7° band is
not affected.

3.3 Kinematic Fitting

Every measurement of physical quantities is, within the instrumental resolution,
flawed with errors. A commonly used method to improve the measurement is
to express physical relations between the quantities and vary them within the
errors until all relations are satisfied. The necessary corrections to the measured
variables should be as small as possible. Mathematically spoken, one has to
deal with a minimization problem with several constraining equations, so called
constraints [10].

In the present work, such a fit to the data is used to test several kinematic
hypotheses such as pp — 7’w or pp — nw and to select events according to the
goodness of the fit. The fit is done using the method of least squares minimization.
A complete derivation of the fit method can be found in appendix A.

In the Crystal Barrel experiment, 3 variables are measured for each v, namely
E, 0 and ¢. Hence for m measured v’s, one has n = 3 - m parameters. With
m., = 0 one calculates the momentum for ~;:

(pz)i = E;sinb;cos ¢;,
(py)i = Eisinb;sind;, 9)
(p.)i = E;cosb;.

For pp annihilation at rest, the total momentum has to be 0 whereas the total
energy equals the mass of the protonium,

m = _
i=1Pi = 05

i 10
m B = 2-m,, (10)

which already gives 4 constraining equations. To introduce a narrow resonance
R which decays into 7’s (e.q. a 7° or w), further equations can be expressed in
the form

where mp denotes the mass of the resonance and N the number of 4’s to which
R decays. The sum over the N 7’s has to be performed with all possible y
combinations to test every assignment of the 7’s to R. The combination with the
lowest %2 is then chosen. Every introduction of a resonance adds one constraining
equation. A fit with 6 constraints is called a 6C-fit.

The result of a kinematic fit can be judged by the outcoming x2. The prob-
ability that the kinematics of a given event indeed corresponds to the tested

10



hypothesis equals the upper tail probability (integration from x? to co) of the x?
distribution with ny = n — ¢ (¢: number of constraints) degrees of freedom. An
event can therefore be kept (or thrown away) with a cut on this confidence level.

A method to check whether the fit results are correct is to look at the pulls:

0

Ar, = ———. 12
? /(720 — O'gi ( )

If the detector resolution is well understood and the errors are correctly estimated,
Awz; is gaussian distributed around 0 (with o = 1).

11



4 Data Selection

The present analysis is based on data from pp annihilation into final states with
no charged particles. The trigger on these zero-prong events uses the charged
multiplicity from the two PWC’s? to veto charged tracks. This leads to 15.5 Mil-
lion triggered all neutral events from run periods December 1989, June, July and
November 1990, May, June and August 1991. Table 1 summarizes the number
of triggered all-neutral events on tape from the different run periods.

‘ Run Period ‘ zero-prong events ‘
December 1989 944,860
June 1990 1,170,040
July 1990 4,074,257
November 1990 4,572,615
May 1991 1,562,800
July 1991 1,447,887
August 1991 1,685,339

| Total | 15,457,788 |

Table 1: Events used from initial DST tapes. No cuts have been applied.

4.1 Selection of events with 5 PED’s and 0 tracks

The method for the PED reconstruction was described in section 3.1. In order to
find the optimum values for the energy cut levels EPEDBC and ECLUBC, the
reconstruction efficiency for w — 7y events as well as the background contami-
nation from 7%7% in the 7% channel have been obtained by GEANT simulation
(see chapter 5 for details on GEANT based Monte Carlo simulations) for differ-
ent energy cut levels. The results are summarized in table 2. The reconstruction
efficiency for w — 77y events is given in column 2, that for 7%7% events in column
3. Both efficiencies drop with decreasing cut levels since more events are lost to
higher multiplicities due to the split-off effect. The third row contains the signal
to signal plus background ratio S/(S+ B). To calculate S and B, one has to mul-
tiply the different production and decay branching ratios for pp — 7w, w — 1y
and pp — 777 [11] [12] [13] with the reconstruction efficiencies obtained above.

The PED reconstruction with EPEDBC/ECLUBC = 20/20 MeV yields the
highest reconstruction efficiency for w — 7y events, but background from 7%y
is very strong so that the S/(S + B) ratio is poor. For cut levels 10/10 MeV, the

2Except for the December 1989 and the June 1990 run, when the PW(’s were not available
yet. All neutral events from these run periods were obtained with a trigger in the inner layers
of the JDC.

12



EPEDBC / ECLUBC | €4y | €x0r0y | S/(S+ B) |

20 / 20 22.9 % | 0.180 % 9%
10 /10 16.5 % | 0.028 % 32 %
10 /04 9.7 % | 0.019 % 28 %
04 / 04 40 % | 0.006 % 35 %

Table 2: Scan for the optimum energy cut levels for the PED reconstruction.
Ewmy: Teconstruction efficiency for Monte Carlo m°w,w — 1y events, €r070,:
reconstruction efficiency for background events from w°7%n, S/(S + B): signal to
stgnal plus background ratio.

reconstruction efficiency decreases slightly to 16.5%, but the background contam-
ination decreases by a factor of 6, which improves the S/(S + B) to 32%. For
even lower cut levels, the reconstruction efficiency for w — 17y events decreases
in the same manner as the background contamination, and hence the S/(S + B)
ratio does not improve any further. Thus for cut levels below 10/10, one only
loses events without gaining a higher S/(S + B) ratio.

The minimal energy for both PED’s and clusters was therefore set to 10 MeV.
Figure 4 and 5 show the distribution of PED’s and tracks after reconstruction.
The accumulations of events in figure 4 at 6 and 10 PED’s are due to pp — 3
pseudoscalars and 5 pseudoscalars, respectively, where the pseudoscalars decay
into 27.
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Figure 4: Number of reconstructed Figure 5: Number of reconstructed
PED’s for zero-prong events. tracks for zero-prong events.

After the reconstruction, the following cuts were applied to the data:

e No charged tracks. The number of charged tracks was taken from the TTKS
bank.
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e Exactly 5 PED’s.

e No split-off PED’s. The cut used to reject events containing split-oft’s is
described in section 3.2. The cut parameter v;,; was set to 8.

This gives a 5 PED data sample with about 1,173,000 events.

The figures on p. 15 show the general features of the 5 PED data sample. In
figure 6, Eiy Vs. pior is plotted for every event. The accumulation of events at
Eiot =~ 2m, = 1876 MeV and py: ~ 0 MeV/c corresponds to events which are
fully detected. The band is due to events for which one v escapes detection. For
these events, the loss of energy equals the gain in total momentum.

For figures 7, 8 and 9, energy and momentum conservation of the 5 PED
events is required by the following cuts:

1800 < By [MeV] < 2000,
0 < prot [MeV/c] < 80.

Note that these cuts were not applied in the analysis but only here to show the
features of the 5 PED data sample.

In figure 7, E, for all 5 photons is plotted. No narrow structures are observed.
The 10 MeV cut on v’s imposed by the PED reconstruction is clearly visible. In
figures 8 and 9, the invariant mass of 2 and 3 ~’s is plotted. One clearly sees the
lightest three mesons 7% — 2v, n — 2v and w — 3.

(13)

4.2 Selection of 7w and nw Events

All 1,173,000 5 PED events were then submitted to two independent 6C kinematic
fits (see section 3.3) testing the hypotheses that the events were either 7%w or nw
events with (7%, 1) — 7y and w — 37. The advantages of fitting directly the w
decaying to three 7’s are the following:

e If intermediate states like w97y or nny with one single v are fitted, more
background from 6+ events (e.g. 37° or 7°7%n) survive since E and g of the
single v are only present in 4-momentum conservation but in no additional
constraining equation. In addition, many 7%7%y events from 7% fit equally
well the 797y hypothesis thus making an analysis of the 7%w channel nearly
impossible.

e To extract a branching ratio from the observed number of w — 77y events,
one has to normalize on the well known w — 7%y decay®. This normal-
ization is easy to perform if one fits w — 37 since the w — 7%y events
are extracted with the same method as the w — 77y events and both decay
modes are present in the same data sample. This is not the case if the
hyptheses 7%y, 7%y and nny are fitted where the systematics and the
required cuts may be quite different for w — 7%y and w — 7y events.

3Tt is possible to normalize on the branching ratio pp — all neutral as well but the resulting
branching ratio for the w — 77y decay has larger statistical and systematical errors.

14



500

400 -~

Pt [MeV/c]

300

200

100

o

.8

1500 2000
E.. . [MeV]

tot

1 1
0 500 1000

Figure 6: Eipn vs. pwt for a subsam-
ple of the 5 PED data sample. The
enhancement at 2 GeV and low mo-
mentum is due to fully detected events
(Eiot = 2my, prot = 0). The band cor-
responds to events where one vy escapes
detection. The loss in energy for these
events equals the gain in total momen-
tum.

20000 -

=

I

al

o

o
T

§ 15000 -
12500
10000 -

7500 -

Number of entries / 10 MeV/c?

5000 -

2500 -

L b b b Ly T T AR
0 0 250 500 750 1000 1250 1500 1750 2000
m(yy) [MeV/c?]

Figure 8: m(vyy) distribution for a sub-
sample of the 5 PED data sample after
the cut on total energy and momentum
defined in eqn. 18 has been applied (10
entries/event). The two peaks corre-
spond to 70 — vy and n — ¥.

15

2500 -

2000

1500

Number of entries / 10 MeV

1000

500

200

IR R
0 0 200

P I
800 1000
E, [MeV]

P
600

Figure 7: E, distribution for a subsam-
ple of the 5 PED data sample after the
cut on total energy and momentum de-
fined in eqn. 13 has been applied (5 en-
tries/event). Clearly visible is the 10
MeV cut on the energy.

4000 -
3500 ;
3000 ;
2500 ;
2000 ;

1500 -~

Number of entries / 10 MeV/c?

1000

500

P I B R AR coa b b Py
0 0 250 500 750 1000 1250 1500 1750 2000
m(yyy) [MeVic?]

Figure 9: m(yyy) distribution for a
subsample of the 5 PED data sample
after the cut on total energy and mo-
mentum defined in eqn. 13 has been ap-
plied (10 entries/event). The peak cor-
responds to w — 3.



e An analysis of the w — 37 Dalitz plot is possible which allows to search for
the direct w — 3 decay.

After the two fits, events were selected as potential 7% and/or nw events,
if the confidence level (CL) for that hypothesis exceeds 1%. The combination
of v’s assigned to the w and the 1 or 7% which yields the best CL has been
selected. Note that an event can be present in both data-sets. This ambiguity in
the selection criteria is deliberate and done to check the correlation between the
two hypotheses. The CL(7%w) vs. CL(nw) is plotted for potential 7% and nw
events in figures 10 and 11, respectively. In order to see the weak structures in
the center of the plot, the distribution is truncated at 50 events.
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Figure 10: CL(7r') vs. CL(nw) for Figure 11: CL(7r°w) vs. CL(nw) for

potential nw events. The distribution
is truncated at 50 events (mazimum bin
entry before cut: 6108).

potential ™°w events. The distribution
is truncated at 50 events (mazimum bin
entry before cut: 7132).

Strong bands near the axis are apparent in both figures. These bands originate
from events which fit only the selected hypothesis (7% in figure 10 and nw in
figure 11). For these events, obviously no ambiguity between the two hypotheses
exists. However, events visible in the center of the plot fit equally well to both
hypotheses and an assignment of these events to either of the two event types is
not possible. Therefore, in order to separate the two data sets, cuts on confidence
levels which only select the narrow bands near the axis have to be introduced,
which were defined as

for 7% events and
for nw events.

CL(m%) > 10% and CL(nw) < 1%
CL(nw) > 10% and CL(7'w) < 1%

The 1% anti-cut on the other w channel rejects events which could not be
assigned to either hypothesis. Since these two cuts exclude each other, an event
is present in only one data sample. The numbers of events surviving these cuts
are listed in table 3.

(14)
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Figure 12: E pulls for selected m™w
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian. The enhancement to posi-
tive values is due to energy leakage.

400 |-

350 |-

Entries /0.1

300 ;
250 ;
200 ;
150 ;

100 [

50 |-

| I
2 -1 0 1 2 3 4 5
@Pull

Figure 14: ¢ pulls for selected m™w
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian.
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Figure 13: 0 pulls for selected 7w
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian.
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Figure 15: Confidence level distribu-
tion for selected ™’w events (i.e. with
CL > 0.1). The dark histogram shows
the expected CL distribution from MC
w — w0y events.
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Figure 16: E pulls for selected nw
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian. The enhancement to posi-
tive values is due to energy leakage.
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Figure 18: ¢ pulls for selected nw
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian.
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Figure 17: 0 pulls for selected nw
events for a subsample of the whole
data set. The curve shows a fitted
Gaussian.
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Figure 19: Confidence level distribu-
tion for selected nw events (i.e. with
CL > 0.1). The dark histogram shows
the expected CL distribution from MC
w — w0y events.



The figures on p. 17 and p. 18 show fit related histograms for selected 7% and
nw events (after the cut defined in eqn. 14 has been applied): the pulls for the
three measured variables F, 6 and ¢ as well as the confidence level distribution
for selected 7% events on p. 17 and the same plots for selected nw events on
p. 18. The pull distribution for £ (figs. 12 and 16) is not symmetric but shows
an enhancement to positive values. This is due to energy leakage in the crystals
near the beam pipe. The constraints on 4-momentum conservation increases the
energies of the photons hitting these crystals.

The confidence level distributions are shown in figures 15 and 19. The super-
imposed dark histogram shows the CL for MC w — 7%y events. These distribu-
tions are not flat but show an enhancement towards low confidence level. One
would expect a flat CL distribution at least for generated MC events correspond-
ing to the fit hypothesis, if the errors are correctly estimated. But the situation is
more complicated if one fits the w: the kinematic fit routine assumes an infinitely
narrow w at its nominal mass of 782 MeV. Thus, after the fit, all events surviving
the cuts have m(3y) = 782 MeV. But the real w events as well as w’s generated
by MC have a Breit-Wigner line-shape with a width of I' = 8.4 MeV. Due to this
natural width which is not taken into account by the kinematic fit routine, the
corresponding pulls are greater than expected just from the experimental reso-
lution alone. The resulting x? is therefore higher, leading to a lower confidence
level. The CL distribution for data events are in good agreement with the ex-
pected CL distribution expect for low confidence levels, where an enhancement
in both channels is visible. This indicates the presence of residual background.

The resulting decay Dalitz plots w — 37 for 7% and nw events are shown in
figure 20 and figure 21, respectively. The momenta of the three 7’s in the w rest
frame are used to define the Dalitz plot variables

x-Lf—hy L 1 (15)

V3Q Q 3

where T},T5, T are the kinetic energies of the three v’s and Q) = T + T3 + T5.
Every event is entered 6 times to obtain a symmetric representation. The Dalitz
plots show very prominent 7° bands near the edge of phase space and weak
n bands in the center. To show that these structures do not originate from
fluctuation of the reconstruction efficiency, the w — 37 Dalitz plots for Monte
Carlo 7’w,w — 3v and nw,w — 37 events is plotted in figures 22 and 23,

| Hypothesis | Number of events |
mow,w — 3y 62,853
CL(m%) > 10% and CL(nw) < 1%
nw,w — 3y 54’865
CL(nw) > 10% and CL(7'w) < 1%

Table 3: Number of surviving events
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respectively. The acceptance is fairly flat in the region of the n band, while a
slight enhancement at the corners is visible.
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Figure 20: w — 3v Dalitz plot for se-
lected 7w events.
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Figure 22: w — 3v Dalitz plot for
Monte Carlo ™°w,w — 37y events (out
of 20,000 7°w,w — 37 events).
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Figure 21: w — 3v Dalitz plot for se-
lected nw events.
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Figure 23: w — 3v Dalitz plot for
Monte Carlo nw,w — 37 events (out
of 6,202 7w, w — 3 events).



5 Monte Carlo Simulations

This chapter describes how background contributions and reconstruction efficien-
cies are estimated using Monte Carlo (MC) techniques. Two different types of
background are discussed: background from final states with 6 v’s for which one
v escapes detection and background events with 5 7’s.

5.1 Background Simulation of Events with 6 +’s

The main problem in analysing a channel with 5 ¥’s is background from events
with final states with 6 +’s. If one of the v’s lies below detection threshold or
is lost because it merged with an other v, the total energy and momentum is
conserved and the event fakes a perfect 5 7 event. These events may in turn
fulfill the 7% or nw hypothesis.

The main concern lies in background channels which fake an w — 77 signal.
These channels are 7°7°7 for m%w events and 797 for nw events for which one low
energy v from a 7° decay is lost. Also, since one is interested in the w — 7%y decay
for normalization, background from 7%7%7° has to be kept in mind.

The method to simulate the number of background events passing the analy-
sis and their location in the w — 3 Dalitz plot is based on the Crystal Barrel
Monte Carlo software package CBGEANT, which was used to generate events
of the types m%7%7% 7%7% and 7%nn. The Monte Carlo software generates the
events according to phase space. However, the data Dalitz plots of 3 pseudoscalar
final states show rich resonance structure, which have been previously analysed
by the Crystal Barrel Collaboration and reported for instance in ref. [12]. Thus
phase space distributed Monte Carlo events do not provide a faithful description.

In the following, the weighting of events according to the real dynamics is de-
scribed. The generated Monte Carlo events, before reconstruction, are entered in
the corresponding Dalitz plots 7%7%7%, 7%7% and 7%nn. The bin size is chosen to
be the same as for real data events in these final states, i.e. (0.027x0.027) GeV*/c®
for 707°7°, (0.029 x 0.029) GeV*/c® and (0.02 x 0.02) GeV*/c® for w%nn.

The weight of each MC event is then given by the number of entries in the
corresponding bin of the data Dalitz plots. To directly compare data plots with
MC generated plots, one has to normalize the MC data sample to the number of
pp annihilations in the all neutral data sample. The derivation of the normaliza-
tion constant f can be found in appendix B. The error on a bin in a weighted
histogram is derived in appendix C.

These weighted events are reconstructed in the following as 7% and nw events
using the same method as for real data (see section 4). Note that the recon-
struction is based on photons smeared by the experimental resolution and hence
includes also the combinatorics in the assignement of photons to 7%’s and/or 7’s.

First, background from n%7%7% is discussed. Figure 24 shows the 37° Dalitz
plot of events which survive the criteria of being 7% as well as their location
in the w — 37 Dalitz plot. Note that in the case of 37°, one lost v leads to a
detected w070y event which fakes 7%, w — w%y. This decay 7° is observed as
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| 7% | nw [ on page
79797% [ 5,168 | 959 24
7% | 1,263 | 1,476 25
7onm 9 265 26

Table 4: Summary of surviving background events in both channels. The last
column gives the page on which the histograms for this background channel can
be found.

strong bands in the w — 3 Dalitz plot. The total number of 37° events in 7w

is found to be 5,168. Background from 37° is less serious in the nw channel since
the 7 is only reconstructed due to 7y combinations forming accidentally an 7.
The w — 3 Dalitz plot for reconstructed 37" events in the nw channel is shown
in figure 25 right. Also in nw, events accumulate mainly in the 7° bands of the
w decay Dalitz plot. The total background contamination is 959. It is stressed
that only a few events are found in the 7 region of the w decay Dalitz plot since
the probability for finding two n’s in 370 is rather low.

The next background channel which is studied is pp — 7°7%). The 7%
Dalitz plot for events which fake a 7% event is shown in figure 26 left. Note that
the main contribution stems from pp — a9,a3 — 7%n which is responsible for
the enhancement at low 7' invariant masses. The same events in the w — 3~
Dalitz plot (figure 26 right) do not show strong structures except that the region
in the center of the plot has no events at all. This is due to the limit of phase
space for surviving pp — 7%7%) events. However, a faint band where the 7 is
expected is visible and stems from the decay as — 7°n, where one photon from
the 7% decay escapes detection. From a total of 1,273 background events from
797%) in 7%, about 300 events are found in the 7 region. This is the dominant
background for the measurement of w — 7y in 7w (see section 6.2). Background
from 7%7% is also important in the channel nw. The events surviving the criteria
of being nw are shown in the 7%% Dalitz plot (figure 27 left) and in the w
decay Dalitz plot (figure 27 right). The total number of background events is
1,476. Unlike in the case of 7%, these background events accumulate in the
797%: Dalitz plot along the diagonal corresponding to the recoiling momentum
of an 7 from Pp — nw. One photon of the decaying 7%’s is lost and the events
fakes an w — 7%y decay visible as strong 7° bands in the w decay Dalitz plot.
Due to wrong 7y combinations, the (real) n shows also up as 7 bands in figure
27 right.

A negligible number of 9 background events from 7%nn is found in the 7w
channel (figure 26). The reason for this small feedthrough probability lies in the
fact that only the 7° can emit a photon below the detection threshold and hence
the reconstructed 7° from 7% is due to accidentally vy combinations being fitted
to a 7°. The same background, 7%)n, is more prominent in the nw channel and
leads to 205 events in the w decay Dalitz plot. This is the dominant background
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Figure 24: Background contribution from n°n°7% in m%w. Left histogram: Position
of background events in the m°7°7® Dalitz plot. Right histogram: Position of
background events in the w — 37 Dalitz plot. The total number of background
events s 5168.

— r 0.3
Tk >
N r
P b : 02 F
O 25p 94" ,
i3 P 0.1 f
E .o o
T L Do ¥
S r r
€ ¥ ol
15 F ¥
E -0.1 |-
1r [
[...ieB0 I 02 F
05F .00 ¢, -, . @9, B
P " 03
\\\‘\-\\.\‘.\\'\\‘D\\\D\‘\\'\:‘\-\.\\‘\\ Cov v v b v v b v b b
05 1 15 2 25 3 03 02 -01 0 01 02 03
m *(1°10) [GeV %c?] X

Figure 25: Background contribution from n°7°z° in nw. Left histogram: Position

of background events in the m°n°7® Dalitz plot. Right histogram: Position of
background events in the w — 37 Dalitz plot. The total number of background
events s 959.
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Figure 26: Background contribution from w°7%n in m%w. Left histogram: Position
of background events in the w97%) Dalitz plot. Right histogram: Position of back-
ground events in the w — 3v Dalitz plot. The total number of background events
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Figure 27: Background contribution from w°7°n in nw. Left histogram: Position
of background events in the w07%) Dalitz plot. Right histogram: Position of back-
ground events in the w — 3v Dalitz plot. The total number of background events
s 1476.
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Figure 28: Background contribution from w°nn in nw. Left histogram: Position
of background events in the w°nn Dalitz plot. Right histogram: Position of back-
ground events in the w — 37y Dalitz plot. The total number of background events
15 9.

— 0.3
"g 18 |- > r
o -
3 t .
8 1.6
E e
< [ .oBes
E 12 g
r s0do
r B,
e
o8 o :
[ S l.gae ..
[ =-o so.oo0. o000 [Juoso-o & ...
06 o “;:.B.DEE$::B§DS?E“;::'.' =
O b v b v ) Y S S N S S S S
04 06 08 1 12 14 16 1.8 03 -02 -01 0 01 02 03
m 2(TrOn) [GeV 2Ic 4] X

Figure 29: Background contribution from w°nmn in nw. Left histogram: Position
of background events in the w°nn Dalitz plot. Right histogram: Position of back-
ground events in the w — 3v Dalitz plot. The total number of background events
s 2695.
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channel which has to be considered in the analysis of nw (see section 6.1).

To summarize, background from the 3 pseudoscalar final states 707%7%, 7%7%
and 7°nn lead to important contributions in w decay Dalitz plots from the re-
actions pp — 7w and Pp — nw. The number of background events from each
channel in 7% and nw is listed in table 4.

It is noted that some of these numbers will be reduced further when the

branching ratio w — 77y is measured.

5.2 Background Simulation of Events with 5 7’s

The Monte Carlo background simulation of 57y events is much easier to handle
than the one for 6v events. Events with 5y originate from pp — Xw, where
w — 7y and X = (7% n). In these two-body reactions, the particles have fixed
momenta and no dynamics of intermediate resonances have to be considered.
However, the w — 7’y angular distribution must be taken into account. The
angular distribution is isotropic in CBGEANT, whereas the expected angular
distribution is of the form [14] [15]

dN
dcosf
considering both S- and P-wave annihilation. The parameter b was measured for
pp annihilation at rest into 7% in ref. [15]. They find b ~ 0.82 which is used in
the present work for all radiative w decays.

The non isotropic w-decay distribution is taken into account in the following
way: to simulate nw,w — w0y events, phase space distributed events of type 7%y
are generated. The generated kinematic variables of the three particles are read
from the KINE bank and used to weight every single event. To obtain events
of type w — 7%y, the invariant mass m(n%y) of each event is weighted with a
Breit-Wigner function of the form

o 1+bcos?0, (16)

1
BW = 1
w m—mo—iPO/Q’ ( 7)

where m = m(m%y) and my, Ty are the resonance parameters of the w, my = 781.9
MeV, I'y = 8.43 MeV [11]. In addition, the decay angle w — 7%y in the w rest
frame can be calculated using

1/ FE
cosf* = — T 1], 18
ﬂ(vEf; ) 1s)

where 3 and v are the speed and ~y-factor of the w and

2(,-0 2
E:x;:m(/]r /Y) Mo

2m(m0) (19)

is the energy of the v in the w rest frame. The decay angle is then weighted

according to eqn. 16. After weighting the events, the whole MC data sample has
to be scaled to the expected number of events of the type concerned.
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To calculate the number of expected events, the following branching ratios

are used [11] [13]:

BR(pp — 7w
BR(pp — nw
BR(n — vy
BR(w — 0%

)
)
)
)

5.73 £0.47) x 1073,
1.51 +£0.12) x 1072,
38.8 +0.5)%,

8.5+ 0.5)%.

(20)

NN AN

Event type

NETD

mow, w — 7y, — 5y

193, 000 £ 24, 500

nw,w — Oy, — 5y

197,400 + 24, 700

Table 5: Summary of &y events. N¢P: Number of expected events in the all

neutral data sample used in this work.

The method to calculate the expected number of events can be found in

appendix B.
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Figure 30: Background contribution

from nw(w — 7°7) in the 7% channel.
The total number of background events
is 130.

The resulting w — 3~ Dalitz plots fo
nels is shown in figures 30 and 31.
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Figure 31: Background contribution

from mw(w — ) in the nw channel.
The total number of background events
is 76.

r background events from other w chan-

Background from nw in the 7% clearly fakes an w — 7y signal. Thus for a
measurement of the w — 7y branching ratio in 7%, background from nw has to
be subtracted. The total number of background events is 130.

The background from 7°

The total number of background events

28

w in nw has almost every events in the w — 7%y band.

is 76.



5.3 Reconstruction Efficiencies of 7w and nw

The calculation of reconstruction efficiencies is straightforward: one generates
MC events with the required intermediate states, applies the same fits and cuts
as for data events and counts the number of surviving events. The reconstruction
efficiency is then given by

Nsurviving

€ (21)

= N generated

Usually, the efficiency does not depend on cos #*. However, if one applies cuts on
the angular distribution or on invariant masses, the acceptance depends on the
decay angle. In that case, the method presented in section 5.2 is used to generate
MC events with a more appropriate angular distribution.
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6 Analysis

6.1 The nw Channel

In this section, an analysis of the nw channel is described. The aim was to measure
the w — 7y branching ratio. Since the relative contribution from np, p — 17y is
suppressed due to the low branching ratio for the p production [11] [13] [16]

BR(pp — nw) BR(w —1n7y)
BR(pp —np) BR(p—my)
and the broad nature of the p, the coherent background from p — nvy is very
small. This is not the case for the 7°w channel, where the ratio in eqn. 22 is
~ (.73 (see section 6.2). A detailed analysis of 7% and nw taking into account
the p contribution is the subject of section 6.4.
Figure 32 and 33 show a one-dimensional projection of the w — 3v Dalitz
plot (fig. 21) for the nw channel.
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Figure 32: E, in the w rest frame (8  Figure 33: Same as in fig. 32 but with
entries/event). enlarged horizontal scale. The peak s
due to w — 70y .

A clear peak around 380 MeV is visible, coming from radiative v’s from w —
7’y (E, = 379.3 MeV for m, = 782 MeV/c?). The broad band from 10 to 390
MeV is due to reflection from w — 7%y events. Since J(7°) = 0, the decay process
7Y — v is isotropic, and hence, the 7° bands are flat. This type of ‘background’
events are called ‘combinatorial background’ in the present work although they
do not originate from real background events but from reflection in the Dalitz
plot.

To count the number of w — 7%y events, simulated background from 7%7%7°
and 7% (as described in section 5.1) is subtracted. The number of background
events is:
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w0070 959
7% . 1,476 (23)
anm 265
After subtracting the background and assuming a flat combinatorial back-
ground under the 7° peak, the number of events in the peak is:

N,y_ypo, = 50430 + 239. (24)

The reconstruction efficiency for these events is simulated with Monte Carlo
events of the type pp — nw(w — 7%y) — 5y. Out of 77,487 generated MC
events, N,_,r0, = 16,507 &= 131 survive the cuts. The reconstruction efficiency
for w — 7Yy is therefore

Ewrmoy = (21.3+ 0.2)%, (25)

where the error is statistical only. Eqn. 24 and 25 will be used to normalize the
number of observed w — 7y events to the known branching ratio for w — 7%7.

An 7 signal, clearly visible in the Dalitz plot (figure 21), is not seen in figure
32 due to the broad combinatorial background from w — 7%y. To suppress events
with w — 7%y, one has to reject every event that has at least one + in the 7°
peak. Hence events were rejected whenever

|E, [MeV] —379] < 15 (26)

for at least one 7.

However, if one plots for the remaining (potential w — 7y) events the invariant
mass m?(y7y) for which one 7 stems from w — 37 and the other originates from
the recoiling 7, a 7 peak is observed (see figure 34). The events in the 7° peak
are due to nw(w — w%y) events for which the kinematic fit assigned wrong n and
w combinations?, and to a lesser extent, due to background events from 7%7%.
A fit to the 7° peak using a Gaussian and a second order polynomial gives for
the Gaussian: m = (135.6 & 0.27) MeV/c* and o = (8.4 £ 0.28) MeV/c*>. An
additional 30 cut on these 7°’s is therefore introduced, rejecting events for which

Im(yy) [MeV/c?] — 135] < 25 (27)

for any vy combination for which one « originates from w — 3+ and the other
«v is assigned to the 1. The resulting histogram, figure 35, shows a clear n peak
around 200 MeV corresponding to w — 07y (E, = 199.7 MeV).

Next, background from 57 and 6+v events has to be subtracted. Only final
states which have at least one 1 have been considered as possible background,
since only these events can fake an w — 7y signal (see subsections 5.1 and 5.2 for
all possible background histograms). The number of residual background after
the two 70 cuts (as defined in eqn. 26 and 27) are:

4One vy combination was wrongly assigned to an 7 recoiling against the w. Thus the ‘real’
n fakes an w — 17y event.
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OO0 : 0
7070 2
7onn 146 (28)
nw(w-—7%) : 0

Background from 7%nn is therefore dominant. The background from nw, w —
7% vanishes completely after the introduction of the 7° cut on ‘false’ 7y combi-
nation (eqn. 27). The feedthrough from 7%7% with 2 events is negligible. The
simulated feedthrough from 7% is shown in figure 35 by the hatched histogram.
The background contribution below 150 MeV is underestimated, since no events
are expected below that value. This indicates the presence of a systematical er-
ror in the background normalization. To estimate this error, the background is
subtracted (figure 36) and the region from 50 to 150 MeV is fitted to a constant
A. The fit yields:

A=12+08. (29)

This is therefore the systematical error on a bin in the background histogramm.

From figure 35, the number of n events can directly be counted by simply
integrating the data and the background histograms. The following numbers of
events were found for the peak (5 bins from 170 MeV to 220 MeV):

Data (nw) : 171 £+ 13

0y -
Background (7°nn): 60 £ 9 £ 6 (30)

Total: 111 £ 16 £ 6

The first error is statistical, the second systematical. For further calculations,
the two errors are combined quadratically:

Nyypy = 111 £ 17. (31)

A more sophisticated method subtracts the background from the data his-
togram and fits the resulting histogram in order to obtain the number of events
in the n peak. The number of events per bin after background subtraction is
given by

N = Ndata — NBG, (32)

where n4,4, is the number of entries per bin in the data histogram and ngg is the
number of entries per bin in the background histogram. The resulting histogram
is shown in figure 36.

The parametrization of the fit used to determine the number of w — 77y events
in the background subtracted histogram is given by the shape of the expected
energy spectrum from Monte Carlo w — 7y events (figure 37). The general
features of the Monte Carlo distribution are:
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1. No events are expected below 170 MeV.

2. The combinatorial background above 250 MeV up to 350 MeV is completely
flat.

3. The combinatorial background decreases below 240 MeV. The downward
slope was described by half of a Gaussian with opg = 1/c0s60° + Opear,
where 60° is the angle between the 1 bands in the w — 37 Dalitz plot.

Note that the slope is determined by the cut introduced in eqn. 26. This cut
removes the triangular accumulation of events from w — 7%y and affects the
corners of the w — 7y triangle (see Dalitz plot, figure 21). The n peak itself
is parametrized with a Gaussian. In the fit, the height of the combinatorial
background, the begin of the slope of the combinatorial background as well as
the three parameters for the Gaussian were treated as free parameters.

The histogram in figure 36 was fitted from 140 to 350 MeV. The dotted line
below 140 MeV indicates the baseline. The fit finds the following parameters for
the n peak:

E = (201.841.4) MeV
o = (7.15+1.12) MeV (33)
A = (58.9£09.17) events/bin.

The integration of the Gaussian yields the number of observed w — 7y events,

Ny = 105.7 4 23.2. (34)

This value is completely consistent with the 111 4 17 events obtained with the
bin integrating method.

To determine the reconstruction efficiency for this reaction, the Monte Carlo
histogram in figure 37 is fitted. Out of 16,544 generated pp — nw(w — n7y) — 5y
MC events, the fit finds £ = (199.09 &+ 0.17) MeV, ¢ = (7.18 £+ 0.16) MeV,
A = (670.07 & 18.03) events/bin. The peak position and width for data and
MC events are in perfect agreement, showing that the data are well understood.
The number of events in the MC 7 peak is N,,, = 2405.55 £ 83.39. The
reconstruction efficiency therefore is

Ewsny = (14.54 + 0.54)%. (35)

Since the bin integration method has a slightly smaller error, the value ob-
tained with this method is used for further calculations. The ratio of the two
branching ratios w — 1y and w — 7% is

BR((,U — ’I]’}/) _ Nw—nry Ew—nly . BR(WO - 27)

= (8.29+1.31) x 1073, (36)

from which, after normalizing on the well known branching ratio BR(w — 7%) =
(8.5 +0.5)% [11], it follows
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BR(w — ny) = (7.05 £ 1.19) x 107, (37)

The error is dominated by the error on the number of observed w — 7y events.
The systematical errors on the reconstruction efficiencies of w — 7y and w —
7%y events cancel in good approximation.

The w — 77y branching ratio has previously been measured only in ref. [5] in
a ‘model independent’ way®. They used high energy 7~ p — w n charge-exchange
as a source of w mesons. They have chosen high momentum transfers |¢| in order
to suppress 7 exchange and therefore p production. However, no estimate of the
remaining contamination of coherent background from 7~p — p n is made. They
obtain BR(w — 1y) = (8.3 £2.1) x 107, which is in good agreement with the
value measured in this section.

5This means that for the determination of the branching ratio no assumption about the
behaviour of the p — w mixing was made.
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6.2 The 7% Channel

In the annihilation channel pp — 7w a branching ratio for w — 77 cannot be
measured directly since the production of p in pPp — 7% is much stronger than
w in pp — 7w [11] [13] [16]:

BR(pp — m°w) BR(w —1ny)
BR(pp — 7)) BR(p—1my)
The coherent contribution from p can therefore not be neglected.

However, to gain information about the p —w mixing, it is very useful to have
the number of observed events (p—w) — 7y in the 7°(p—w) channel. The theory
of the mixing and a coupled analysis of the two channels 7°(p — w) and n(p — w)
are the subject of section 6.4. To simplify matters, the mixed (p — w) state is
called w here.

Another problem in analysing the 7% channel is intense background from
7070, mainly pp — 7%ay,as — 77, and from nw(w — 7%y). Thus one heavily
relies on Monte Carlo simulation to extract the number of w — 17y events. Due
to this problem, the errors on the extracted values are higher than for nw events.

The analysis presented here follows the determination of the w — 17y branching
ratio of section 6.1, where the general features of w — 37 events and the data
treatment are discussed in details.

0.73. (38)

35000 [ 20000 F

30000 - 17500 F

25000 | 15000 £

12500 |

mber of entries / 2 MeV
S
o
o
o
T

10000 [

Number of entries / 1 MeV

2 15000 E

-

al

o

o
T

10000 ¢ 5000 [

5000 - 2500 |-

“50 100 150 200 250 300 350 400 %60 365 370 375 380 385 390 395 400
Ey[MeV] Ey[MeV]

Figure 38: E, distribution in the w rest  Figure 39: Same as in fig. 38 but with
frame (3 entries/event). enlarged horizontal scale. The peak is
due to w — 707.

Figure 39 shows the w — 7%y peak for m%w events. To count the number of
w — 70y events, background from 6v events has to be simulated. The number
of surviving background events is:

7Om070 . 5,168
om0y 1,263 (39)
oy 9
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After subtraction, and assuming a flat combinatorial background, the number
of events w — 7%y in the peak is

N,yz0, = 55340 + 363. (40)

The reconstruction efficiency for these events is determined with Monte Carlo
events of the type pp — 7w(w — 7%y) — 5v. Out of 53,436 generated MC
events, N,_,0, = 12,770 120 survive the cuts and the reconstruction efficiency
therefore is

Ewsmoy = (23.9 + 0.2)%. (41)

To see the w — 7y events, events with at least one entry on the 7° peak are
rejected. However, the cut window defined in eqn. 26 has been increased here
from 30 to 40 MeV. This cut helps to reduce the background contribution from
797%), which has often at least one + near the 7° peak.

The main problem, however, is background from 7%$ where a3 — 7%. Con-
sider the reaction pp — 7Qag,as — 7gn. If one photon v; from 7Y is not
detected while the second (detected) photon 7y, together with the n — 374 fall
in the w mass region (w — Y2y371), then the event fakes a perfect 7w(w — 1)
event. This is shown in figure 40 where the invariant mass m(m%~y374) is plot-
ted for events where v, lies in the kinematically allowed region for w — n7vs
(|Ey [MeV] —200| < 20). The peak around 1320 MeV corresponds to ay — 7%1.
The hatched histogram shows the expected spectrum from MC w — 7y events.
A new cut on as is therefore introduced to reject these events which fake an
w — ny signal, rejecting every event for which

m(m%y37s) [MeV] <1350 and |E,, [MeV] —200| < 20. (42)

where the 3 7’s are permutated. The 1350 MeV cut rejects as events without
significantly affecting the w — 77y events. This has been optimized by MC
simulation.

The energy distribution of the 3 4’s in the w rest frame after the cuts on
w — my and ay is shown in figure 41. The peak at 200 MeV corresponds to
W = ny.

Next, remaining background from 6+ events and from nw(w — 7%y has to be
subtracted. The number of background events is:

mOr070 : 10
o070 . 585
7Onn : 5 (43)

nw(w — 7y) 99

The contributions from 7%7%7® with 10 and from 7%)n with 5 events are

completely negligible. The energy distribution of the two other channels is shown
in figure 41 by the hatched histogram. The resulting histogram after background
subtraction is plotted in figure 42. The general form of the spectrum is in good
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agreement with the expected w — 77y spectrum (figure 43). Almost no events
are seen below 170 MeV and the spectrum is completely flat above 250 MeV.
This indicates that the background and the applied cuts are well understood.
However, the n peak in the data histogram is much wider than expected from
MC w — n7y simulation. This is a first indication of a contribution from the
broad p which enlarges the n peak. To count the number of w — 17y events in
the resulting histogram, the fit described in section 6.1 is used®. The following
parameters for the Gaussian are found

E = (206.1+4.4) MeV
o = (10.46 £ 2.82) MeV (44)
A = (107.1 & 16.6) events/bin,

which yields the number of w — 77y events:

Nyypy = 2334 72 (45)

As it was mentioned above, a proper w — 17y branching ratio cannot be derived
from this number due to the unknown p contribution. However, it is done here
to gain a first impression of the behaviour of the p — w mixing. Note that the
‘branching ratio’ calculated here is therefore not a correct determination of the
w — n7v branching ratio and that the oucome will not have further impacts in
this work.

The w — 1y reconstruction efficiency is estimated with weighted 7%y events
to include the w — ny angular distribution. The reconstruction efficiency is

Ewsmy = (15.0 £ 0.5)%. (46)

A ratio of the two branching ratios w — 1y and w — 7%y can be calculated using
the number of w — 7%y events from eqn. 40 and the w — 7%y reconstruction
efficiency from eqn. 41:

BR(w —=1n7)  Nuspy Ewosroy BR(7? — 27)

— = (17.3+5.4) x 1073, (47
BR(w = 7)  Nyp, Ewsyy BR(n— 27) ( ) )

By multiplying this with the w — 7%y branching ratio [11] the w — 7y branching
ratio is obtained:

BR(w — ny) = (14.7+£4.6) x 107%. (48)

The assumption that no p is produced coherently in pp — 7°p leads to an
w — n7y branching ratio which is a factor of 2.3 larger and completely inconsistent
with the measurement in section 6.1, thus proving that the coherent contribution

from p cannot be neglected in 70w.

6Note that a simple subtraction and integration as in section 6.1 is not possible here due to
the broad combinatorial background.
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6.3 Upper Limit for the Branching Ratio w — 3y

In this section, an upper limit for the decay branching ratio of w — 3+ where
w decays directly to 37 is derived. This process is similar to the decay of Or-
thopositronium into 3~ [17] [18] and has not been observed so far. Two-photon
annihilation is allowed only for eTe~ pairs in the 'S, state. When the anni-
hilation into two photons is ruled out by C-Paritity conservation in 2S; decay,
three-photon annihilation is the process of lowest order possible. It is assumed
here that the process w — 3 is purely electromagnetic (ignoring form-factors)
and therefore has the same dynamics as the Orthopositronium decay.

The energy distribution of the three photons has been calculated in ref. [18].
The explicit formula for the energy distribution of a photon is

_ . { p(m—p) 2m(m—p)*
Ip) = 2 2{ om): " log =2 (49)
m—p m(m—p m—p
+ p + p? log m }’

where I(p) denotes the intensity as a function of the momentum p and m is the
mass of the electron, m(e”) = Eyy/2. The intensity is plotted in fig. 44 as a
function of E,/Ei.

The photon spectrum varies linearly with energy except for energies near
Eiar = Ei/2. Phase space generated MC w — 37 events (fig. 45) show a
very similar structure and are a good approximation to the expected energy
distribution. Only the region above 350 MeV (E,/Ei, > 0.45) does not agree well
with phase space distribution, but this region will be cut off (eqn. 50 below). One
can therefore use phase space w — 3y MC events to determine the reconstruction
efficiency.

The decay process w — 3 proceeds mainly through the intermediate particles
7% and 7. Both particles manifest themselves as bands in the w — 3+ Dalitz plot
(figs. 20,21). To count the potential w — 37 events, these two bands have to be
cut off. In addition, background lying outside these bands has to be identified
and rejected. The Dalitz plot from 7%, figure 20, has less background events
outside the two bands and is therefore used to determine an upper limit.

The main background contribution outside the bands stems from 7070n.
Background from 7%7%7°, which also contributes to 7w, is negligible outside
the w — 7%y bands. The w — 3 Dalitz plot for 7%7%) events is shown in figure
46. This background channel contributes with a total number of 1263 events to
the m%w channel, which corresponds to 2% of all selected 7w events. The Dalitz
plot is completely depleted in a triangle in the middle of the plot where the 3 ’s
have all energies F, > 230 MeV. This region is suitable for a determination of a
decay upper limit, since no background subtraction has to be performed. This
region was selected with the cut

234 MeV < E,, < 303 MeV, (50)

where the relation holds for all 3 4’s (i = 1,2,3). The cut selects events in a
region with the highest possible reconstruction efficiency without contaminating
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the region with background from 7%7%n.

The result is shown in figure 47 where the cut has been applied to MC w — 3y
events. Out of 20,000 generated w — 37 events, 114 4+ 11 survive the cuts and
the reconstruction efficiency therefore is

Ewszy = (0.57 £ 0.06)%. (51)

In the 7% data Dalitz plot, shown in fig. 20, only one event survives this cut
and is a potential w — 3y event”. To obtain an upper limit at 95% confidence level
for the number of observed events, one has to sum over the Poisson probabilities
and find the minimum integer number N for which

N )\Ic
> Fe_)‘ > 0.95, (52)

k=0
where A denotes the number of observed events, A = 1. This equation holds for
N > 3. The number of observed events is therefore

Nyoysy < 3 at 95% CL. (53)

One can now calculate the upper limit for the branching ratio BR(w — 37),
excluding n and 7° intermediate states, using the decay w — 7%y, measured in
section 6.2, for normalization:

NLLJ w s
BRw — 3y) < —2%. 5927 ppiy — 10y
Ew—3y Nw—nrofy (54)

= 19x10* at 95% CL.

An upper limit for this reaction has previously been published by Prokoshkin
and Samoilenko in ref. [19]. They obtain BR(w — 37) < 2 x 10™* at 90% C'L.
However, a comparision with the value in eqn. 54 is not possible since they do
not give the analysis method.

Anyway, the present analysis yields a lower upper-limit with an even higher
confidence level.

"Note that although 6 entries are visible in the inner triangle of the 7% Dalitz plot, these
entries stem from only one event since every event is entered 6 times.
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6.4 p—w Mixing

The analysis of the 7% channel (section 6.2) clearly shows that coherent contri-
bution from p cannot be neglected, at least for pp — 7%w. But, since this work
treats two different production channels for w and hence two different relative
contributions from p, it is possible to gain more information about the behaviour
of the p—w mixing by combining the two channels and giving a consistent picture
concerning the radiative w decay to 7.

6.4.1 Theory of p — w Mixing

The theory of the p — w mixing presented here was suggested by Coleman and
Glashow in ref. [20] and later in more details in ref. [21]. They explain the
distortion of the p — 77~ line-shape due to the small w — 7t7~ admixture.
Recent theoretical papers (e.g. refs. [22] or [23]) introduce additional quark-loops
and momentum dependence of the mixing matrix element, but which produce
only small corrections and are not considered here. The theory applies to p and
w states which are produced coherently. This is the case for pp annhiliation.
Consider two decoupled states

(1) (1)

and 1 = (p,w)’. The Hamiltonian is then given by

[ m,—1il,/2 0
H_< 0 my —i0,/2 )’ (56)

from which, with H¢y = FE1), the eigenvalues of the decoupled states can be
derived:

E, = m,—il',/2,

E, = m,—il,/2. (57)

Now consider the p — w coupling through a photon. The coupling parameter is
5. The new Hamiltonian H’ is of the form

, [ m,—il,/2 —0
H _< ) my —il'y/2 )7 (58)

and hence,
H'Y' = E"Y'. (59)

Coleman and Glashow [20] relate the matrix element ¢ to the SU(3) breaking
mass splitting of the known mesons and baryons states and predict

§ ~ 2.5 MeV. (60)

The eigenstates p’ and w' can be calculated using first order perturbation theory:

43



o
pP— m )
0
_ m - p,
which is verified by inserting eqn. 61 into eqn. 59 and neglecting the §? terms.

With the definition A = m, —m, —i/2(I', — ', and the eigenvalues E, and E,
from eqn. 57, the physical eigenstates are

o —
p = W,

(61)

w o= w

/

p =

RS
I
&

(62)

W= wH—p.

| o Pl

The amplitude S for the reaction pp — X (p — w) — X7y can now be given in
terms of mixed states:

S = (AmAw)‘(m_Hl)l'<%>

-1
B [ m—=m,+il,/2 b T,
= (AP; Aw) < ) m —m, + sz/Z Tw 3

where A is the production and 7" the decay amplitude of the two mesons. With
the abbreviations P, = m —m, +I',/2 and P, = m — m,, +i[,,/2, eqn. 63

becomes
P, s\ (T
5 = (AP’Aw)'<5p Pw> (TZ)

- 1 P, =5\ (T,
- (APaAw)'Ppr_é?(_d Pp )(Tw>

(63)

2 Y ap —as-as+ar) | D (64)
—ﬁ(pw_wa_p"‘wp) T,
1
= 55 (APT, — AT, — A6 T, + A,P,T.)
plw
_ AT Ay 0\ L AT (1 A 0
P, A, P, P, A, P, )"

A, and T, , are complex amplitudes with unknown phases o between A, and
A, and ¢ between T, and T,,. With these angles, the total transition amplitude
S may be written as

AT | ( \Aw|€m5> i, iy | A || T ( A |€_ia5>
S = 1-— + et 1— 2 : (65)
By 14, P, B, [Au| P,
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The intensity for this amplitude is I = |S|2. For § = 0, i.e. if no coupling of the
two mesons to the photon is considered, S reduces to a sum of two Breit-Wigner
functions. The amplitudes A and 7T are given by

pw \/BR(Z_)p — P w) )

Tpw = \Tpumsay = /BR(p,w = xy) Ty .

In (p —w) — w7, the isospin violating decay amplitude T, = T(w —
7t7~) can be neglected and only the first term of the production amplitude
S = S(nt77) can be taken into account. In that case, one has to deal with only
one relative phase €?, which simplifies the situation. This is not possible for the
reaction (p — w) — 1y where none of the amplitudes is sufficiently small. One
therefore has to use S from eqn. 65 with the two a prior: unknown phases o and
0.

However, the production phase « is expected to be near zero for similar pro-
duction mechanisms [24]. In eTe™ annihilation to (p —w) — 777~ [7], where the
second term in eqn. 65 can be neglected, the phase ¢ can be either 0° or 180° (by
time reversal arguments [6]), corresponding to constructive, respectively destruc-
tive p — w interference, and two solutions for the branching ratios are possible.
In photoproduction of (p — w) — 0y [6] the phase « is set to 0° and again two
solutions ¢ = 0° or ¢ = 180° are possible for the branching ratios. The solution
¢ = 0° is predicted by the quark model.

The same approximation (o = 0°) is made here. It has been tested with the
MC method presented in section 6.4.2 that any production angle « is compatible
with the data as long as ¢ ~ «. This shows that the data is only sensitive to the
relative phase e“®*%) between the two Breit-Wigner functions in eqn. 65 and 6

A
(66)
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is too small for a determination of both phases. Thus constructive interference
means that ¢ ~ a.

The |S|? for the two channels 7°(p — w) and n(p — w) are plotted in figures
48 and 49 where the production and decay branching ratios were taken from
refs. [13] and [16] and o = ¢ = 0. The line-shape for n(p — w) is almost a simple
Breit-Wigner while for 7°(p — w) the p contributes significantly.

6.4.2 Coupled Analysis of Both Channels

The transition amplitude for p — w mixing, derived in section 6.4.1, is now used
to include the interference in the description of the data. The idea is to produce
the number of observed events (p — w) — 77y in both channels 7°(p — w) and
7%(p — w) events as a function of BR(w — 1v), BR(p — 1) and the relative
decay phase ¢. The production branching ratios in A were not treated as free
parameters since they are known [11] [13]. The simulation is based on Monte
Carlo data. The following event types are generated with CBGEANT according
to phase space:

e 11y events to simulate the channel 7°(p — w) (105,000 generated events).
e 71y events to simulate the channel n(p — w) (100,000 generated events).

These events are weighted in the 7y system with the dynamical function
|S|? which includes the branching ratios BR(p — n7y) and BR(w — 7n) in the
amplitudes T, and T, respectively. In addition, each MC event ¢ is weighted
with the decay angular distribution w(cos#;) given in eqn. 16. Hence the total
number of MC events after weighting is

NMC

NS =D 1Sif* - w(cosby), (67)
i=1

where NM¢ denotes the number of MC events before weighting. Note that in the
case of no p admixture, |S|? reduces to

1S;|? (no p) = |Pw,z-|2 - BR(pp — m,nw) - BR(w — 1) - T, - w(cos 6;), (68)

where P, is the simple Breit-Wigner function. This is used to normalize the
hole MC data set. The overall normalization is done such that N){f equals the
number of expected 7% and nw events, where w — 7y, present in the all neutral
data sample, i.e.

Nrow = N3, - BR(pp — 7w) - BR(w — 117),

exp

NI® = Ng,- BR(pp — nw) - BR(w — 1).

exp

(69)

The number of MC events after weighting is scaled to the expected number of
events with the factor f,
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;oo Nag
- MC
Neyf

_ Ngp - BR(pp — 7°,nw) - BR(w — 17) (70)
- NMC

Yic1 |Puil?- BR(Pp — m,nw) - BR(w — ny) - Ty, - w(cos ;)
N-

pp
NMC *

Yic1 |Puil?- Ty - w(cosb;)

Note that the normalization constant f is therefore independent of any branching
ratio. The number of simulated w — 77y events is now extracted in the following
steps:

1. The generated MC events are then passed through the offline analysis and
kinematic fit routine as described in section 3. The same cuts as for data
events are applied. The energy and momenta of the surviving events are
stored as well as the original MC values.

2. The n7y system of every surviving event is now weighted with the ampli-
tude f|S|?>w(cos ;) including both p and w contributions. The two decay
branching ratios and the mixing angle ¢ are given as an input to calculate
|S|2. Note that the original MC energies and momenta are used to weight
the events.

3. To extract the number of 7y events, the same analysis method and cuts as
for data events are applied (see section 6.1 and 6.2).

The production and decay branching ratios used for the simulation are:

BR(pp — 7r0w) (5.73 +£0.47) x 1073 [13],

BR(]_)p — 7T0p) = (1.72 + 0.27) x 1072 [25],
BR(ﬁp — nw) = (1.51 + 0.12) x 1072 [13],
BR(pp = np) = (5.7+1.5) x 1073,

The value for pp — np given here is the weighted average from available data
in ref. [16] and the error is the typical error on the individual measurements
and reflects the experimental situation®. These branching ratio are called ‘table
values’ in the following.

Since these branching ratios all have an error, the total weight |S|? too is not
error free. The error on a bin in a histogram filled with these weighted events is
calculated as explained in appendix C, including the error on |S|?.

(71)

The numbers of observed (p —w) — 1y events Ny in both production channels
(see section 6.1 and 6.2),

8However, this error has very little effect on the determination of the mixing parameters.
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Nops(m%(p — w) = 7°ny) = 233£72,
Novs(n(p —w) = my) = 111£17,

shall now be compared with the numbers of simulated events Ng;p,.

In a first step, to check for consistency with previous measurements and to
see if the number of observed events in the 7% channel can be explained with
p — w mixing, the two decay branching ratios for w — 17y and p — 7y are fixed
to their table values® [11]

(72)

BR(w —ny) = (8.3+21)x 1074,
BR(p—ny) = (3.8+0.7) x 1074,

and only the relative phase ¢ is varied. The result is shown in figure 50. The
number of simulated events in the 7% channel (triangles) and nw channel (circles)
are shown as a function of the relative phase ¢, which is varied in steps of 18° from
—180° to 180°. The error is calculated with the method presented in appendix
C. The hatched regions give the 1o range (68 % CL) of the observed number of
events in the 7°(p — w) and the n(p — w) channel, respectively.

The number of simulated events in the 7°(p—w) channel varies rapidly with ¢
(from 64 events at —155° to 189 events at 15°) and reaches the 1o range only for
¢ ~ 0. The data therefore clearly favours constructive p — w interference. How-
ever, the MC simulation always underestimates the number of observed events
in the 7°(p — w) channel (233 events) which suggests a larger branching ratio of
p— .

The number of simulated events in the 7(p — w) channel does not depend
strongly on ¢ and stays always, except for ¢ ~ —150°, within 1o of the observed
number of events. For ¢ =~ 0, preferred by the 7%(p — w) channel, the MC
simulation, with the table value of w — 7y [5] as a fixed parameter, produces a
larger number of events than observed. Thus a lower w — 77y branching ratio
than the table value is preferred.

As a general result, it is noted that the observed numbers of events in both
channels are consistent with the table values for BR(w — ny) and BR(p — 17)
for a relative phase ¢ ~ 0.

(73)

In a second step, it is tried to fit the p and w decay branching ratios and the rela-
tive phase ¢ to the data. The simulation method, which is very time consuming,
does not permit the continuous variation of the parameters. The only practical
method is to vary the three parameters in fixed steps and store the number of
events as well as the errors in a table for each triplet of parameter. To judge
whether a given set of parameters provides a good description of the data, the
x? between data and MC

]Vos_]\[sim2 -]\[os_]\fsim2
70 (p—w) n(p—w)

2 2 2 2
O obs + Ogim Oobs + Osim

9The branching ratio for p — 7y refers to the solution with constructive interference, while
the branching ratio for w — 77y is measured ‘model independent’.
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Figure 50: Comparison Data-MC. For the MC simulation, the decay branching

ratios for w — n7y and p — 0y are fized to their table values [11]. The two hatched

regions show the 1o range of the number of observed data events (horizontal lines).

The number of observed events in the 7°(p — w) channel can only be explained
with a relative phase ¢ ~ 0°, thus (p — w) interference is constructive.

is calculated, where o2, includes the error on branching ratios in eqn. 71. To

find the best description, the set of parameters for which x? is minimum has to
be found. Note that the x? defined here does not follow a x? distribution since
three parameters are fitted with only two data points. Thus the errors on the
three parameters cannot be estimated with the x? method.

Such a table has been generated with

BR(w — ny) : 11 steps from 0.5 to 1.5 (x table value), step size 0.1,
BR(p — ny) : 11 steps from 1.0 to 3.0 (x table value), step size 0.2, (75)
¢ : 11 steps from —50° to 50°, step size 10°.

This gives a total number of 1331 combinations of parameters. The minimum x?
is found at the lattice point

BR(w — ny) : 0.8 (x table value),
BR(p —ny) : 2.4 (x table value), (76)
b —20°.
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The fit shows a third order polynomial.
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polynomial. The minimum x? is found
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The x? distribution as a function of the two branching ratios is shown in
figure 51 for ¢ = —20°. The combination of branching ratios at x?2,,, is labelled
with ‘this measurement’. A region of equally good solutions around x2,, in the
center of the plot is observed. Figure 51 shows the general features of the coupled
analysis:

e The branching ratio BR(p — 77y) is not well determined by the present
analysis.

e The branching ratio BR(w — ny) is not very sensitive on BR(p — ny) but
decreases slightly with increasing BR(p — 1y). This is shown in figure 52
where the branching ratio BR(w — 7y) with the lowest x? has been plotted
for every branching ratio BR(p — 1).

e The combination of branching ratios from previous measurements (marked
with ‘table values’) lies within the region of low x*’s (x* < 1). Although
a larger branching ratio p — 7y is preferred by the present analysis, the
error is quite large (see below).

The one-dimensional x? distributions for BR(w — 7) and for ¢ are shown
in figures 53 and 54, respectively, where the other two parameters were fixed to
the values given in eqn. 76 (best values). To determine the position of lowest x?,
the two plots are fitted with polynomials. This is not done for BR(p — ny) since
the x? distribution is so flat that a fit will not improve the measurement. The
following values have a minimum y?:

BR(w — ny) : 0.80 (x table value),

¢ —18°. (77)

To estimate the errors on these values and on BR(p — 77y), the measured
numbers of events, as given in eqn. 72, are varied within the errors and the whole
coupled analysis is redone with this new set of parameters. The values found by
the fit are summarized in table 6.

| N(r’w) | N(w) [BR(p—m) [BRw—m)| ¢ |
upper limit | upper limit >3 1 25°
upper limit | lower limit >3 0.6 —5°
lower limit | upper limit 0.6 1.0 40°
lower limit | lower limit 1.4 0.8 —45°

Table 6: FError estimation for the coupled fit. The two lefthand columns give
the input to the coupled fit. Lower/upper limit means that the error is sub-
tracted/added to the experimentally observed number of events. The result of
the coupled channel fit is given in the righthand three columns. The branching
ratios are given in terms of table values.
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The lowest and the highest values found by this method are taken as the lower
and upper error for the best values. For the determination of the lower error for
BR(p — n7), a second table of simulated number of events was generated in
the range of 0.5 to 1.5 (x table value) for BR(p — n7y) while the other two
parameters were varied as given in eqn. 75. Since the upper error for p — ny
lies outside the generated table, it is assumed that the errors on p — 7y are
symmetric. With this error estimation, the result of the coupled channel fit is:

BR(p —ny) = (2.441.8) (x table value),
BR(w —ny) = (0.80+0.20) (x table value), (78)
¢ = (_181—2%05

or explicitly:

BR(p—ny) = (914+6.8) x 1074,
BR(w —ny) = (6.6+1.7) x 1074, (79)
¢ = (-18%57)".

The w — 17y branching ratio given here is fully consistent with BR(w — n7y) =
(7.05 4 1.19) x 10™* measured in section 6.1 assuming no p contribution in pp —
nw — nny. The relative phase ¢ measured here is in excellent agreement with
the determination of this angle in ref. [6]: ¢ = (=11 4 38)° (in their constructive
interference solution).
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7 Discussion

The experimental results from the present work as well as the results from pre-
vious measurements are summarized in table 7.

The branching ratio BR(w — 1) obtained with the coupled analysis of both
channels is consistent with the one measured in the nw channel assuming no p
contribution. The errors on the branching ratio obtained with the coupled analy-
sis are somewhat larger due to the larger number of parameters. The value from
the coupled fit including the coherent contribution from p, is slightly lower than
the one for the nw channel only, thus proving that a small coherent contribution
from p is present in the nw channel. However, within the statistical errors, the
p contribution indeed can be neglected in nw and the value measured in the nw
channel is therefore a good approximation of the w — 17y branching ratio.

The old standing ambiguity between constructive and destructive p — w in-
terference has been resolved in the present work since two different production
channels for the two vector mesons are considered in the analysis, namely 7°(p—w)
and n(p —w), and hence two different relative contributions from p. The coupled
analysis reveals the p — w mixing angle ¢ to be close to zero and p — w mixing is
therefore constructive. This is the first unambiguous measurement of the p — w
mixing parameters in the 77y system.

The measured values for BR(w — 77y) agree well with the constructive in-
terference solution of previous measurements. The relative decay phase ¢ given
by Andrews et al. [6] is completely consistent with the value measured in the
present work. Also, the value measured by Dolinsky et al. [7] is in excellent
agreement with the present measurement, even though the relative phase ¢ was
not a treated as free parameter but set to 0° or 180°, respectively. The branching
ratio BR(w — ny) reported by Alde et al. [5] is significantly higher than all other
measurements, and inconsistent with the one by Andrews et al.. Alde et al. have
used the charge-exchange reaction 77p — w n at 38 GeV/c as a source of w
mesons. Events at high momentum transfers |¢| were selected to reduce ‘most’
of the p — w influence on the w signal. However, no estimation of the remain-
ing contamination of coherent background from 77p — p n was made. Thus
the higher branching ratio could originate from an unresolved contribution from
p. The present work determines the branching ratio BR(w — n7y) with higher
accuracy than all previous measurements.

The branching ratio BR(p — 1y) measured in this work is only a by-product
of the coupled analysis of both channels. The error is too large for a meaning-
ful comparison with previous experiments [6] [7]. Since all production branching
ratios for p and w are fixed to their table values in the coupled analysis, the
somewhat large branching ratio BR(p — 1) could be explained by a systemat-
ically overestimated production branching ratio for p or a systematically under-
estimated production branching ratio for w. Some production branching ratios
(e.g. Pp — np) are not well-known or different experiments are in conflict with
each other (see refs. [13] and [16] for a compilation of the available data).

An upper limit for direct decay w — 3 has previously been published by
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author comment BR BR o) BR
w —ny p—ny w — 3y
[107%] [107] ] 107
this work pp — nw 7.05+1.19
this work coupled fit 66+1.7 [9.1+6.8] —1873
this work pp — mw < 1.9 at
95% CL
Andrews [6] constructive | 3.0773 [3.6+0.9 [ —11 +38
Andrews [6] destructive 20+ 7 54+1.1| 203+ 10
Dolinsky [7] constructive | 7.3+£29 |4.0+1.1 0
Dolinsky [7] destructive 35+£5 73115 180
Alde [5] 8.3+ 2.1
Prokoshkin [19] < 2.0 at
90 % CL

Table 7: Summary of experimental results from this work and from previous

measurements.
tive/destructive interference solution.

by Dolinsky, but set to 0° and 180°, respectively.

The comment ’constructive/destructive’ denotes the construc-
The relative phase ¢ was not measured

Prokoshkin and Samoilenko [19]. Their value is of the same order, but a com-
parision with value measured in this work is difficult since their analysis method
is not described. The present analysis yields a lower upper-limit with an even
higher confidence level.
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8 Conclusions

Antiproton-proton annihilation at rest into 7% and nw was used to study ra-
diative decays of w, particular to determine the branching ratio BR(w — 77)
and to search for the direct decay w — 3v. 63k 7w and 55k nw events were
reconstructed requiring w — 37. The resulting Dalitz plots were analysed. The
experimental results are summarized in table 8.

‘ measurement analysis method ‘ value

BR(w — 1) in nw (assuming no (7.054+1.19) x 10*
contribution from p)

BR(w — ) 7w - nw coupled analysis (6.6 £1.7) x 10~*

BR(p — 1) 7% - nw coupled analysis (9.1£6.8) x 10~*
relative phase ¢ | 7w - nw coupled analysis (—18758)°
| BR(w—3y) |in7'w | <1.9x107* at 95% CL |

Table 8: Summary of experimental results.

Two different methods were applied to extract the w — 1~y branching ratio:

1. In nw, the relative contribution from 7p is very small. The channel was
therefore assumed to be free of coherent background from p and the w —
77y branching ratio was measured directly by counting the number of events
in the Dalitz plot.

2. To gain information about the open problem concerning the sign of p — w
mixing, a coupled analysis of both w production channel was performed.
The p contribution was simulated using Monte Carlo events.

The two measured branching ratios BR(w — 7y) are completely consistent
thus proving that indeed the coherent contribution from p can be neglected in
nw.

The coupled analysis further determines the branching ratio BR(p — 1),
but with very large errors, and the mixing angle ¢ ~ 0. p — w mixing is therefore
constructive in the ny system. Furthermore, no ambiguities between constructive
and destructive interference were found.

In addition, an upper-limit for the direct radiative decay w — 37 was mea-
sured in the 7% channel. It was assumed that this process is purely electromag-
netic and has therefore the same dynamics as the process ete™ — 37, where the
positronium system has JF¢ =17,

The ratio of branching ratio

BR(w — 1)
BR(w — 7%y)

=(8.294+1.31) x 1073 (80)
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measured in the present work is in agreement with the prediction from SU(3) [5]

Nw — ) p% 1, 3
_ = =10.2 x 10 81
MNw—7%)  p29 cos” ¢ X (81)

where ¢ = 54.7° + 0, 0 = —17.3° is the pseudoscalar mixing angle and p, and p,
denote the decay momenta in the w rest frame.
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A The Kinematic Fitting Method

This Appendix describes the derivation of the kinematic fit method used in the
present work.
Regard the measurement of n parameters z;

7%= (29,29,..., 207, (82)

where the z; are connected by ¢ constraints (¢ < n):

fk(f):(), kzl,,q (83)
The parameters are measured with certain errors o;, as mentionend above. The
errors are gathered in the so called error matriz

o2 0 -+ 0
0 o052 0
G= : (84)
0 0 cee g2

n

The problem may be stated to find new, corrected values & by the minimization
of

T
= (#-7) G- (2°-7) (85)
where equation 83 must hold for the corrected values . The usually used method

to incorporate constraints among the variables is by the use of Lagrangian mul-
tipliers. The ¢ multipliers ; are gathered in a vector:

&= (a1, 00,...,0y)". (86)
With the introduction of @, the initial x? function transforms into
L=@"-2)7-G-(#°-7)+ 237 f(@), (87)

which is the Lagrangian function. f is usually nonlinear in Z and to solve the
problem f is expanded in a Taylor series arount Z °:

f@) ~ é-B-(#°-7)

=0 (59)
where
3f1/8371 afl/axn
B= : : (89)
0fy/0x1 -+ Ofy/0zn
and
e= (AEY),..., f(Z)T. (90)
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With the Taylor approximation made in equation 88, equation 87 becomes

L=x°-2)"Gx°—-1)+23a"(¢— B@° - 7)). (91)

The x? with the given boundary condition is minimal if L has a vanishing total
derivation, i.e. if

dL =22 - )G d(z° - %) —2a"B d(z° - &) = 0, (92)

which is equivalent to

2(2° - 7)7G —2a"B = 0. (93)

Transposing equation 93 leads to

70— i=G'BTa. (94)

To determine the vector @, one inserts this equation into equation 88 and gets

@ = (BG'B") e (95)

Therefore the best estimation for the real value Z is given by

i=7°- G 'BY(BG'BT) (96)

Since f generally is a non-linear function and the first order Taylor series is
only an approximation to the real function, the output of equation 96, £!, only
gives a first approximation to the best estimation Z. Equation 96 therefore has to
be iterated with Z ! as the new starting value. Only B and ¢ have to be evaluated
again, the error matrix G does not change with the proceeding iteration. The
convergency criteria for the iteration is usually defined through the y2: if the
changement of x2 is small enough the iteration is stopped and the last vector &'
from iteration step [ is assumed to be close to the best estimation Z.
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B The Normalization of 6y Background Chan-
nels

In this appendix, the derivation of the overall normalization constant f for 6+
MC events, used in subsection 5.1 is described. The derivation of this constant is
done here with events of the type 7%7%n, but the results are the same for 7%7%7°
and 7onn.

Let us define the following quantities:

NMC . Number of generated Monte Carlo events of the type 7%7%n,
N é‘jﬁ? : Number of Monte Carlo events after weighting the events,
Nyogo, : Number of events in the 7°7% data Dalitz plot,
Nyins @ Number of bins in the 7%7% data Dalitz plot,
n; : Number of entries in the bin in the 7%7%) data
Dalitz plot in which the event 7 falls,
ny : Number of entries in the bin k in the 7°7%n data Dalitz plot,
N5k, : Number of 797%) events expected in the all

neutral data sample.

The weight w; for MC event ¢ is then defined as

N bins

Nwoﬂon

w; = n; - (97)
The effective number of MC events (i.e. the number of MC events after weighting)

is given by
NMC

Né‘/’ﬁ? = ; w. (98)

To compare MC events directly to data events, the effective number of produced
MC events has to be scaled to the expected number of 7%7% events,

NMcC
Ny = f-NYE =1 Y w, (99)
i=1

which defines the global normalization constant f. For the determination of f,
the definition of w; is used and the sum over all MC events is calculated:

ex NMC
Nﬂ‘)gon = I Ei]\?ﬂlec i Ni; (100)

f . Ei:l ’]’I,z' NW%’/:;” .
Assuming that the MC 7%7%; Dalitz-Plot is completely flat (NM¢ > 1) before
weighting and contains the same number of bins as the measured 7%7%) Dalitz

plot, the sum over all MC events in eqn. 100 can be approximated by

99



Event type NMC NETPp f

797079 6 | 260,000 | 2,370,200 + 424,000 | 9.12 + 1.63
7TO7T077, — 67 | 905,900 | 1,006,700 4+ 196,300 | 1.06 £ 0.22
nm — 6y | 110,000 | 117,700 = 25,200 | 1.07 £ 0.23

Table 9: Summary of 6y MC events. NMC: Number of generated MC' events,

NP : Number of expected events in the all neutral data sample used in this work,
f: scaling factor.

NMC Npins NMC

i~ Y ny- : (101)
i=1 k=1 Nbins

With this approximation, eqn. 100 becomes

MC .
NEP, = f VMO Nusws

7T07T0’I’) { N7|'07l'077
f . Npins n NMC Npins
k=1 "k Ny N 0.0, (102)
= f- Nyox0y arMC
N7r07r0n

— f_NMC

since chvi"fs ng = Ngpogo,. Hence the factor f is the fraction of expected and
generated 7079 events,

NZors
f= i (103)

The total weight W; for MC event ¢ is therefore given by

exp
N7r07r077 . Npins

n; - .
MC g
N Nyogo,

Wi=f w =

(104)

The branching ratios used to calculate the number of expected events N¢*P
are [11] [12]:

BR(pp — 37%) =

BR(pp — m7%) =

BR(pp — ) =

BR(n—vy) =

The branching ratio BR(pp — all neutral) has been previously measured by the
Crystal Barrel Collaboration in ref. [26]:

6.2 +1.0) x 1073,
6.7+ 1.2) x 1073,
2.0 +0.4) x 1073,
38.8 & 0.5)%.

(105)

o~~~

BR(pp — all neutral) = (3.9 + 0.3)%. (106)

The number of expected events is therefore given by
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Nall neutral w0070

BR(pp — { ©°7’n } — 67), (107)
o

Nexp —

BR(pp — all neutral)

where N neutral qenotes the number of analysed all-neutral events (see chapter
4):
Noll neutral _ 15 457 788 (108)

The simulated 6+ channels, the number of produced Monte Carlo events N™¢,
the number of expected events in the data set and the normalization constant f
are summarized in table 9.
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C Errors on Weighted Histograms

The method which was used to simulate background contributions (presented in
the section 5 and appendix B) requires the weighting of events. When a histogram
is filled with these weighted events, the error no longer equals the square root of
the bin entry but depends on the weighting constants. The statistical error on a
bin in such a histogram shall be derived in this section.

Assume a bin in a histogram for which

k
N=> q. (109)
i=1
The error on N is then given by:
k
% =Y 0(a). (10)
i=1

In the case of a weighted histogram, ¢; has the general form

g = Wi-m, (111)

where W; is the weight and m; the number of entries before weighting. The error
on g; is therefore:

2 9g; 2 0gi 2

“ = (a—;r]ai 'Umi) + (aljlvi "ow;

(Wi - vm)? + (my - ow;)? (112)
= W?-m;+m-opy.

Q
I

For m; = 1, which is the case when every single event is weighted, eqn. 112
reduces to
2 2 2
i 113
= I/Iff(l—kr%[,i), (113)

where Ty, = ow,/W;. The error on one bin entry is therefore W7 with a correction
(14 rw,) if W; itself has an error. With this relation, the error on N is

k
=YW (1+1},). (114)
i=1
Following the definition of W; in eqn. 104, the error on W is 13y, = 77 + 75, .

The error on f is given in tables 9 and 5, whereas the error on wj is 7, = \/n;/n;
(see eqn. 97 for the definition of w;).

62



References

[1] M. Gell-Mann: A Schematic Model of Baryons and Mesons. Phys. Lett. 8
(1964) 214.

[2] K. Peters, E. Klempt: The suppression of s pair creation from tensor meson
decays. Phys. Lett. B 352 (1995) 467-471.

[3] C. Amsler and F. Close: Is fo(1500) a scalar glueball? Phys. Rev. D 53
(1996) 295.

[4] P.J. O’Donnell: Radiative Decays of Mesons. Rev. Mod. Phys. 53 (1981)
673.

[56] D. Alde et al.: Model-independent Measurement of w — 7y Branching Ratio.
Z. Phys. C61 (1994) 35.

[6] D.E. Andrews et al.: 1y Decays of p°, w and ¢ Mesons. Phys. Rev. Lett. 38
(1977) 198-201.

[7] S.I. Dolinsky et al.: Radiative decays of p and w mesons. Z. Phys C42 (1989)
511-518.

[8] E. Aker et al.: The Crystal Barrel, Proposal. CERN/PSCC/85-56, 11 Octo-
ber, 1985.

[9] Crystal Barrel Collaboration, E. Aker et al.: The Crystal Barrel spectrom-
eter at LEAR. Nucl. Instrum. Methods A321 (1992) 69-108.

[10] S. Brandt: Datenanalyse. Bibliographisches Institut, Mannheim 1981.

[11] Particle Data Group: Review of Particle Properties. Phys. Rev. D 50 (1194)
1.

[12] Crystal Barrel Collaboration, C. Amsler et al.: Coupled channel analysis of
pp annihilation into 797%70, 797% and 7Onn. Physics Letters B 355 (1995)
425.

[13] Crystal Barrel Collaboration, C. Amsler et al.: Antiproton-proton annihila-
tion at rest into two-body final states. Z. Phys. C 58 (1993) 175-189.

[14] C. Amsler, J.C.Bizot: Simulation of Angular Distributions and Correlations
in the Decay of Particles with Spin. Com. Phys. Comm. 30 (1983) 21-30.

[15] C. Strassburger: S- and P-wave contributions in 7°

Crystal Barrel internal note.

w and nw final states,

[16] C. Amsler and F. Myhrer: Low Energy Antiproton Physics. Annu Rev. Nucl.
Part. Sci. 41 (1991) 219-267.

63



[17] M. Deutsch: Annihilation of Positrons. Progr. Nucl. Phys. 3 131.

[18] A. Ore, L. Powell: Three-Photon Annihilation of an Electron-Positron Pair.
Phys. Rev. 75 (1949) 1696.

[19] Yu. D. Prokoshkin and V. D. Samoilenko: Experimental Evidence for a Rare
Radiation Decay w — m7%y. Physics - Doklady 40 (1995) 273-275.

[20] S. Coleman and S. Glashow: Departures from the Eightfold Way: Theory of
Strong Interaction Breakdown. Phys. Rev. 134 (1964) B671-B681.

[21] S. Goldhaber et al.: Theory of p—w Interference in 77~ Production. Physics
Letters 30B (1969) 249.

[22] H.B. O’Connell et al.: Rho-omega mixing, vector meson dominance and the
pion form-factor. HEP-PH/9501251.

[23] M.J. Igbal et al.: Mesonic Width Effects on the Momentum Dependence of
the p — w Mixing Matrix Element. NUCL-TH/9504026, submitted to Phys.
Rev. Lett.

[24] N.N. Achasov, G.N. Shestakov: Elem. Chast. At. Jadra 9 (1978) 48.

[25] B. Armenteros, B. French, in High Energy Physics, ed. E. H. S. Burhop.
London: Academic 4 (1969) 237.

[26] Crystal Barrel Collaboration, C. Amsler et al.: Antiproton-proton annihila-
tion at rest into wm®7®. Physics Letters B 311 (1993) 362-370.

64



