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Abstract

1.6 - 10° events taken in October 1993 with a K3-trigger (no hit in PWC 1, at least
to hits in layers 20 and 21) are selected and the acceptance corrected Dalitz plots for the
final states KgKom° and K9K9n are produced. 10046 events of KoK om with one charged
K2-decay have been found and 5782 events with both Ko decaying into 7+ 7~ . Due to
limited phase space the statistics in the final state K2K2n is very low (370/171 events).
The Dalitz plots of both channels are almost free of background and the acceptance (in
particular the strong trigger effect) is well understood.

The partial wave analysis was done for the 10046 K2 K27r%-events with one neutral K3-
decay. Two scalar resonances in K Kare required, the f3(1370) (M = 1439130 MeV/c2, T =
360 & 50 MeV/c?) and the f3(1500) (M = 1515+ 5 MeV/c?, T = 8811° MeV/c?) which
are parametrized in the fit in terms of a 1x1 K-matrix.

The ay(1450) can neither be confirmed nor excluded, equally good fits are obtained
with a contribution between 0 and 25 %. The effect of the ay(1450)-contribution on the
fo-poles and its influence on 72 —/72, has been studied.

A clear signal at the K K-threshold is observed, but the contributions of f,(975) and
a0(980) cannot be dissolved from the K3 K3m%-channel alone.

The (K7)s-wave has to be fitted with two different production strengths to pp for the
pole and for the effective range term. Its contribution is weak but it is very important for
the description of the data due to its strong interference with the (K K)s-wave. Fits with
a simplified parametrization using the pole term only give similar results and are much
easier to handle in practice.

The results of intensities and production rates for all resonant states are compatible
with results from other channels except the prediction of the as(1320)-intensity from the
nmo7%- channel.
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Chapter 1

Data taking and data selection

1.1 The KZ-Trigger of the 10/93 run

In October 1993 we have recorded more than 1.6 million events using the following trigger
conditions :

e no signal in PWC 1

e at least two hits in layer 20 and 21 of the JDC

The first trigger step rejects those 96% of events where charged particles are produced
at the primary vertex of the pp -annihilation, the second step then rejects the all neutral
events.

Hence this trigger selects final states where one or more K2, decaying into 7+ 7~ outside
of PWC 1, and no other charged particle is produced. In tab. 1.1 the acceptances of this
trigger are given for some important channels, with one respectively two charged K3-
decays per event.

In fig. 1.1 possible topologies of K9-decays are shown. The dotted lines represent the
K2 which are invisible for the detector and the full lines the charged pions. A decay like
in a is accepted by the trigger, but b and c are not. In b the decay vertex is outside the
PWC 1 but one charged pion is boosted backwards and hits the layers of the inner PWC.
In c the opening angle of one pion with the z-axis is so small that it gives no signal in the
outer layers of the JDC.



channel

KgKsm® | KsKgn

KYK% | KOKO [ KOKOrO70

1 charged and

2 charged and

1 neutral K2-decay 293 % | 178 %

0 neutral Kg-decays 92% | 31%

53 % | 45,5 % 19.8 %

0,3% | 22,3 % 4.2 %

Table 1.1: Probabilities for different K%K ?2X -channels, that all charged tracks are pro-

duced at least 2.5 cm from the z-axis. Results are obtained by a pure phase space simu-
lation using GENBOD [2]
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Figure 1.1: The K2-trigger :

dotted lines refer to K2, full lines to the charged pions.

Topology a is accepted by the trigger, b (> 0 hits in PWC 1) and ¢ (< 2 hits in JDC
layer 20 or 21) are rejected.



As shown in fig. 1.2 the data taking was affected by some problems at the beginning
of the run period. Fig. 1.2a shows the z-component of the reconstructed vertex for events
with exactly two charged tracks. A small peak can be seen at the position of the silicon
entrance counters and many annihilations far behind the target.

The latter ones can easily be cut out in the data selection, the peak in the silicon
counters will disappear during the analysis. In fig. 1.2b we can see that these problems
have been solved during the run period.

Monte Carlo simulation

In order to reduce computing time (see tab. 1.1) events are only fully generated if the
distance between the charged K2-decay and the z-axis is at least 2.5 cm. Before the
simulation of the tracking of a particle through the detector is performed the information
about its four-vector and its life time is provided in the routine GLTRAC of GEANT and
a fast decision can be made if the complete event shall be generated or if one wants to
switch immediately to the next event.

In order to justify this method 150 000 events with charged K3 decays inside the PWC
1 have been generated and only less than 1073 of them fulfilled the trigger conditions.
This is mainly due to the high efficiency of the PWC.

Software versions

In the October 1993 run 1 665 132 events have been recorded with the K2-trigger, 1 605
571 show indeed no signal in PWC 1 and at least two hits in layers 20 and 21 of the JDC.
For the reconstruction of these events the following software versions have been used :

e CBOFF 1.30/05 [3]

LOCATER 2.01/06 [4]

GTRACK 1.36/00 [5]

BCTRAK 2.01/06 [6]

CBKFIT 3.09/00 [7]

CCDBCB 2.04/04 [8]

The Monte Carlo simulation was performed with the version 3.21/04 of GEANT [9]
and CBGEANT 5.00/00 [10] and [11]. For the simulation of the hadronic interactions of
the charged pions in the crystals the FLUKA option [12] [13] has been applied.
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Figure 1.2: a shows that at the beginning of data taking many events with annihilations
in the entrance counters and far behind the target have been recorded. This could be
improved later (b).

1.2 The decay Kg — nt 7~

Number of charged tracks

The selection of the final state allows one and two charged K2-decays in each event :

pp — KY(—=nt 7 ) KY(—7° %) 70 (1.1)

pp — K¥(—»rt 77 ) KY(—=nt 77 ) n° (1.2)

Therefore all events with exactly two or four charged tracks are selected.

The secondary vertices

In the reconstruction the TCVER3 routine of LOCATER was used which is best suited
if secondary vertices from decays like K2 — 7+ 7~ have to be found [14].

e Exactly one respectively two secondary vertices are required for events of type ( 1.1)
respectively ( 1.2)

e All events with vertices far behind the target are rejected by a cut on the z-
component of the secondary vertices : zy < 10 em (fig. 1.2 a).

e Not all of the reconstructed vertices are found outside the PWC 1. A large amount
of data shows vertices much closer to the z-axis (fig. 1.3a), but Monte Carlo data
indicate that most of these events are coming from background channels. In case a



secondary vertex is found to be closer than 2.5 cm from the z-axis the event will be
rejected.

Secondary vertices which are found close to the origin are mainly due to y-conversions
into eTe™ leading to a very small opening angle between the arising tracks. In the recon-
struction the electrons are assumed to have the mass of a pion, hence the invariant mass
of the ete -pair becomes two times the pion mass. Fig. 1.3b and ¢ show that charged
pairs with two times the pion mass are indeed correlated to a small xy-vertex component
and to a small opening angle.

It is evident that these entries correspond to ete-pairs with such a small opening
angle that the reconstruction of the correct secondary vertex failed and it is instead found
to be zero.

Opening angle between charged tracks

Fig. 1.3c shows that the cosinus of the opening angle between the two charged tracks
coming from the decay K% — 7 7~ is always smaller than 0.75, therefore all events with
cos(mt,m™) > 0.75 will be rejected.

1.3 The photons in the calorimeter

Number of PEDs

The standard golden-+ cuts have been used for the definition of a PED.

The two pions of the neutral K2-decay and the primary pion decay with 98.80 % [1]
into two gammas. So we expect two respectively six PEDs which are not correlated with
a charged track.

Hadronic splitoffs are identified by TAXI [22] and the electromagnetic splitoffs by
DOLBY-C [21]. The four-vectors of the hadronic splitoffs are not added to the total
energy and total momentum of the event, because they are included in the four-momentum
measurement of their parent charged track in the JDC.

In addition the kinematic fit will be used as a further option to identify splitoffs
(analogous to USDROP, see chap. 1.4), therefore all events with 2,3,6 and 7 PEDs are
accepted at this stage.

Total energy and crystal type 13

A wide cut on the total energy (1.55 GeV < Ei,; < 2.20 GeV') was applied which rejects
among others events from channels involving KoK?.
Finally all events with PEDs in crystal type 13 are rejected as usual.
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Figure 1.3: For many real events the charged vertex was found by the reconstruction at
the origin (a) but this is not the case for the Monte Carlo data of the final state K3K o .
From b and c one can conclude that these events are mainly due to -y-conversions into
ete™. d shows the invariant 7™ 7~ -mass spectrum before the kinematic fit.
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Statistics of the preselection

1) pp — Kg(ﬂ+7r_) ng(ﬂ'oﬂ'o) 7T0/’)7

Experiment Monte Carlo

K§K§m | K§Kn

Events (MC : 14 (K9—7" 77 ) > 2.5 cm) 1 665 132 835 572 171 701
(without bias corresponding to)* (~ 2851 782) | (~ 964 612)
trigger conditions ok. 1605 571 342 913 60 054
2 charged tracks 857 666 290 059 51 412
vertex : rzy > 2.5cm A 1, <10 cm 579 101 258 695 47 232
charge sum = 0 536 516 251 295 46 168
energy sum = 1.55 - 2.20 GeV 292 069 242 781 44 263
cos(Pr+,P-) < 0.75 145 545 242 007 44 184
no PED in crystal type 13 129 278 211 344 37 533
6 PEDs 30 956 94 191 16 072
7 PEDs 14 264 28 202 5 895

2) pp — Kg(w+7r_) Kg(w+7r_) 70 /n

Experiment Monte Carlo
KIKI | KIKY)
Events (MC : ry (Ko—nt 77 ) > 2.5 cm) 1 665 132 319 890 74 264
(without bias corresponding to)* (~ 3 477 065) | (~ 2 395 613)
trigger conditions ok. 1605 571 184 645 31 695
4 charged tracks 286 310 115 945 20 141
2 vertices : Tz >2.5cm A 1, <10 cm 32 371 55 203 9 811
energy sum = 1.55 - 2.20 GeV 24 081 51 953 9 317
cos(Pp+, Po-) < 0.75 21 875 51 676 9 259
no PED in crystal type 13 20 646 48 284 8 659
2 PEDs 8 457 21 468 3 951
3 PEDs 3193 12 249 1972
Table 1.2: *Monte Carlo events with the xy-component of the secondary vertex
K2—7t 7= being less than 2.5 cm have not been fully generated since the efficiency

of the inner PWC 1 is close to 100 %. The reliability of this step will be discussed in
chap 1.5.
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1.4 The kinematic fit

1.4.1 Kinematic fit with one neutral Kg-decay

For events of type ( 1.1) the kinematic fit is done with respect to the following hypotheses

(la) pp — K37t 7= vy (K3 — 70 79)
(1b) pp — K2 K& vy
(lc) pp — K& K§ 7° (n)

In case of 7-PED events the first hypothesis is applied seven times, each time one of
the PEDs is dropped. This procedure acts as an additional method to identify splitoffs.

The unknown vertex of the decay K2—7® 7% makes it not advisable to apply a normal
4C-fit at the first step as it is usually done in other channels, since the shifted vertex
leads to a wrong measurement of the three-momenta of the gammas. They have to be
corrected in the first step of the kinematic fit, otherwise too many events would get lost
(and a systematic effect would be introduced into the analysis !).

An option to fit the vertex coordinates of K2—7° 7 is implemented in the CBKFIT
(’CASE 8’) but so far the fit systematically rejects events where this vertex is close to the
origin [15]. This can be shown by the investigation of Monte Carlo data where the ’true’
(= generated) vertex is known.

For all Monte Carlo events with CL > 1% according to hypothesis (1a) the ’true’
vertex distribution (fig. 1.4b) is different from the one of all generated Monte Carlo data
(fig. 1.4a). If r. is the value where the distribution has reached 1/e of the value at
r = 0 (r being the distance between the decay vertex and the z-axis) then the value
for data accepted by the fit (r¢® = 2.8 c¢m) is larger than for the complete data sample
(rat = 1.8 cm).

It is suggestive to take now all the events rejected by the first hypothesis and to do the
same kinematic fit again but setting the vertex of the neutral K2-decay in the fit to (0,0,0)
("CASE 1’ in CBKFIT). Fig. 1.4c shows the ’true’ vertex distribution of those events with
CL > 1% according to hypothesis (1a) and for them one gets r¢! = 1.2 cm (which is now
of course much smaller than r?!). However, if the events in fig. 1.4b and 1.4c are added
(fig. 1.4d) then the vertex distribution of the generated events and of all events accepted
by this fit procedure (r¢®+t¢! = 1.8 em = r®) agree very well. Therefore it can be
concluded that this method to fit events with a neutral K9-decay is very reasonable and
successful though it looks somehow artificial at a first glance.

After the first hypothesis the vertex of the neutral K2-decay is fixed and also the
gammas which belong to it. Now hypothesis (1b) is applied and for all events with
CL > 1% according to this hypothesis the invariant mass spectrum of the two single
gammas shows clear peaks at the 7%~ and at the np-mass (fig. 1.8).

Finally events are fitted to hypothesis (1c¢) requiring the confidence level being larger
than 5%. Results are shown in tab. 1.3.

12
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Figure 1.4: Vertex reconstruction of the decay K% — 7° m

0

a : ’true’ vertex distribution of the complete Monte Carlo data sample.
b : ’true’ vertex for all events with CL > 1% with respect to hypothesis (1a).

c : ’'true’ vertex for all events with CL > 1% with respect to hypothesis (1a) if the vertex
coordinates are set to (0,0,0) in the kinematic fit and CL was < 1% for the free vertex
fit.

d : ’true’ vertex for all events in b and c
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Experimental Monte Carlo Monte Carlo
data K2K)r" K2K?2n
vertex | vertex || vertex | vertex || vertex | vertex
Hypothesis CL free | (0,0,0) free | (0,0,0) free | (0,0,0)
before CBKFIT - 45 220 122 393 21967
KYntm=yy
K2—n70 >0.01 || 10 978 | 4 589 || 53 666 | 20 213 8046 2774
K3Kgyy
Kl—mtn~
K%—mO70 >0.01 | 9094 | 3370 || 39 959 | 13 410 5809 1736
K2K2r" >0.05
K2K2n <0.01 || 7491 | 2555 | 33492 | 11 296 11 6
K2K?2n >0.05
K2K 27" <0.01 211 159 3 1] 3515 | 2951

Table 1.3: Statistics of the kinematic fit with one neutral K2-decay.
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Error scaling and adjustment of the pulls

Due to remaining systematic uncertainties caused mainly by the unknown neutral K3-
vertex and due to background from other channels the confidence level distribution (fig. 1.7)
is not completely flat with a sharp peak at zero as it would be in the most idealistic case.
It was pointed out by R. McCrady [16] that it could be advantageous in that case to
adjust the pulls according to the following procedure.

For each kinematic variable the pulls are plotted for different CL-cuts and the widths
of the pulls are determined in dependence of the CL-cut by a fit with a Gaussian. It
turns out that the width is decreasing linearly with increasing confidence level cut, so the
correction of the errors should be done in that way that the extrapolation to a CL-cut of
zero leads to o(pulls) = 1.

As an example the pulls of tg()\) are shown in fig. 1.5 for different CL-cuts and the
fitted mean values and widths are given.

Fig. 1.6 shows the result of this procedure for experimental data after scaling the
errors. Different scaling factors for the elements of the covariant error matrix have been
used for the kinematic fit with and without fitting the vertex of K3—7n® 7% and for fitting
experimental and Monte Carlo data (tab. 1.4). In order to center the pulls exactly around
zero a constant value has been added to tg(\) and 1/P,, has been multiplied by another
scaling factor.

0 |VE| ¢ |1/Py [tg(\) | ¥ | *1/Pzy | +tg())
Experimental CASE 8 | 1.00 | 0.95 | 1.10 | 1.10 | 1.15 | 1.25 | 0.992 | -0.012

data CASE1|1.00(1.20|1.00| 1.10 1.15 | 1.25 0.980 -0.017

Monte CASE 8| 1.10 | 1.00 | 1.20 | 1.25 1.20 | 1.25 1.000 -0.005

Carlo CASE1|1.05|1.00|1.10| 1.05 | 1.22 |1.15 0.990 0.000
Table 1.4: columns 1-6 : The values of the covariant error matrix used in CBKFIT

are multiplied by the scaling factors in this tabular in order to adjust the pulls.

column 7 : The kinematic variable 1/P,, used in CBKFIT is multiplied by this factor
in order to center the pull of 1/P,, around zero.

column 8 : Added to the kinematic variable tg(\) in order to center the pull of tg(\)
around zero.
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oulls of tg(\) for different CL—cuts
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Figure 1.5: As an example for the way how the pulls have been adjusted the pulls for
tg(A) are plotted for different CL-cuts. For each of these cuts the respective pull is fitted
with a Gaussian. The values M and o are the mean and the width obtained by the fit.
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Figure 1.6: The errors have been adjusted in that way that the width of each pulls would
become 1 for a hypothetical CL-cut at 0. P1 and P2 are the parameters obtained by
fitting the values with a linear function.
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Figure 1.7: The confidence level distribution for the hypothesis pp — K9 7 ©~ ~~y with
K?% — 7% 7% . The small histogram shows all bins, the first bin is skipped for the large
histogram.
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Figure 1.8: Before the kinematic fit with respect to the final hypothesis is done the
invariant yy-mass shows clear signals at the 7°- and at the n-mass. Both signals are
almost free of background and the masses and widths obtained by a fit of the peaks with
a Gaussian agree very well with the values of [1].
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Quality of the Kg-signals

From fig. 1.9a and b the mass and the width of the K2 can be determined by a Gaussian for
the experimental and for the simulated data. The widths correspond to the experimental
resolution.

Before adjusting the pulls the mass of the experimental data spectrum is shifted to
lower values. After the adjustment it agrees quite good with [1] but a slight asymmetry
remains. This indicates a slight systematic error in the experimental measurement, maybe
due to the fact that the beam was steered a little bit below the beam axis in the 10/93
run because of problems with gas bubbles. The effect, however, is very small and will not
cause any problem for the further data analysis.

The measurement of the K2 via its neutral decay mode definitely improved by de-
terming the vertex coordinates with the kinematic fit though it cannot compete with the
measurement via its charged decay mode.

The K2-mass acts as a constraint in the kinematic fit, but the resolution of its vertex
coordinates and of each component of its four-vector can be determined from Monte Carlo
data. The difference between measured and ’true’ value is plotted and then fitted with a
Gaussian (fig 1.10).

It turns out that the measurement of the z-coordinate of the secondary vertex of the
neutral K2-decay (fig. 1.10d and f) is almost as good as for the charged decay (fig. 1.10b),
in the xy-plane the result is definitely worse (fig. 1.10a,c and e).

Tab. 1.5 summarizes the resolution of the vertex and four-vector components, the
resolution of the Dalitz plot variables will be shown in chap. 1.6.
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Figure 1.9: After adjusting the pulls (solid line) the peak of the K in the 7+ 7~ -invariant
mass spectra agrees almost perfectly well with the value of [1] (M(K2) = 497.67TMeV/c?)
for both experimental (a) and Monte Carlo data (b). For the for experimental data it
was slightly shifted to lower mass before the adjustment (dotted lines).

Table 1.5: The reconstruction quality of the neutral decaying K3.

Differences between KY = nt o™ K% — 7% 70
generated and CASE 8 CASE 1
reconstructed values Mean | Width | Mean | Width | Mean | Width
Vertex : xy-plane [cm] 0.60 | 0.25 0.60 | 1.28 - 1.12
Vertex : z-component [cm] || -0.11 | 0.45 0.17 | 0.48 | -0.12 | 0.45
Momentum [MeV /c] 0.83 | 1542 || 1.07 | 6.83 | -2.96 | 8.15
Energy [MeV] 2.65 | 14.69 1.23 8.82 -1.84 8.15

The four-vectors

obtained from the kinematic fit agree very well with their ’true’ values though the recon-
struction of the vertex coordinates in the xy-plane is not yet perfect. For the charged
decay of the K2 the four-vectors are taken from the LOCATER bank.
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Vertex resolution
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Figure 1.10: The vertex resolution is defined as the difference between the ’true’; i.e.
generated, values of the Monte Carlo simulation and the values obtained by the kinematic
fit. The resolution of the z-coordinate is equally good for charged and neutral K2-decays,
in the xy-plane the resolution is definitely better in case of charged K3-decays.
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1.4.2 Kinematic fit with two charged Kg-decays

Since two secondary vertices have already been found in each event of this data subset
by the reconstruction and all tracks are assigned to a vertex, these informations should
be imposed on the kinematic fit. Therefore only the two following hypotheses are applied
for these data :

(2a) K§ K¢ vy
(2b) K§ K¢ 7°(n)

The same method as in chap. 1.4.1 has been applied for adjusting the pulls (fig. 1.11)
scaling factors are given in tab. 1.6). Since there are no such uncertainties in these events
like the unknown vertex of a neutral K2-decay, the confidence level distribution (fig. 1.12)
does not show such a smooth decrease between 0.01 and 0.2 as in fig. 1.7.

0| VE| ¢ |1/Py |tg(\)| ¥ | ¥1/Pxy | +tg()\)
Experiment 1.1211.02 1097 | 1.07 | 1.17 | 1.25 0.990 0.000
Monte Carlo || 1.50 | 0.91 | 1.19 | 1.07 | 0.90 | 1.09 1.000 -0.005

Table 1.6: Scaling factors for the kinematic fit with two charged K2-decays. The meaning
of all values is identical to those of tab. 1.4

Tab 1.7 summarizes the results of this kinematic fit and the applied CL-cuts.

Experiment Simulation

Hypothesis CL K2K2m% | K2K?2n
before CBKFIT - 11 650 33 717 5923
K§Kgyy

KY—rtr~

Kl—mtr™ >0.01 6 564 19 941 3 421
K2K2r® >0.05
K2K?2n <0.01 5 782 18 388 0
K2K?2n >0.05
K2K2r® <0.01 141 0 3 303

Table 1.7: Statistics of the kinematic fit with two charged K3-decays.
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Figure 1.11: The errors have been adjusted in the same way as for events with one neutral
K?%-decay. This figure is equivalent to fig. 1.6
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Figure 1.12: The CL-distribution of events with two charged K2-decays. Events with
CL < 1% will be rejected.
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Figure 1.13: The masses and widths of the peaks in the vyvy-spectrum before the last step
of the kinematic fit agree very well with the nominal values of m° and 7.
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1.5 Background in the Dalitz plot KK gm’

The remaining background in the Dalitz plot of the final state K9K97° can be estimated
in two different ways.

Invariant mass spectra

The first way to estimate the background is to look at the invariant mass spectra. The
7t 7 mass spectrum before the kinematic fit (fig. 1.14a) shows that triggering on K§
— w7 and the reconstruction of the charged tracks and secondary vertices works very
well, so that almost all background in the KgK27" final states must come from other
K?2K?2-channels (events from KJK?-channels have been excluded by the cut on the total
energy).

The ~yy-mass spectrum for all events with CL > 1% with respect to hypothesis (1b)
or (2a) is shown in fig. 1.14b. There is now - before the final hypothesis - almost no
background anymore below the 7%-peak. From fig. 1.14b one can estimate that the amount
of background events in the Dalitz plot will be less than 3%.
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Figure 1.14: The K2-signal in the invariant w7~ -signal spectrum and the 7°-mass in the
invariant yy-mass spectrum. From the latter one can estimate the total background in
the Dalitz plot being less than at least 3%.
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Simulation of possible background channels

Another way to estimate the background is to generate events of the possible background
channels and to analyze them in the same way as the data. Taking into account the
absolute branching ratios of these channels and the values of tab. 1.1 the amount of
background events in the Dalitz plot can be estimated.

In tab. 1.8 the investigated background channels and their contribution is shown.

background BR(pp — fully events in events in
channel K2K2X) | generated | Monte Carlo | experimental
(K2K?2X) [1074] Dalitz plot | Dalitz plot
KIK3n®

Tzy < 2.0 cm 7.5+0.3 150 000 30 90 £ 18
KUK <005 | 45933 9 <4
K2K2n(n—v7) 0.97+£0.16 | 171 701 4 0.3
KOK%w(w—ry) | 0.924+0.14 | 26 897 3 0.6
KOK970 70 < 0.09 39 706 2 <6

Table 1.8: Different possible background channels of the final state K$Kom® have been
generated and their contribution in the Dalitz plot has been determined. Some of these
channels can only feed through if PEDs are lost or misidentified as splitoffs or if splitoffs
are misidentified as PEDs.

Due to the excellent trigger performance any background can only come from other
K?2K?-channels. The simulation however shows that none of the possible channels will in
fact contribute significantly under the assumption that all physical processes, including
the hadronic interaction of the charged pions in the barrel, are well understood. The only
background comes from K2K?2r’-events with a vertex closer than 2.5 cm from the beam
axis. These events have not been fully generated by Monte Carlo since the effect is small
(< 1%) and a large amount of computing time was saved (infact it is not real background
but a slight uncertainty in the Monte Carlo simulation).

From fig. 1.14 it was estimated that the background is less than at least 3%. This,
however, was the most pessimistic conclusion drawn from the invariant yy-mass spectrum.

Hence it is justified to claim that the physical background from other channels is
negligible in the Dalitz plot of the final state K2Kom .
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1.6 The Dalitz plots of pp - KgKon’ and pp - KoK 2n

The resolution of the Dalitz plot variables (fig. 1.15) and the very low background (chap. 1.5)
gives much confidence in the data set that will be used for the partial wave analysis.

The major problem is the bias introduced by the trigger which leads to a very low
acceptance for charged decaying K9 with low momentum. In the Dalitz plots (fig. 1.16a
and b) the number of entries in the respective area is very low and the two projections on
the m?(Kr)-axis (fig. 1.16¢) in the case of one charged and one neutral K2-decay differ
clearly from each other.

If one likes to bin the data one should choose the bin size according to the resolution
of the Dalitz plot variables. This resolution is defined as the difference between the values
from the kinematic fit and the generated values (Monte Carlo data). From fig. 1.15 one
can conclude that the bin size should be larger than at least 0.05 GeV?/c*.

resolution of Dalitz plot variables
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Figure 1.15: The resolution of the Dalitz plot variables is defined as the difference between
their values obtained by the kinematic fit and their 'true’ (= Monte Carlo generated)
values.

Number of events in the Dalitz plots

final state KYK3r® K2K?n
Kl—rtrm | Ky—nt 71 | Kb—ratn | Ki—rt 7
decay mode 0 0 0 0 + - 0 0.0 0 + -
Ke—m" m Ke—m™m Keg—m" m Ke—m™
Experimental data 10 046 5 782 370 141
Monte Carlo data 44 788 18 388 5 346 3 303

Table 1.9: Number of events in the Dalitz plots of the final states KoKom® and KSKon
for experimental as for Monte Carlo data.
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Dalitz plots and projections
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Figure 1.16: The Dalitz plots for the final state KSKor® for the data subsets with one
(left column) and two (right column) charged K2-decays and their projections.
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Dalitz plots and projections
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Figure 1.17: The Dalitz plots of the final state K%K on for the data subsets with one (left
column) and two (right column) charged K32-decays and their projections.
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Acceptance correction

An acceptance correction with the use of Monte Carlo data has been done bin by bin
requiring a minimum number (at least non zero) of entries per bin. The number of entries
in each bin of the experimental Dalitz plot has been divided by the number of entries
in the corresponding bin of the Monte Carlo Dalitz plot and the resulting Dalitz plot is
normalized so that the total number of events in the acceptance corrected Dalitz plot
is equal to the number of experimental data. The error in each bin then consists of the
errors in the bins of the experimental and of the Monte Carlo Dalitz plot, the contribution
of these two errors to the normalization factor is negligible. All bins with more than 2/3
of their total area outside the phase space limit are excluded of the acceptance correction.

The acceptance corrected Dalitz plots of fig. 1.18a and c are generated only for events
with one charged K2-decay. At least 2 entries in case of the Monte Carlo data and 1 entry
for the experimental data have been required for these plots.

The acceptance corrected Dalitz plot for the final state KSKom® (fig. 1.18a) looks
fairly symmetric apart from the uncertainties in the right corner due to empty bins. The
two projections on the m?(K)-axis (fig. 1.18b) are almost identical now within the error
bars (compare with fig. 1.16 c).

As to the final state K§K3n the Dalitz plot contains only 370 events in case of one
charged K2-decay leading to a large error of the acceptance correction. Within these large
error bars the K3K?2n-Dalitz plot is rather symmetric after the acceptance correction
(fig. 1.18c and d).

A y%-test can be done to check the symmetry quantitatively and the result shows that
the acceptance is well understood for both final states.

9 ¥ (entries in bin(i,j) — entries in bin(j,1))? (13)
Xeymmetry = ij iy errorin bin (1, 7))? + (error in bin (j,1))? '

Xoymmetry (KSKIT®) = 122 (bin size : 0.05 GeV?/c") (1.4)

Xoymmetry (K$KGn) = 1.32  (bin size : 0.10 GeV?/c?) (1.5)
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Figure 1.18: a is the acceptance corrected Dalitz plot for the channel K3K37° obtained
from events with one charged K2-decay and b are the two projections on m2,  (K37°)
which agree very well. ¢ and d is the equivalent for the channel K3Kan.

31



Acceptance correction for the final state KJKon® after symmetrization (one
charged K2-decay only)

In order to get a maximum of information with a minimal error per bin a symmetric
Dalitz plot was produced by simply filling in each event twice (fig. 1.19a). The acceptance
correction of this Dalitz plot leads to fig. 1.19b and its projections fig. 1.19c and d. This
has been done only for final state KQKom® | because the statistics for the final state
K2K?2n is too low to do an partial wave analysis using the x2-method for a binned data
set.

For a Dalitz plot y2-fit it is proposed to use the data of fig. 1.19b.
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Figure 1.19: a is the Dalitz plot before the correction with two entries per event (’sym-
metrized’) and b is the same Dalitz plot after the acceptance correction, ¢ and d are the
projections of b. Only events with one charged K@2-decay have been used here.
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2-prong versus 4-prong data

After acceptance correction the two Dalitz plots for the K2 K2n%-data subsets of events
with one respectively two charged K2-decays should be in principle identical. However,
the compatibility of the two data sets is limited by the low statistics in some areas of the
phase space leading to empty bins which cannot be corrected.

Since it makes obviously no sense to do an acceptance correction for empty bins and
the correction of very low populated bins suffers from low statistics, the two data sets are
only compared for bins which have at least three entries in either of the two Dalitz plots.
For a bin size of 0.064 GeV? the bins shown in fig. 1.20a have therefore been excluded
from the comparison.

A x?/bin can be defined to give a quantitative result for the compatibility of the two
Dalitz plots DP; and DP; :

(entries in bin (i,7) of DPy, — entries in bin (i,]) of DP,)*

= 145
(error in bin (i,7) of DPy)? + (error in bin (i,7) of DP;)?

x> /bin = >
0]
(1.6)

This x?/bin is fairly satisfactory, but the distribution of bins with x* > 3 (fig. 1.20b)
shows still deviations for small K K-masses, where the acceptance decreases in particular
for events with two charged K2-decays, and in some edge bins.

Hence, the conformity of the two (K)-projections (fig. 1.20c) is rather good (see the
projections in fig. 1.20 ¢ and d) but it seems to be dangerous to mix the two data sets for
the partial wave analysis.

The comparison of the two K K-projections (fig. 1.20d) is a bit misleading since both
data sets are normalized so that the total number of entries in both Dalitz plots are
equal. The conformity is very well in one part and less good in another part, but the
normalization compensate these facts leading to deviations over the whole mass range.

An increased statistics using the 1996-data taken with the SVX-detector as K3-trigger
will probably reduce these systematic uncertainties and will make it possible to add the
two data sets for the partial wave analysis.
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K gKgTrO after acceptance correction
KYK) — 7 7 7t 7= versus KYKY — " 7~ 7t 7~
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Figure 1.20: Comparison of the two data subsets K2(m° 7° )KY%(nt 7= )m° and

K(nt 7= )K3(r" 7= )7° . Only bins are compared which have at least one three en-
tries. The Km-projections agree rather good, but there are some discrepancies in the
K K-projection.
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Chapter 2
The Partial Wave Analysis (PWA)

2.1 The isobar model

The data are analyzed in terms of the isobar model. The initial state is assumed to be
pure S-wave and must then be pp (}S;) because C = +1 for the K3 K270 final state, hence
JPC(pp ) =0~".

If X stands for the intermediate state and My, My and Mj3 for the three mesons of the
final state then the isobar model can be sketched as follows :

Figure 2.1: Sketch of the isobar model

where p denotes the break-up momentum in the pp -rest frame with the relative angular
momentum L between X and M; and ¢ and [ the equivalent in the rest frame of the

resonance which decays into M; and Ms.
The isospin I of the initial state is either 0 or 1 and it is assumed that the amplitudes

related to different isospins of the pp -system can be added coherently.
Basically there are two possible decay chains :

1.pp — XK, X —Kor®
2.pp — X7 | X —KIK)

and from that the quantum numbers of all allowed resonances can be deduced (tab. 2.1).
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| X — 1] L] 1(JPO)(X) | possible resonances |

K2x® o] 0| 1/2(0%) (K7)s — wave
11| 1/2 (07) K*(892)

KOKS 0] 0 00 | £o(975), fo(1370), fo(1500)
olo| 1(0t) a0(980), ao(1450)
22| 0@ £-(1270), f4(1525)
22| 1(2+h) a5(1320)

Table 2.1: Possible intermediate states in the reaction pp —K2K27°. Some more reso-
nances are possible according to [1] but less likely.

The total transition amplitude A;,; can be written as the coherent sum over all M
partial amplitudes Ay describing the possible intermediate states, therefore the probability
density function at the point (si, s3) in the Dalitz plot is

M
W(Sl,SQ,Al...AM) = |ZA]€A1€($1,82)‘2 - PLIPS (21)
k=1

2 2 (Ko™ 70 are the Dalitz plot variables
and A;...A,; complex coefficients which can be written as Ay = «ay - €% and have to be
determined by a fit.

prips describes the phase space density at the point (s, sy) which is, in particular
in the case of a triggered data sample, not constant over the phase space. pr;ps can be
determined by the use of Monte Carlo data (fig. 2.2).

0,1
where 5; = m2, (Ko™ 70) and s, = m2

Monte Carlo data Monte Carlo data Monte Carlo data

Ks® = n°n°
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Figure 2.2: Dalitz plot and projections of the phase space simulation using the Monte
Carlo data. This distribution corresponds to prrps in the fit.
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2.2 The maximum likelihood method

From eq. 2.1 a total density function £ can be defined as the product of W (s1, se, A1...Apr)
over all Ny, data points normalized to the phase space integral. With A = (Ay...Ap)
this function can be written as :

[} W (s, s3, &)
fLIPS W(Sl, So, K)dsldSQ

The phase space integral [;;pg can be approximated by the sum over all Ny, Monte
Carlo data and for simplification £ is replaced by In(L), so eq. 2.2 can be transformed to

L(A) = (2.2)

Ndata Nyce

(L) = 3 in(W(shsh ) — 3 tn(W(sh, s, X)) (2.3
j=1 I=1
The parameter set A is now determined by maximizing In(L) :
dln(L)
=0 ; k=1.M 24
aAk ) ( )

2.3 The helicity formalism

The partial waves Ay are defined in terms of the helicity formalism ( [24] and [25]).

With (J, M) being the total spin and its z-component of the initial (and final) state
and Sx the spin of the isobar each partial wave amplitude A, can be written in case of a
pp -decay into three pseudoscalars as

A (TMAAN3) = (J+1D)Y2(Sx +1)123 DI (8,0,0)D5%,*(4,60,0) - f1F  (2.5)
Ax

In the helicity formalism the momentum vector of a particle produced in a decay is
chosen to be the quantization axis, so the helicity is identical to the z-coordinate of its spin
in this frame and the transformation is done using the well known rotation D-matrices
and the angulars in eq. 2.5 are defined as follows :

e & O : azimuthal and polar angle of the isobar momentum vector in the rest frame
of the pp -annihilation

e ¢,0 : azimuthal and polar angle of the momentum vector of one of the decay
products of the isobar in the rest frame of the isobar with respect to the momentum
vector of the isobar in the lab frame.

,‘\])f is the dynamical part of the k-th partial wave where the helicity of the isobar is
connected to its spin S and the angular momentum L of the pp -annihilation by Clebsch-
Gordan coefficients :
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2L + 1\ /2 Tk
B =S (5) sl f (26)
Ax ~\2J+1 LS

The f‘L]; finally are factorized into Blatt-Weisskopf centrifugal-barrier factors as given
by Hippel and Quigg [26] and a residual function F'(s) which depends only on the isobar
mass S.

118 = FL(p)Fs(q)F(s) (2.7)

using the formulas

Fo(p) = 1 (2.8)

2(p/pR) ) 2 (29)

) = <<p/pR> T

_ 13(p/pr)? 12
Falp) = ((@/pR) “ 3y 9<p/pR>>

pr = 0.2GeV/c corresponds to an annihilation radius of 1 fermi and the Fp,(p) are
normalized so that Fr(p) =1 for p/pr = 1.

(2.10)

2.4 The dynamical function

In all the following formulas a dimensionless two-body phase space factor p will be used
which is connected to the break-up momentum ¢ of the two outgoing particles (masses
my and my) in the rest frame of the decaying particle (mass m) via the relation

p(m) = 2¢/m = 2/m- \/(m2 — (m1 4+ m2)?) (m? — (my —mg)?)/m (2.11)

The Breit-Wigner function

For each of the resonances in tab. 2.1 one has to parametrize the dynamical part of eq.2.7.
The standard relativistic Breit-Wigner form

~ moro
F = 2.12
() m3 — m? — imol'(m) (2.12)
with mg and I'y being mass and width of the isobar and
F2

"'m q(mo) F£(q(mo))
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can be used for any resonance which has no significant overlap with another resonance
which is identical in all quantum numbers (I, G, J, P,C) and if the amplitude is negligible
at threshold. In this analysis a Breit-Wigner function was used for the particles in tab. 2.2
whose masses and widths are taken from [1] (except the values for the ay(1450) which are
from [27].

Resonance K*(892) | ag(1450) | £5(1270) | f5’(1525) | az(1320)
Mass [MeV/c?] 896.1 1470 1275 1525 1318
Width [MeV/c?] 50.5 265 185 76 110

Table 2.2: Resonances described by a Breit-Wigner amplitude. Masses and widths are
taken from [1] (except for the ag(1450)— [27]

Fig. 2.3 d-1 show a phase space simulation of all the Breit-Wigner resonances of tab. 2.2
and the relevant projections where they can preferably be seen in the experimental data
(fig. 2.3a-c) if they contribute to the total transition amplitude. Since the simulations
are done using the Monte Carlo data of fig. 2.2 the effect of the trigger becomes visible
in the asymmetries.

Fig. 2.3 d and e show that the K*K-amplitude is not only responsible for the peaks
in the (K)-projections (b), but also for the strong peak at around 1600 MeV/c? in the
(K'K)-projection and for a part of the peak at around 1200 MeV/c? (c).

The strong band at the left boundary of the experimental Dalitz plot can be identified
with the f1(1525) (f, g). The effect that this band looks much stronger than the corre-
sponding band at the lower side of the Dalitz plot is due to the accumulation of events
with very fast charged decaying K2 by the trigger. Therefore the f(1525) can be seen
very clearly in only one (Kw)-projection, whereas it is not showing up in the other one

(b).

The ay(1450) (h, i) is a very broad object and - if it is coupling to KK - it may help
to explain the peak in the middle of fig. 2.3 c.

The two tensor resonances f»(1270) and the a2(1320) are close together and have a
similar pattern in the Dalitz plot. In fig. 2.3 j-1 there are two examples of a phase space
simulation using the same ratio of intensities (I(f2)/I(a2) ~ 1/3) in both cases, but a
relative phase of 0° in j and of 180° in k. The two tensors will contribute to the description
of the peak at around 1200 MeV /c in the experimental data, the (K K)-projection of the
two amplitudes will be smaller if the relative phase is at around 180°.
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Experimental data
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Monte Carlo data
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Figure 2.3: A phase space simulation of the Breit-Wigner resonances of tab. 2.2 helps to
associate them with the peaks in the experimental data. The presence of the ay(1450)
is not confirmed a priori, the corresponding peak in the (K K)-projection could also be
explained by the (K K)g-wave with I = 0, as it will be shown later.




The Flatté formula ( f(975) and ao(980) )

For any resonance nearby threshold the standard Breit-Wigner formula is not suitable to
describe it correctly. The common formula for the ag(980) has been evaluated by S. M.
Flatté in a coupled-channel analysis of the decays a¢(980) — KK and ay(980) — nm [28].
The denominator of eq. 2.12 is changing to

= imogys(dgr + 7 i) 5 v = TEE (2.14)
s
11tot = P[{f + Fmr = Gnpnlyn + 9x®%IKkE (2'15)

Since the parameters g,, and r turned out to be strongly correlated in the analysis
of [28], their values could not be determined accurately. Therefore the values of [29] have
been taken for this analysis, where the Crystal Barrel data of pp — wnn® at rest [31]
have been used as additional information :

mo = 999 MeV/c* 5 gy = 221 MeV/c*> ; r = 1.16 (2.16)

The same type of formula has been used for the f,(975), but g, and ¢, become now
grxr and ¢rr. The parameters are taken from [30] :

mo = 990 MeV/® i gur = 270 MeV/c® 5 gpze = 116.1 MeV/c*>  (2.17)

Fig. 2.4a shows that it will be difficult to disentangle the two scalars at the (KK)-
threshold. If the relative phase between the two amplitudes is 180°, the resulting ampli-
tude becomes much smaller in the (K K)-projection than the single contributions and the
total amplitude goes down to zero very rapidly. Therefore the high mass tail will hardly
help to disentangle the two amplitudes by interference effects with amplitudes of higher
mass, but on the other hand it will probably not have a dramatic falsifying effect on other
amplitudes if one assumes only one scalar at threshold as a first approximation.

Fig. 2.4b is a simple phase space simulation of the ay(980) with the parameters of 2.16
which is chosen for the fits. It becomes clear that for fitting a binned data set a careful
inclusion of the edge bins is very crucial.
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two scalars at threshold phase space simulation

45 C Entries 100
10 ——  f0(975)
e a0(980) e

50 [ f0(975)—a0(980) 14 b

=T

0.8

L 2
04 GeV/c
PR Bt et | [T A A I T e O L L A B R
1 105 1.1 115 12 125 1.3 135 1.4 04 06 08 1 2 14 16 18

a) (KK)—projection ~ Gev/c’ b) ao(980) in the Dalitz plot

Figure 2.4: The phase space simulation shows that both fy(975) and ay(980) have a long
tail to higher masses, but the two tails can cancel out each other completely if the relative
phase is around 180°. The resulting signal is then similar to a single Flatté-resonance but
much more narrow (a). The example in b shows that most of the ag-signal is found in
the edge bins of the Dalitz plot. If one likes to bin the data for a fit one has to be aware
of this fact.

The (K7)s-wave

From the LASS experiment the scattering amplitude | ' | and the phase shift ¢ for (K7)gs-
scattering is known [32]. The (K7)s-wave can be parametrized as the sum of a resonance
pole and a background term in terms of an effective range approximation.

e mol'o/p(mo) am

2.18
mg — m? 2 + abg? (2.18)

where mg /Ty = 1.332/0.401 GeV/c? are the mass and the width of the resonance,
a = 1.79(GeV/c) ! the scattering length and b = 3.46(GeV/c) ! the effective range. The
values are obtained by a fit from K. Braune [33]. They differ slightly from the values
given in [35].

The (K Kg)-wave with I = 0 (P-vector approach)

From [34] we know that - apart from the f,(975) - there are two isoscalar resonances
with JP¢ = 0** within the phase space of the K%K 2m’-channel and since they overlap
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Figure 2.5: The data for the (Km)s-wave from the LASS experiment [32] and the param-
eters of eq. 2.18 from a fit by K. Braune [33]. In this analysis the parameters from the fit
of the amplitude are used.

The simulation of the (Kn)g-wave distribution in the Dalitz plot is acceptance corrected
for better visualization.

significantly one has to describe these two poles in terms of the K-matrix formalism which
guarantees unitarity in the two-particle scattering amplitude.

In this analysis only one decay channel (KK) is allowed for the resonances, therefore
the K-matrix becomes a simple scalar function :

- mly/pi(my) mal'a/ pa(ma)
K - 2 2 + 2 2

(2.19)

my and my are the masses of the resonances and I'; and I'y their widths. The helicity
amplitudes and the damping factors are equal to 1 in this case. The masses and widths in
eq. 2.19 are those of the K-matrix poles and they are related to the resonance parameters
of the T-matrix via
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T=(I-ipK) 'K (2.20)

The values for the T-Matrix poles can be obtained by a scan of T in the complex
energy plane [36].

The production of the isobars in the pp -annihilation can be described by the introduc-
tion of a P-vector [37] which has to have the same poles as the K-matrix. The coupling
parameters ; and (3, to the pp -vertex are assumed to be constant, i.e. independent of
the energy.

. r r
pzﬁl.%m(@lu@_%m(@ (2.21)
mi —m ms —m
The dynamical function F can now be written as
- LN mil'1/p1(ma)
F= (I—-ipK)™'P = . - +
( PK) & mi —m? —ipy(miT1/pi(my) + Ayo)
r
By — mala/ pa(ma) (2.22)

m3 — m? — ipa(mal'a/pa(ms) + Agr)

which differs from the sum of two Breit-Wigner functions by the additional overlap
terms

m2 —m?  myly
m3 —m?  py(ms)
2 _ 2 T
Ay = 220 Tl (2.23)
mi —m?  pi(mi)

2.5 Fit program for the PWA

The coefficients of the total transition amplitude are fitted using the program MAX-
TOOL [39] which includes a slightly modified version of SPIN [40]. Using the unbinned
experimental and Monte Carlo data sets a loglikelihood is defined as in eq. 2.3 and its
maximum is obtained using the CERN package MINUIT [41].

Intensities

The phase space integral of the total transition amplitude is normalized to 1. The intensity
of a single resonance is calculated by setting all complex coefficients to zero except for
this amplitude where the coefficient is taken from the fit. The integral of this amplitude
over the phase space is replaced by the sum over all Monte Carlo data (chap. 2.2). Due
to interference effects the sum of the individual intensities is not equal to the intensity of
the sum of all amplitudes.
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The intensity of the (K K)L™%-wave is the integral of the right side of eq. 2.22 with
81, B2 from the fit, but also the individual production strength of each of the two poles
can be defined as the integral of the respective part of this amplitude.

Errors

All errors of intensities and phases in the next chapter correspond to the MINOS error
analysis of MINUIT [41] whereas the errors of the K-matrix pole parameters are mainly
obtained by scanning the loglikelihood versus one of the four pole parameters while setting
the other three to different fixed values. The absolute loglikelihood for the best fits was
always around In = 1755 and it turned out that already a decrease of 10 (absolute value)
causes the fit to be obviously worse.

Generally the (KK)-projection will be used to compare the fit with the data. This
turned out to be more suitable to see where the fit goes wrong compared to a posteriori
generated x2-Dalitz plots, since the latter ones are strongly affected by the trigger effects
(low acceptance in parts of the phase space leads to a low number of entries and fake a
good x? in these bins).
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2.6 Fit results

2.6.1 The KKg-wave with I =0
As starting values the K-Matrix poles of [42] have been used :

e Polel : M, = 1361 MeV/c? ; T = 264 MeV/c?
e Pole2 : My, = 1571 MeV/c? ; Ty = 162 MeV/c?

For the first ("basic’) fit the ag(1450) was excluded and only one amplitude in terms
of a Flatté parametrization (the parameters of a¢(980) as given in chap. 2.4) was used for
a K K-resonance at threshold. K*(892), f,(1270), a2(1320) and f;(1525) are included in
terms of Breit-Wigner functions and the (K7)gs-wave as described in chap. 2.4.

The dominant contribution in this fit comes from the two poles of the (K K)L=%-wave
and from K*K, the intensities of all the other amplitudes are not strong but significant
(tab. 2.3). The description of the data is already quite good, but in particular the (KK )-
projection shows that improvements are necessary (fig. 2.6).

H basic’ fit : In(L) = 1740 H

K-matrix M I T-matrix M I
[MeV/c?] | [MeV/c?] [MeV/c?] | [MeV/c?]
Pole 1 1361 264 Pole 1 1402 346
Pole 2 1571 162 Pole 2 1516 98
Intermediate Intermediate
state I [%] ¢ [deg] state I [%] ¢ [deg]

(KK)797% Pole 1 [ 43.1+5.4 [ 118.0 £2.3 | ao(980)x° [ 2.7+£0.6 | 159.7 £ 4.2
(KK)0m° Pole 2 | 23.4+3.6 | 153.6 £ 3.5 | f2(1270)7° | 4.44 0.6 | 329.7 £ 4.6
K*(892) K 157414 | 0.0sgea | 02(1320)7° | 5.5+0.5 | 103.5+2.9
(K7)sK 32+ 1.1 |230.0+6.3 || f4(1525)x° | 2.9+0.4 | 111.5£3.9

Table 2.3: Result of the ’basic’ fit. The intensities are calculated using the definition
given in chap. 2.5, the phase of K*K is fixed at 0°. The T-matrix poles are obtained by
a scan of T (calculated via eq. 2.20) in the complex energy plane.

Starting from this result the pole parameters of the (K K)5-wave have been varied
and the effect on the fit has been investigated. It turned out that the parameters of
the higher mass pole are very stable when varying the parameters of the other pole. As
an example the loglikelihood is plotted versus the mass M, (fig. 2.7a) and the width I'y
(fig. 2.7b) for different values of 'y and a fixed pole mass M; = 1364 MeV/c>.

A variety of such scans has been done and - defining an error by the change of the
loglikelihood of approximately In(L)mqs £ 5 - the parameters of the higher mass pole are
determined to
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Figure 2.6: The ’basic’ fit using the same pole parameters and the same resonances as
in [42] leads to a result which is not far from the best solution, but there are still some
problems in the (KK )-projection around the fy(1370) (error bars for the experimental
data, solid line for the fitted amplitude).

o My = 15767° MeV/c® ; Ty = 175+ 15 MeV/c?

As to the lower mass pole it is expected to peak around 1380MeV/c? in the T-matrix.
The peak in the middle of the K K-projection (fig. 2.6a), however, is at a higher mass, at
around 1440MeV/c?.

Leaving the pole parameters free in the fit leads to the K-matrix pole 1389—i255MeV/c
which is slightly higher in mass than before. The increase in In(£) from 1740 to 1755 and
the (K'K)-projection show that the data are now much better described by the fit.

A more systematic investigation of the errors leads to an optimum for the K-matrix
pole of

2

o My = 138973, MeV/c? ; Ty = 255423 MeV/c?

The T-matrix poles are obtained from the K-matrix poles by a scan of eq. 2.20 over
the complex energy plane. The errors of the T-matrix pole are derived from different
scans with variation of the K-matrix poles within their errors.

Using the pole parameters and the coefficients for the (K'K)L%-wave from the fit a
Dalitz plot can be simulated only for the 2-pole 1x1 K-matrix. A projection of this Dalitz
plot is shown in fig. 2.9 for the T-vector (eq. 2.20) and for the F-vector (eq. 2.22). In
both cases the shape of the (K K)L=-wave can be explained by a broad component with a
peak at around 1440 MeV/c? and a small component leading to the dip at 1510 MeV/c?
and shifting the lower peak to a lower mass (about 1370 MeV/c?).

Any attempt to fit the data with a T-matrix mass of the broad object below 1400 MeV/c?
failed.
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Figure 2.7: The loglikelihood of the fit for different fixed values of the (KK )L=-pole
parameters. For the higher mass pole the maxima are rather independent of variations of
the parameters of the lower mass pole (a and b).

fit of the two poles fit of the two poles , fit of the two poles

1000
1000

ol 1515 —ix4s @

—100

600
—150

—200

250

— %
M(KR) IMeV/c?] M(KR) Mev/cl 1439 —ix180
—_—
L fl L Il L L L L L Il L L L L e} = L L L L L L L L L
01500 1100 1200 _|500 1400 1500 1600 1700 ° 700 800 900 1000 1100 1200 1300 3001250 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
a) (KK)—projection b) (Km)—projection ¢) physical poles

Figure 2.8: Projections of the experimental data (error bars) and of the fit result (solid
line) after fitting the K-matrix poles of the (KK)L="-wave. The description of the data
is now much better in the (KK)-projection (a) than for the basic fit (fig. 2.6a). The
(Kr)-projection is shown for the neutral decaying K9, where the signal of the f;(1525)
can be seen (b). The T-matrix pole of the f3(1370) is now at a significantly higher mass
than before.
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simulation of the fit result
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Figure 2.9: Simulation of the (K K )-projection of the (K K )g-wave with the pole parame-
ters obtained by the fit. The broad pole peaks at 1439 MeV/c* but the overlapping small
resonance which causes the dip at 1515 MeV/c* makes the peak appear at a lower mass

in the (K K)-projection.

H Fit of the poles : In(L) = 1755 H
K-matrix M o T-matrix M o
[MeV/c?] | [MeV/c?] [MeV/c?]| | [MeV/c?]
Pole 1 | 1389%%, | 255423 || Pole 1 | 1439710 | 3604 50
Pole 2 | 1576%1% | 175+ 15 || Pole2 | 15155 | 88*}%°
Intermediate Intermediate
state I [%] ¢ [deg] state I [%] ¢ |deg]
(KK)970 Pole 1 | 48.54+6.1 | 131.4+2.3 || ao(980)7° | 3.54+0.8 | 179.1+8.4
(KK)E07° Pole 2 | 31.84+4.0 | 162.3+ 1.9 || f2(1270)7° | 4.44 0.6 | 340.4 £ 7.0
K*(892) K 169+ 1.6 0.0fizeq || @2(1320)7° | 4.5+£0.8 | 118.0 + 5.4
(Kn)sK 2.3+1.8|204.34+82 | f4(1525)7° |3.34+0.3 |117.3+3.4

Table 2.4: The fit of the K-matrix poles leaves the upper mass pole rather stable, but
the lower mass pole moves up slightly in mass. This results in a T-matrix pole with a

significantly larger mass for the lower mass pole than used in the basic fit (tab. 2.3).
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The (K K)s-wave in terms of two Breit-Wigner functions

So far the (K K )s-wave has been fitted in terms of a 1x1 K-matrix because it was assumed
that the two scalars have equal isospin (I = 0). The fit, however, is not sensitive on the
isospin of a particle, therefore it is not excluded that the two scalars have different isospin.

Assuming different isospin the two scalars have to be fitted in terms of two Breit-
Wigner functions and it turned out that the data can be described in an equally good
way. Also the masses and the widths of the two poles are almost identical with those
obtained by the 1x1 K-matrix fit. The production rates, however, differ strongly in both
cases.

The upper mass pole can naturally be assigned to the fo(1500), and the only reasonable
explanation would then be to assign the other pole to the a(1450). However, it turned
out that using fixed values of mass and width of the ay(1450) (1470/265 MeV/c* [27])
makes the fit worse. The change in [n(£) is not big but the result indicates that the lower
mass pole is not compatible with the ag(1450) observed in nr0r°.

Moreover the intensity of the a¢(1450) in K2K27%can be predicted from the results of
the nm%7%-channel to (7.7 £+ 2.1)% [35] and this is far away from the results of tab. 2.5.

Therefore it is the best explanation to assume two scalars with the same isospin and
to fit the data in terms of a 1x1 K-matrix. If they are assumed to have zero isospin they
can be naturally identified as the well known f,(1370) and f,(1500).

H Fit with two Breit-Wigner poles H

[ | M[Mev/c?] [ T[Mev/] | T[%] | ¢ldeg] | in(£) |
Pole 1 fitted 1431£4.7 | 332£16.3 | 64.7£9.3 [131.6£20|
Pole 2 fitted 1520423 | 98474 | 122+3.0 | 41.6+6.6
ao(1450) (pole fixed) 1470 265 975+£214 [ 161215
fo(1500) (pole fixed) 1520 98 226+49 | 29.0+1.4

Table 2.5: Result of a fit with two Breit-Wigner amplitudes instead of the 1x1 K-matrix.
In the lower case where the values of [27] for the ay(1450) have been fixed for the lower
mass pole the broad object dominates the fit but the description of the data gets slightly
worse.
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2.6.2 The (KK)s-wave with I =1
The mass and width of the a¢(1450) have been taken from [27] :

e M =1470 MeV/c? ; T = 265 MeV/c* fixed !

Using the pole position for the f;(1500) as obtained in chap. 2.6.1 the pole parameters
for the fy(1370) have been fitted with different fixed intensities for the a(1450).

It turns out that with any intensity between 0 % and 25 % the data can be described in
an equally good way, i.e. the loglikelihood for the best fit does not change (fig. 2.10a). The
pole parameters of the fy(1500) are stable, the mass of the f5(1370) is slightly decreasing
with increasing ag(1450)-contribution and its width is increasing significantly (fig. 2.10a
and b).

Fig. 2.10c shows that the total intensity of the (KK )L=%-wave integrated over the
whole phase space is decreasing strongly with an increasing intensity of the aq(1450) and
so do the two components of the (K K)L%-wave individually (for the last two values the
two components of eq. 2.22 have been separated and integrated individually over the phase
space). The intensity of the total (K K)g-wave, including the ag(1450), is approximately
constant for any intensity of the ay(1450).
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Figure 2.10: A variation of the ag(1450) between 0% and 25% does not change the log-
likelihood of the best fit (a). The mass of the f,(1370) is decreasing slightly and its width
increasing significantly whereas the pole of the fy(1500) remains stable (a and b).

The intensity for the total (KK )g-wave is approximately constant for any ay(1450)-
contribution between 0 and 25 % (c). The total intensity for the component with I = 0 is
decreasing as well as for the two intensities of the two single parts of the (K K)L=-wave.

The branching ratio BR(pp — for®—=KKn°) can now be derived for each of the two
poles of the (KK)L=0-wave. Taking into account a factor 4 for the isospin and using the
total branching ratio of pp — K2K2n? of [43] it can be calculated via

BR (pp = for® =KK7°) = 4. (7.540.3) -107* - I(for® in K2K%7%)  (2.24)

ol



The results are shown in fig. 2.11 and tab. 2.6. In particular the values for the f,(1500)
agree very well with those of [35] and [42], for the f3(1370) not all are within 1o, but the
differences are not dramatic. Taking into account the fact that the results are obtained
from two data sets with completely different signatures in the experiment, hence two
completely different reconstruction techniques, and that two different fit methods have
been used fort the two partial wave analyses, the compatibility of the results are extremely
satisfactory.

BR (pp — f, n° — K’K°1t”)

© 20 } o fo(1370)
175
15 %%Qﬁ x fo(1500)
25 £ L# * f(1370) of 1421
E i g = T(1500) of [35]
75 WK .
: %F\ . *
5 [ K a O é
2.5 i— | | | % B I S %5

o

2.5 5 /7.5 10 125 15 17.5 20 225

fo—production [(a,' %) 1]

Figure 2.11:  The product branching ratios BR(pp — fo(1370)n°—=KKn°) and
BR(pp — fo(1500)7°—< K K7°) of the two parts of the 1x1 K-matrix separately are de-
creasing with increasing contribution of the ag(1450). The values for the fo(1500) agree
very well with those of [35] and [42], for the fy(1370) they differ slightly but not dramat-
ically.
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Intensity BR(pp — fo(1370)7° )x | BR(pp — fo(1500)7° ) x

of ap(1450) [%)] BR(f0(1370)—>KK)[10_4] BR(f0(1500)—>KF)[10_4]
0.0 146 +£1.9 9.6 +1.2
2.7 15.0+ 2.0 79+1.0
4.6 1454+ 1.9 6.8+0.9
7.3 121+ 1.6 5.3+ 0.7
10.2 94+1.6 41+0.9
12.7 5.6+ 0.9 3.7+0.5
16.1 H.o+1.2 25+0.9
18.8 3.8+ 0.6 3.6 0.5
22.3 3.1+0.8 34+1.1

Table 2.6:  The product branching ratios BR(pp — fo(1370)7° -=KKnr°) and
BR(pp — fo(1500)7° =K K=°) for different ay(1450)-intensities. All values are compati-
ble within 1o with the results of the channel KY K?7° (table 1 of [35], table 23 and figure
66 of [42]).

The relative couplings of f3(1370) and f,(1500) to 77 and KK can now be obtained
by the use of eq.(13) of ref. [45] :

BR(pp = for® > KKn°)  Tur  Var' Fxr@ Skx(@

= = -3 2.25
BR(pﬁ —)f07T0—>37TO) F7r7r/3 772r7r : |Fﬂﬂ(q_)|2 . Sﬂ'ﬂ'(q—) ( )
Note that the isospin factor 4 for K Kwas already introduced in eq. 2.24.
With the definitions of [45]
S@ = q; IF@? = exp(—¢*/86%) ; B =~ 0.5 GeV/c (2-26)

and ¢ being the break-up momentum of f, in 77 respectively KK, eq. 2.25 turns into

7;(? — 1 . BR(pZ_? _>f07T0_>KK7TO) * brw |F7r7r(67)|2 (2 27)
V. 3  BR(pp —for"=31) - qpp o |Frp(@) '

With the masses of fo(1370) and fy(1500) of tab. 2.4 and the known branching ra-
tios BR(pp — for®—3n?) the relative couplings can now be calculated. For the product
branching ratio of f(1370) and f(1500) in 37° the values of [44] are taken in order to
compare the results with those from the channel K? K%7° | but it has to be pointed out
that the values for f;(1370) are an upper limit only and both values are larger in [27].
Moreover, the product branching ratio for the f3(1370) in the 37%-final state is a factor
of four smaller in [46].

The dotted line in fig. 2.12 and fig. 2.13 refer to the predictions 72 —/v2, = 1/3 for a

pure ul + dd-state from [45] and I(a(1450)) = (7.7 £ 2.1)% [35].

23



Intensity fo(1370) fo(1500)

of ag(1450) [%] | Vpge/Van Viete! Yan
0.0 > 0.226 + 0.045 | 0.458 + 0.081
2.7 > 0.233 + 0.047 | 0.377 + 0.072
4.6 > 0.226 + 0.045 | 0.325 + 0.054
7.3 > 0.189 + 0.038 | 0.255 + 0.043
10.2 > 0.146 + 0.034 | 0.296 + 0.046
12.7 > 0.087 + 0.019 | 0.179 = 0.040
16.1 > 0.085 = 0.023 | 0.112 = 0.030
18.8 > 0.059 £ 0.014 | 0.174 + 0.039
22.3 > 0.048 + 0.014 | 0.162 + 0.047

Table 2.7: The relative couplings fy%F/fyfm for the fo(1370) and f,(1500) for different
ag-intensities. For each case an equally good fit could be obtained.
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Figure 2.12: The relative couplings 7;(?/7% for the fy(1370) as a function of the aq-

contribution (see tab. 2.7 for exact values). The predictions for 73—/, from [45] and
I(ao(1450)) = 7.7% [35] are marked by the dotted lines.
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couplings of fo(1500) to KK and 7
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Figure 2.13: The relative couplings 7;{?/77%” for the fy(1500) as a function of the aq-
contribution (see tab. 2.7 for exact values). The predictions for ’V%F/%er from [45] and
I(ao(1450)) = 7.7% [35] are marked by the dotted lines.

2.6.3 The isoscalar fy(975) and the isovector a((980) at thresh-
old

A weak but clear signal can be seen in the K K-projection near threshold (fig. 2.3c). In
chap. 2.4 it was shown that from the K2 K2n%-data alone it seems impossible to disentangle
the fo(975) and the a((980), therefore an additional information from another channel is
necessary.

The best candidate is the channel K3 LK £7F because here only isovectors are allowed
in KK. From K$K*7T [52] an intensity of the aq(980) of (2.7 +1.2)% can be predicted
for the channel K2K2m%which is close to the result in tab. 2.4. Fixing the intensity of
the a((980) to this number and adding the f;(975) gives infact a slight increase of the
loglikelihood (from 1755 to 1763) with an intensity of (3.0 + 0.4)% for the fy(975). This
indicates a slight significance for two scalars at threshold decaying into K K.

The pole position of the f3(1370) was fitted again with f5(975), once without the
a0(980) and once with the intensity fixed at 2.7 %. In both cases the pole of the f,(1370)
was stable as well as its intensity.
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2.6.4 pp — K*(892)K

The isospin parts @ﬁm_) ks
I = 0 respectively I =1 for pp (*Sp) into the final state KYK o via (K7)-coupling can
be written as [38]

of the transition amplitude from the pp -initial state with

1 _ _

+ _ 0,0 0 0

Ofyp = —\/—1,2((K7r )KO + (K%° ) K?) (2.28)
1 _ _

Of, = _5((1(%0 )K? + (K°r° ) K°) (2.29)

The self-interference of the K*-bands is constructive for both the initial states I = 0
and I = 1. Therefore the transitions from different pp -isospin via the K*-resonance
cannot be distinguished and hence only one K*K-amplitude was used in the fit.

In the case of the pp -initial state 1Sy the two angular momenta of the subsequent
decays are | = L = 1 leading to a factor cos?f in the decay amplitude. The influence of
this factor on the K*-bands is shown in fig. 2.3d which is a phase space simulation of the
decay chain pp —K*K—K2K20 .

The relative phase between the K*K-amplitude and most of the other amplitudes is
roughly (180 £ 40)°, hence strong destructive interference effects are expected. However,
the other amplitudes cross the K*-band in regions where the K*K-amplitude itself is
around zero, or relatively small. In the region where the K*K-amplitude is strong - the
region where the two K*-bands cross each other - it is hardly affected by other amplitudes.
Therefore the pattern of the K* K in the experimental data is not due to interference effects
but due to the cos?f-angular distribution.

A fit of the mass and the width of the K* has been done and the result is compatible
with the values of [1] (tab. 2.2)

em = 893.6+ 1.1 MeV/c* , T = 54.0+ 2.3 MeV/c?

The contribution of the K* K-amplitude was extremely stable in all fits :

I (K*(892)K in K%K%r) = /D AR (892)K) + A(KK*(892))” = (16.8%1.6) %

(2.30)

For the total branching ratio of pp (1S;) - both isospins I = 0 and 1 included, since
they cannot be distinguished - into K;(892)K a factor 12 takes all possible decay modes
into account and the result is approximately identical to the sum of the branching ratios

from I = 0 and I = 1 separately which was obtained in a coupled channel analysis
including KYK*rF [38].

BR(pp (*So,I =0,1)—K;(892)K) = (15.14+1.6)-10"*
2% + i = (15.0+3.0)-107* (2.31)
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2.6.5 pp — (Km)sK

The parametrization for the (Km)g-wave has originally been derived from the results
of the LASS experiment (chap. 2.4). It consists of a high mass pole and an additional
background term in an effective range approximation and these two parts are connected
by the K-matrix formalism.

The LASS experiment produced the (K7)s-wave in K p-scattering, the couplings of
the two terms to pp , however, are expected to be different. Moreover it was pointed out
that the sensitivity of the LASS experiment below 1 GeV/c? is extremely questionable [47]
so that there is no reason to adhere to their rigid form. Therefore it is not clear a priori
whether the effective range term is infact significant.

For a fit without the a(1450) the total contribution of the (K)g-wave is (2.3£1.8)%.
This value is relatively stable for increasing ay(1450)-contribution. Leaving out the (Kn)g-
wave in the fit without decreases the loglikelihood from 1755 to 1732. The effect of the
(K7)s-wave can be seen by comparing the K K-projections of fig. 2.14a with fig. 2.14b
where the (K7)s-wave was dropped from the fit. This shows that the (Kn)s-wave is
a weak amplitude, but its interference with other amplitudes - in particular with the
(KK)L%-wave - over the whole phase space makes it an important ingredient for the
description of the data.

Now the effective range term was dropped and the (Kw)g-wave was described by
the pole term only. The loglikelihood increased from 1755 to 1766 and the description
of the K K-projection improved slightly in particular in that region where the f,(1370)-
amplitude is strong (fig. 2.14c). The intensity of the (K7)s-wave increased to (2.94+1.6)%.
A scan of the loglikelihood versus the scattering length a (fig. 2.14d) shows clearly that
the fit improves when a goes to zero leading to a best fit for a = 0. The same result was
found in the channel pp — K9 K=nF70 [48].

The situation becomes much more complicated if the (K7)s-wave is fitted with two
different production parameters for the pole and for the effective range term. Both objects
are very broad and they cancel out by destructive interference in most part of the phase
space. The total (K)g-wave looks now much different than the amplitude of LASS
(Dalitz plot simulations fig. 2.15). The fitted (Kn)gs-wave is infact not much different of
that from a pole term with large (K7)-mass. It is a striking feature that the individual
contributions of the pole and the effective range term are quite strong (27 % and 12 %)
but the intensity of the total (Kr)s-wave is again rather weak (6 %).

The fit is of course slightly better now since the fit has more parameters (A(InL) =
+20, see the K K-projection in fig. 2.16), but it turns out that the intensities of all the
other amplitudes do not change very much if the (K7)g-wave is introduced in that way
(tab. 2.8) and also the pole position of the f;(1370) is not affected.

The (K)g-wave is a very difficult object since the two individual components are very
broad and interfere with any other amplitude, but for practical reasons it seems justified
to use the pole term only for the fit.
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Figure 2.14: If one leaves out the (K7)g-wave from the fit the description of the data gets
worse. The fit improves however when the effective range term is dropped.
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Figure 2.15: Dalitz plot simulations for the (Km)g-wave from LASS and of the fit with
two independent production parameters.
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Figure 2.16: The description of the K K -projection is slightly better with two independent
production parameters for the (Kr)g-wave.

(Km)s-wave | 2 production

Amplitude from LASS rates
Fo(1370)7° | (485 +6.1)% | (49.2 +8.6)%
£2(1500)7° || (31.8 £4.0)% | (34.2 +6.0)%
K*(892)K || (16.9+1.6)% | (18.0 + 4.4)%
(Km)sK | (23+1.8)% | (6.0+1.4)%
ao(980)7° || (3.5+0.8)% | (1.8+0.5)%
£(1270)7° || (4.4+0.6)% | (2.0+0.1)%
as(1320)7° || (4.5+0.8)% | (9.2 +2.0)%
2152570 || (3.3£0.3)% | (3.5+1.0)%

Table 2.8: The introduction of two production parameters for the (Km)g-wave does not
affect the other amplitudes very much. Only the ay(980) is now suppressed and the
a2(1320)-amplitude is about a factor of two larger.
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2.6.6 The tensor mesons f;(1525), f2(1270) and a2(1320)
f3(1525)

In [35] the first observation of f5(1525) in pp -annihilation was reported, so it is natural
to expect it in the final state K3K 970, too. Infact In(L) drops from 1755 to 1544 if one
leaves out this amplitude in the fit.

It may be surprising that a resonance with not more than 3% contribution to the total
amplitude has such a strong effect on the fit quality, but from the phase space simulation
of the fj(1525)-amplitude (fig. 2.17a) one clearly sees that the fj(1525) is responsible
for the band at the left side of the Dalitz plot (fig 2.3a). The fact that the respective
band to be expected on the lower boundary cannot be seen is an effect of the trigger.
Thus the f(1525) has a visible effect on the K7-projection (fig. 2.3b and g), namely an
enhancement below the strong K*-peak.

Since the phase space simulation of fig. 2.17a was done with the Monte Carlo data of
fig. 2.2a the trigger bias plays an important role in this plot. The trigger accumulates
events with a large momentum of the charged decaying K2 and thus intensifies the signal
in the corresponding area of the Dalitz plot.

Leaving out the f;(1525) makes the fit go wrong in exactly the area where its contri-
bution is expected (fig. 2.17b).

A free fit of mass and width of the f;(1525) leads to

em = 1531.9+29 MeV/c> , T = 783+13.0 MeV/c?

These values are in good agreement with [1] (M = (1525 4+ 5)MeV/c?, T = (76 +
10)MeV/c?).

The contribution of the fi(1525) is extremely stable for any intensity of the ay(1450)
between 0 and 25 % :

I (f5(1525)7° in KOK%7%) = (3.3 + 0.4)% (2.32)
From that the branching ratio of pp into f5(1525)7° can be deduced :

4-BR (pp — K2Ko7°) - 1(f4(1525)7° in KK 27P)
BR (f}(1525)—KK)
4-(7.540.3)-107*- (0.033 & 0.004)
0.888 & 0.031
= (1.134+0.13)-107* (2.33)

BR (pp — f5(1525)7°) =

This value is in good agreement with [35] ((9.38 +1.49) - 10~*), but the new value for
BR (f5(1525)— K K) (0.888 instead of the former value 0.712 [1]) was used. The error of
the fi-intensity is the average of the errors of the fits with different ag(1450)-intensities.
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Figure 2.17: The f}(1525) in the Dalitz plot : a is a pure phase space simulation of its
structure in the Dalitz plot and b the distribution of x?/bin (if > 3) when fitting without
the f5(1525). This clearly proves the importance of a tensor at this mass decaying into
KK.

a»(1320) and f»(1270)

The contribution of the two tensor mesons f»(1270) and a5(1320) in the channel K2 K27%can
basically be derived from the results of the channels 37° and n7%7°. The correlations are
given by the following equations [49] :

BR(pp — 37°) - I(fom® in 37°)

1/3 - BR(fo—7)
_ BR(pp - KoK27%) - I(for® in K2K3m0
BR (pp — for®) = ( 1;4 -SB})E(fQ(—fKF) sKsm) (2.35)

BR (pp — for) (2.34)

and
_ BR(pp — nr°7) - I(asm® in nn'70)
BR (pp — ap7°) = 2.36
(vp = azm) 1/3 - BR(ay—7) (2.36)
_ BR(pp - KoK27°) - I(ayn® in KSK3n0)
BR (pp — agm°’) = — 2.37
(wp = az) 1/4- BR(ay—KK) (2.37)
Therefore

3-BR(fo—KK) - BR(pp — 31°)
4 - BR(fo—7r) - BR(pp - K3K2n°)

I(for® in KSK97%) = I(for® in 37°) (2.38)
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3. BR(a;—KK) - BR(pp — nr°n°)
4 - BR(ay—7m) - BR(pp —K3K3m°)

This leads - the branching ratios of egs. 2.38 and 2.39 are taken from [1] and [50] - to
the following predictions :

I(agn® in K3K37%) = - I(agr® in nr°7°) (2.39)

I(fo(1270)7° in K3K%7%) = (47417 % (2.40)
I(ay(1320)7° in K3K27%) = (23.14+0.6) % (2.41)

All fits give very stable results for the intensities of these two tensors while varying
the ay(1450)-intensity in a wide range :

I(fo(1270)7° in K3K%7m%) = (4.440.7) % (2.42)
I(ay(1320)7° in K3KIn%) = (4.4+0.8) % (2.43)
The intensity of the a;(1320) becomes a factor of two larger if the alternative parametriza-

tion with two different production rates for the (Km)s-wave is used.
From the intensities the branching ratios can be derived :

BR(pp ('So)— f(1270)r—KK7) = (4.0 +£0.6) x 107* (2.44)
BR(pp (*Sp)—ay(1320)7r—KKn) = (4.0£0.7) x 107* (2.45)

a»(1320) : fit and prediction

The branching ratios of eqs. 2.45 and 2.45 can be compared not only with the results
from the channels K3K97° [38] and KYK)7° [35] but, for the as, also with those of the
channels KYK*7¥ [51] and K3K*n¥ [52]. For the latter two cases the relation

I(az7T in Kgyy K= ) / I(adn° in KYKIm%) = 1.44+0.2 [53] (2.46)

has been used.

BR(pp (*Sy)—a2(1320)r—K K) (7.6+0.9) x 107* [35] (2.47)
BR(pp ('Sp)—az(1320)r—=KKn) = (6.5+1.8)x10™* [38] (2.48)
BR(pp (*So)—as(1320)r—=KKn) = (4.64+0.8) x10°* [51] (2.49)
BR(pp (*Sp)—az(1320)r—=KKn) = (3.440.9)x107* [52] (2.50)

Comparing eqgs. 2.41 and 2.43 shows a large discrepancy between the results from the
channels nm7% and K2K?2%7°(a factor of 5 !). Any attempt to obtained a good fit with
the a9(1320)-intensity fixed at 23 % failed completely (A(In(L)) ~ —100).

Comparing eq. 2.45 with eqgs. 2.47-2.50, however, shows that all results obtained so
far from different K K7 channels are of the same order (approximately within two stan-
dard deviations) and they are all a factor of 3-5 lower than predicted from nr°z°. This
discrepancy has to be considered as a general problem between nm7® and K2 K2nP.
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f2(1270) : fit and prediction

As to the fyr®-amplitude the measured intensity (eq. 2.43) is in very good agreement with
the prediction from the 37%-channel (eq. 2.41).

The mixing angle f++ of the 27 T-meson nonet can be calculated in the same way as
in [35] from the results of the channel K? K?70 :

BR(pp — f37°)
BR(pp — fom°)

This result is in very good agreement with fy++ = 26° derived from the linear mass
formula [1].

= tan®(fp++ — 35.3%) — Oper = (24.9 4+ 1.7)° (2.51)

Further tensor resonances 7

More tensor resonances as the f»(1540) or the ay(1620) are kinematically possible. Any
attempt, however, to add an additional tensor to the fit failed. The fact that a fit of mass
and width of the f;(1525) leads to exact the values form [1] of this particle is a further
indication that no other tensor is required by the fit.
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2.7 Fits to K{K2n

The phase space of K2K2n in pp -annihilation at rest is extremely narrow. Possible
resonances in the KK o-system are fo(975), ao(980), f2(1270), a2(1320) and the tail of
the fo(1370), in the K2n-system no resonance is possible.

The two tensor resonances are close to threshold and the angular momentum [ = 2
between the resonance and the recoiling 7 leads to the respective damping factor in the
amplitude. It is therefore no surprise that the fit does not accept the amplitudes of the
two tensor resonances.

From the K9K2n%-channel a contribution of a scalar at threshold could be expected
but from the results of K2 K27%mne can estimate that the signal might be compatible with
zero within 3o0. It is therefore understandable that no signal is seen in the data and that
the fit rejects a scalar amplitude at threshold.

The only possible resonance left is the fy(1370). The mass of the resonance (M =
1430MeV/c?) is outside the phase space but as it is shown in fig 2.18 the long tail of this
broad object (I' = 330MeV/c?) is sufficient to describe the data (mass and width of the
f0(1370) are from the fits to KSK97).

It has of course to be pointed out that the statistics in the KK on-channel is very low
and an enlarged data sample might reveal more structures.
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Figure 2.18: Fit to the K3Kon-data using the fy(1370) only. Within the error bars the
data can be described quite good but the statistics is extremely low.
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