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Abstract

Data on the final state npn° in flight are presented for beam momenta 900,
1050, 1350, 1525, 1642, 1800 and 1940 MeV /c. There is direct visual evidence for
the presence of a broad high mass 2% contribution in 77; the amplitude analysis
shows it may be fitted as a resonance with mass M = 1980 £ 50 MeV and width
I' = 500 & 100 MeV. It has the curious feature that it is produced dominantly
with orbital angular momentum L = 1 in the final state and with z-component of
spin 1 along the beam direction. It makes up typically 15-20% of the integrated
cross section at 1525 MeV/c and above.

In addition, the presence of a3(1660) is confirmed at beam momenta from 1350
MeV/c upwards; however, because of the limited phase space in the nw channel,
it is not possible to improve the determination of its mass and width compared
with earlier analyses of data at 1940 MeV/c. Its production requires dominant

production with L = 0 in the final state, i.e. from the initial state 1 D,.

The f;(2100) in 77 is likewise produced with a cross section consistent with
dominant L = 0 in the final state and is incompatible with much L = 1; using
this fact and the observed decay angular distribution, it definitely has J = 0, in

agreement with earlier spin determinations.

1 Introduction

It looks as if we have had a lucky break. Before plunging into detail, I will outline

this fortunate result and why we were looking for it.

In an article in Phys. Lett. [1], Bing Song Zou and I described the evidence
for a very broad 0~ object in J/¥ radiative decays to pp, ww, K*K* and ¢¢. It
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has a mass somewhere in the range 1750-2100 MeV and a width ~ 1 GeV. Its
decays are flavour blind within experimental errors. Its integrated cross section
agrees with the prediction of Close, Farrar and Li [2] for a glueball. Its mixing
with the first radial excitation of 7'(958) can explain the iota = 7(1440).

We speculated that there will be a similar broad resonance with J¥ = 27+
around a mass of 2 GeV. The mixing of this broad state with the first radial
excitation of f,(1525) could explain the § = f;(1710). Its mixing with further
radial excitations could explain the exotic ¢¢ resonances observed by Etkin et al.
[3.] from 2020 to 2340 MeV. The reason we proposed a broad state is that it needs
to overlap the mass range 1710 to 2340 MeV.

Since then, Anisovich, Sarantsev and I [4] have realised that glueballs will
naturally mix with ¢g states to make a broad state containing a dominant glueball

component, as observed for 07. So a broad 2% appears quite natural

The lucky break is that a broad 2% state indeed appears in the pnm data in
flight. We looked there first because 57 is the obvious channel for a glueball.
The broad state is visible by eye in the raw data when one chooses the right
angular distribution to plot. Therefore its presence is not dependent on a partial
wave analysis, though the amplitude analysis does confirms it and determines
the mass and width with reasonable errors. It has the additional feature of very
curious helicity properties, strikingly different to the regular gg state a(1660).
That difference and the specific L dependence of the amplitudes suggests non gq
character; one can make a speculative argument associating f»(1980) with what

is expected of a glueball.

There are probably two further observations of this broad state. The Omega
group [5] observes a broad 2% enhancement in low pr central production at a
similar mass: M = 1930 MeV and with similar width T' = 460 MeV. The BES
group [6] has presented at Hadron’97 an analysis of their data on J/¥ — ~y(4r);
that analysis also requires a broad 2% signal with similar mass and width; M =

2010 MeV, I' = 350 MeV.

2 Event Selection and Backgrounds

The event reconstruction follows the standard procedures developed earlier for
all-neutral final states in flight. A condensed version of the essential features will

be given here. Versions of CBAR software which have been used are:



¢ CBar General Offline Software Version 1.30/09

Crystal Data Reconstruction Version 2.04/03

¢ Global Tracking Version 1.37/01

CBKFIT Version 3.09/00

e Brain Version 3.03a

Fast Fuzzy Pattern Recognition.

BCTRAK is not used, since charged particles are not reconstructed, only vetoed.
Events with a PED centred in Crystal 13 have NOT been rejected, as has been the
practice at rest; it rejects too many events. We rely on overall energy-momentum

balance to reject events where photon energy is lost down the beam-pipe.

Data on all final states with 4-10 v have been examined. All have a total
energy peak centred 3+ 1% below the nominal total energy. The only explanation
we can find is that all photon energies need scaling upwards by 3% and this has
been done in the final selection of events. It has rather little effect: differences
in selection of events with and without this scaling factor are at the level of 1%
of events selected; there is no visible change on the Dalitz plot or projections.
After event reconstruction, data are fitted kinematically to 43 channels which
were agreed between Bochum and the UK group. Some of these channels turn out
to have negligibly few events. However, at least 20,000 Monte Carlo events have
been generated for all 43 channels at a beam momentum of 1800 MeV/c. Monte
Carlo events from every channel have been fitted to all 43 channels, in order to
estimate reconstruction efficiencies (from events fitted to the correct channel) and
cross-talk between channels (from events fitted to the wrong channel). Using these
Monte Carlo events and data, we are able to estimate (i) the level of cross-talk,
(b) the numbers of good events in all channels. This is done by solving a 43
x 43 set of simultaneous equations containing on the left-hand side the observed
number of fitted data events, and on the right-hand side reconstruction efliciencies
and numbers of events in every channel. The solution is constrained so that the

numbers of events in every channel are positive or zero.



We have tried a large number of alternative prescriptions for selecting events.
For example, confidence levels were varied and different procedures were tried for
handling split-offs and merged pions. It rapidly became clear that the dominant
backgrounds in the nnm final state arise from wn®x® events (w — 7%y) where one
photon is lost and also 737w° events where two photons are lost. These channels
both have quite large branching ratios compared with nnpw. This made it im-
mediately obvious that it is dangerous to try to recombine split-offs with parent
PEDS, since a genuine low energy photon can then get absorbed into a PED and
this will make the event look like a 6y event. Therefore we decided to use only
events containing exactly 6 PEDS with photon energies above 20 MeV. Events
with split-offs are rejected. For similar reasons, events containing merged w° were
rejected (i.e. events where two photons from a 7° produce a single PED). The
loss of events from these two decisions is < 10% and it reduces background levels

by a factor 3, from roughly 27% to 7.8%.

The 37° and n7°7° channels have branching fractions greater than nnm® by
factors of roughly 30 and 15 respectively. Cross-talk from these channels is reduced
to a low level by rejecting events which fit these channels with a confidence level
> 0.1%; Joerg Luedemann used a cut at 0.01% confidence level, but the difference
in background compared with the 0.1% cut is negligible. Events from 37 are rare,
and easily eliminated by rejecting events which fit this channel with confidence
level > 1%.

The residual level of backgrounds at 1800 MeV/c is shown in Table 1 for three
confidence levels. We decided that the small reduction in background in going

from 10% confidence level to 20% was not worth the loss of events.

At other beam momenta, we have simulated by Monte Carlo only the back-
grounds shown explicitly in Table 1. Within the available statistics, these back-
grounds are roughly linearly proportional to beam momentum. Table 2 sum-
marises statistics and backgrounds. Within the errors, the backgrounds are dis-
tributed according to phase space. (The structures visible within the wn%r® and
n37° channels are not strong and do not distort the phase space distribution of
backgrounds at the level at which we are presently working). In the amplitude
analysis reported below, we have included phase space backgrounds of the magni-
tudes we estimate. Fortunately, they have almost no effect on the physics; when
the background is set to zero, log likelihood changes by extremely small amounts,
typically 1 or 2. Thus we are confident that these levels of background have

negligible effect on physics conclusions.



3 Features of the Data

Figs. 1 and 2 show Dalitz plots for data and the fit and also projections on
to M(nm) and M(nn). In this report we shall concentrate on the physics to
be extracted from the four highest beam momenta: 1350, 1525, 1642 and 1800
MeV/c. These are shown in Fig. 1. The remaining momenta are shown in
Fig. 2 for completeness. It has become evident that it is desirable to try to fit
both production and decay at the lower momenta; but this is unrealistic with the
available statistics at the higher momenta, where many partial waves are required
in the pp channel. Therefore, in this report we shall concentrate on the physics
of the data from 1350 MeV/c upwards. The analysis of the lower momenta must
also await processing of data at 1200 and 600 MeV/c.

The features which are immediately obvious by eye are bands on the Dalitz
plots due to final states ag(980)7, a5(1320)n and fo(1500)7. Data on final states of
37 will be reported separately; they were shown at the October 1997 collaboration
meeting. They contain a very obvious contribution of roughly 30% from f»(1270)x.
One can then calculate the expected contribution in the pnpn° final state using
the PDG branching ratio of f,(1270) — 7n. It comes out to be about 5-7%.
This amount is barely visible in pp7° data by eye, but when added to the fit
it does give a significant improvement in log likelihood and fits to roughly the
right magnitude. The fit is not sensitive to substituting fo(1300) for all or some
of the f,(1270) signal. It seems likely that f,(1270) will dominate strongly over
fo(1300); therefore we omit fp(1300). The fit is improved slightly by adding some
small amount of fo(975) — 7, but this has little effect on any physics conclusions.

As a reminder, data at 1940 MeV/c are shown in Fig. 3. These data have
been extensively analysed by Joerg Luedemann and Holger Stoeck. There is a
conspicuous enhancement at the bottom left corner of the Dalitz plot where the
ao(980) bands cross. From analyses at 1940 MeV/c, we know that this feature
cannot be fitted adequately by the crossing a¢(980) bands alone. It has been
necessary to add a resonance f7(2120+25) decaying to 7. We include this in the
analysis of the present data with the objective of trying to find out whether J =0
or 2. We shall call it f;(2100), since our conclusion will be that it is consistent
with peaks at that mass observed in J/¥ — ~(4r) [7] and the high statistics E760

experiment at Fermilab [8].

The data of Fig. 2 show enhancements in the 7 channel around 1770 MeV,
as discussed below. There is earlier evidence [9] for a spin 0 resonance at this

mass. However, it is also possible that the § meson, f;(1710) contributes in this



mass range. Disentangling contributions from these two possible contributions
turns out to be quite delicate. For present purposes it has almost no impact on
the analysis of data at beam momenta 1350-1940 MeV/c. For reasons discussed
below, it will need a separate study of beam momenta 600-1350 MeV /c.

4 Amplitude Analysis

Channels fitted to the data are as follows:

pp — ao(980)n (1)
— ay(1320)y (2)
—  ay(1660)n (3)
— fo9T5)m (4)
~ h(1270) (5)
o fo(1500)7 (6)
—  f7(2100)x or f4(2050)7 (M)
S £2(1980)7 (8)
— f(1770)7 (9)
o £5(1710)x. (10)

Of these, the last two are relevant only at the lower beam momenta. Except for
the broad f,(1980) and the fo(1770), masses and widths are set to PDG values.
There is no significant evidence for departure from these values. For ao(980), a
Flatté formula is used with parameters taken from previous work [10]. We have
also tried adding ao(1450) and an ao in the mass range 1650-1800 MeV. There is

no significant evidence for either.

4.1 The Wick rotation

There are too many partial waves to fit both production and decay of all chan-
nels. We fit the decay process in full, since this gives the primary information
on JF of resonances. Some approximations are needed in treating the production
process, which tells us about partial waves contributing from the pp channel. The
amplitude analysis uses the same general strategy as in the analysis of early data

at 1940 MeV/c. The decay for each channel is parametrised by an amplitude

_ Gm By Y7 (a, B) exp(ié)

m - . 11
f M2 — s —3MT (11)
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Here J is the spin of the resonance in each of channels (1)—(10) and m is its com-
ponent of spin along the beam direction. In Breit-Wigner amplitudes, a constant

width I' is assumed.

The angles a and (3 are illustrated in Fig. 4. They are the decay angles of the
resonance with respect to the beam direction after a Wick rotation. The details of
the Wick rotation are given in our paper on pp — n3w° in flight [11]. In outline, the
steps are as follows. Particle momenta are transformed from the lab to the centre
of mass frame and then rotated through angles 7, ¢ to the direction of production
of the final state described by any one of the channels (1)—(10). They are then
boosted to the rest frame of the resonance. Then they are rotated back again
through angles —¢ and —7 in the rest frame of the resonance. The effect of the
second rotation is to cancel the quantum mechanical rotation matrices required
for the first rotation. Amplitudes are invariant under the boost to the rest frame
of the resonance. This procedure eliminates the need for rotation matrices. We
shall find that the angle o has a further virtue in displaying clearly the broad
f2(1980). The decay of the resonance X into spin 0 particles 7 and 7 is described
simply by the spherical harmonics Y*(a,3). In equn. (11), there is a separate
real coupling constant G,, for m = 0 and every positive m value. Values of G, are
the same for positive and negative values of m. Interferences between all channels
(1)—(10) are examined. The ones which are kept in the final fit are those where
log likelihood improves by more than 2 x the number of m values, i.e. at least a

2 standard deviation effect.

The initial pp state can have a component of spin along the beam direction of
1, 0 or -1. Therefore formation of a resonance with m = 42 requires a transfer
of at least one unit of orbital angular momentum between initial and final states.
This implies a factor sin 7 in the amplitude of equn. (11). Likewise, resonances
with m = £3 or +4 requires factors sin® 7 or sin® 7. These factors are included
by multiplying them into equn. (11). However, this point is academic, since all
amplitudes with m > 1 optimise at zero. It is general experience from previous
experiments (e.g. the CERN-Munich [12] experiment) that amplitudes with |m| >
1 are strongly suppressed. We find the same result in the present analysis. This
makes a considerable simplification. In the previous analysis [11] by Andy Cooper
of n37° data in flight, all amplitudes with |m| > 1 were also small, though they

were not actually set to zero.



5 Choice of amplitudes for each channel

We now discuss details of each individual channel (1)—(10). Here one must be
clear about our essential objectives in order to understand what approximations
are reasonable. The objectives are: (a) to distinguish between J = 0, 2 and 4 for
f1(2100), (B) to fit £2(1980), and (C) to confirm a»(1660). Consider first f;7(2100).
At a beam momentum of 1940 MeV/c, it is produced with a mean centre of mass
momentum of £ = 256 MeV/c. At lower beam momentum, k is even smaller.
A useful rule-of thumb from earlier experience is that 250 MeV/c is required for
each unit of orbital angular momentum L in the final state. This rule of thumb
may be compared with predictions from Blatt-Weisskopf factors By, given below,
using a radius of interaction R = 0.8 fm. For L = 1, B; = 0.7 and for L = 2,
B, = 0.26; these factors multiply the amplitude.

We therefore fit the production and decay of f;(2100) in full with L = 0 and
1 only. (L = 2 has been tried, but makes negligible contribution.) For J = 0, this
means production from 1S, and 3P, initial states; the latter contributes only to
m' = 1 because the Clebsch-Gordan coeflicient for m’ = 0 is zero. (Here m' is the
helicity in the initial state). For J = 2, L = 0 requires the initial state ' D,; for
L = 1, there are four amplitudes: *P;, 3P,, 3F, and 3Fj, each with its own phase
8. For J = 4, the corresponding states are !G4 for L = 0 and *F3, *F,, 3H, and
3Hy for L = 1. Earlier experience in fitting pp — 7~ 7t [13] is that H-waves make
very small contributions even at 1940 MeV/c, because of the strong centrifugal

barrier in the pp entrance channel.

Next consider ao(980)n. Its interferences with f;(2100) play an important
role, particularly at 1940 MeV/c. There £ ~ 1 GeV/c. We fit all partial waves
explicitly up to L = 3; L = 4 is barely significant and tends to produce instability
in the fit.

Production and decay of fo(1500) may be treated likewise, but in practice has
little effect on the fit. At all beam momenta its production angular distribution is
isotropic within errors. In order to keep the fit as simple as possible, we therefore

treat it with a single amplitude, independent of 7.

Production of a5(1320) has to be treated in an approximate way. At a beam
momentum of 1940 MeV/c, k = 720 MeV/c. Consider as an example, what
would be involved for L = 2. A full parametrisation would require the inclusion
of 'Gy, 3Fs, ®Fy, 'Dy (both L = 0 and L = 2), ®P,, 3P, and 'S initial states.
There are not enough data to support this possibility and for L = 3 there are
five more partial waves. We find that a,(1320) is produced with some slight cost



dependence. We allow for this 7 dependence in an approximate way by allowing
these amplitudes to be multiplied by a factor F(r) = 1 + ycos?§. [Only even
powers are allowed by charge conjugation invariance, since the spectator 5 does
not distinguish between incident p and p|. The factor « is optimised numerically,
and is typically 0.3. We have tried adding terms involving cos* T, but these do
not improve the fit significantly. We find that production of a,(1650) is consistent
with dominant L = 0 at all beam momenta; that result is slightly surprising since
k = 405 MeV/c at a beam momentum of 1940 MeV/c. Nonetheless we take
advantage, and fit simply with m = 0 and m = 1 amplitudes; the latter is almost

negligible, improving log likelihood at most by 5 per momentum.

6 Cross sections and Interferences

Contributions to the cross section from a0(980) and f;(2100) are calculated fully
from the sums of singlet (L = 0 and 2) and triplet (L = 1 and 3, m = 0 and
1) cross sections. Other channels contribute the modulus squared of each helicity
amplitude,. Interferences between channels need to be handled approximately.
Consider a»(1320) interfering with f3(1500) as an example. Let their amplitudes
be A and B for m = 0. Each is presumably produced from many initial pp states.
The interference terms are therefore fitted as cRe(A*B), where c is a coherence
factor fitted in the range -1 to +1, and allowing for partial coherence between A
and B. The interference of the two crossing a»(1320) bands is treated likewise.
In practice these interferences are significant only where bands cross in the Dalitz
plot. Except for ao(980) crossing f7(2100), they play little role in extracting
physics; the ao(980) interference with f;(2100) is treated exactly.

6.1 Centrifugal Barrier factors

For the decay of f»(1270) to nn, a centrifugal barrier for decay B, is included
using the standard Blatt-Weisskopf form:
k2R?
Sk . (12)
[1+ 3k2R2(1 4 3k?R?)|\/?

This has only a small effect. Other resonances are far from threshold and the effect

BzOC

of the centrifugal barrier is negligible. In equn. (12), k is the decay momentum.
For production of f»(2100), we include a standard Blatt-Weisskopf centrifugal
barrier for production via partial waves having L = 1:

kR

B e

(13)
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6.2 Definition of log likelihood

Log likelihood, S, is defined as follows:

S = (;ln wj) — Nln(; w;). (14)

Here N is the number of data events, M is the number of Monte Carlo events, and
w is the cross section for the kinematics of a particular event. With this definition,
a change of log likelihood of 0.5 corresponds to 1 standard deviation. The sign of

log likelihood is such that the optimum fit is given by the most negative value.

6.3 Normalisation

Cross sections are obtained from the number of reconstructed events, corrected
for efficiency as determined from the Monte Carlo simulation; the normalisation
is done with respect to beam counts used in the primary trigger. This is defined
by a coincidence between Ken’s chamber and the OR of the Sili counters. The
beam counts are corrected to the livetime of the data-recording system using two
clocks, one of which runs continuously, as does the beam scaler; the second clock
is gated off when the data-recodring system is busy. We have checked that the

measured cross section is independent of beam rate to better than 1%.

At the present stage, no attempt is made to obtain an absolute normalisa-
tion. Arbitrarily, we choose to normalise against a fixed number of beam counts,
For present purposes, only relative cross sections at different beam momenta are
needed. Table 3 shows the number of 7n7n° events (corrected for efficiency) per

108 .

7 The broad f»>(1980) — nn

In fitting data at 1940 MeV/c, both Joerg Luedemann and Holger Stoeck found
that a high mass contribution with J = 2 in the 5n channel improved log likeli-
hood. They both sought to identify it with f;(2100). However, this was always
a doubtful identification. That resonance is rather narrow, and most of the im-
provement in log likelihood did not come from the peak region. If the low mass
tail of this resonance below 2000 MeV was excluded from the fit, log likelihood was
very similar using f»(2120) or f5(2120); it differed only by 8. At the collaboration
meeting in July 1997, I demonstrated that the best fit to the data was obtained
with f5(2120) and a broad 2% contribution.
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We no longer need to rely on the amplitude analysis to demonstrate the pres-
ence of the broad 2*. With the right choice of plot, it is obvious by eye. At
all beam momenta, the production angular distribution for %7 final states is in-
dependent of production angle  within errors. This is illustrated for one beam
momentum in Fig. 5. In order to examine the spin of the #7 system, one can
then plot distributions against either cos a of Fig. 4 or cosa’. The angle a is
that for decay products of the resonance measured with respect to the beam di-
rection, after the Wick rotation; the angle o’ is measured instead with respect to
the direction of the resonance. The angle o’ has a disadvantage. It is a well know
result that cos ' varies linearly along a band in the Dalitz plot. When another
resonance band crosses, it shows up as a strong perturbation of the distribution
against cos a’. If one uses instead cos a, this feature disappears, since it is smeared
out by the relation a = 6 + o' after averaging over 7. The observed absence of
cos T dependence means that it does not matter whether one plots against cos «

or cosa’.

Fig. 6 shows the dependence of data on cosa for a beam momentum of 1350
MeV/c. This beam momentum has been chosen so that a;(1320) bands lie outside
the range of 7m masses being plotted. The mass range barely extends beyond 2
GeV, so Fig. 6(h) shows masses above 2 GeV for the highest beam momentum
of 1940 MeV/c. Results for other beam momenta are similar, and Fig. 7 shows
the dependence on cos a at 1525 MeV/c; here all panels refer to this momentum.
For the fo(1500) band, the data are flat, consistent with the expected spin 0.
(Any contribution from f;(1525) must be small, since it fails to fit either the
mass or the width of the peak in 57; we also know it to be small from KtK~x°
data of Michael Ratajczak at 1940 MeV/c). For nn masses above 1550 MeV, the
distributions against cos a are far from flat. That requires a contribution from
J > 2. One does not expect J = 4 until close to M,,, = 2040 MeV,; also, from data
on pp — 7 w", it is known that f,(2040) is produced only weakly, so it seems
unlikely to account for the features of Figs. 6 and 7. We shall show below that
fits with J = 4 are considerably worse than with J = 2.

From Figs. 6 and 7, we can immediately deduce a very curious property of
the broad 2% contribution. This feature is so curious that I have searched long
and hard to make sure there is no error in the (very simple) programme! It
is dominated strongly by production with m = 4+1. The amplitude with spin

component m along the beam is proportional to P;*(cos a). Remember that

P) « (1.5cos’a —0.5), (15)

P} o« cosasina, (16)
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P} o« sin’a. (17)

In Fig. 6, it is obvious that the contribution from P} must be small, since the
data tend to small values at cosa = 0. The contribution from Pj has a zero
at cosa = 1/4/3; there is no sign of this in the data. The data peak around
cos a = 1/+/2, which is where P} peaks. So it is obvious that the amplitude with

m = *1 dominates. The amplitude analysis confirms this.

7.1 Amplitude Analysis

The amplitude analysis has been done in two ways, and both give very similar re-
sults. Firstly the f,(1980) contribution has been fitted, like f»(1270) and a,(1320),
with three amplitudes having m = 0, &1 and +2. As usual, the component with
m = 2 optimises at zero. The component with m = 1 dominates by a factor ~ 10

in cross section over m = 0.

The second method of fitting derives historically from the way the programme
was written to fit £7(2100). Both production and decay are fitted assuming L = 0
or 1 in the final state. The fitted partial waves are then ' D, (L = 0), and 3Py, 3P,
3F, and 3Fj (the last four with L = 1). This method has the virtue of displaying
the relative contributions of L = 0 and the contributions with L = 1. What
emerges is that the L = 0 contribution is surprisingly small at all beam momenta.
The reason is that it requires m = 0 and the Py amplitude does not fit the data.
The L = 1 contributions are all significant and somehow conspire to produce a

dominant m = 1 amplitude.

I have checked the sensitivity of the fit to individual contributions from *D,,
3P, 3P,, 3F, and *F3 by varying the magnitudes of each in turn, re-optimising all
other amplitudes and all phases. What emerges is that contributions from the five
amplitudes ' Dy, *P;, *F3 and the 27 amplitudes with initial helicites m' = 0 and 1
are well separated by their specific angular dependences. Much of the cross section
producing the broad f5(1980) comes from the initial 2% state with helicity m’ = 0.
Clebsch-Gordan coeflicients are such that this amplitude leads to purely m = £1
final states. Contributions from 2% initial states with m' = 1 are almost absent.
The remaining cross section comes almost entirely from initial states *P; and 3 F3;
their relative magnitudes and phases conspire with the small 2t m’ = 1 amplitude
to produce final states which are dominantly m = 1. Contributions from the initial
state 1D, (L = 0 in the final state) are surprisingly small: everywhere < 15% of
the cross section for the broad f»(1980), and frequently only 5%. In view of the

centrifugal barrier hindering L = 1 final states, that is very surprising.
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This result is in striking contrast to the behaviour of a»(1660), which will be
discussed in detail below. It is dominated at all momenta by the final state with
m = 0. Its production cross section versus momentum k in the final states is
consistent with L = 0 if one allows for some saturation as the momentum rises;

this is shown in Fig. 8.
For f,(1980), the dominance of L = 1 offers a strong hint that the broad 2+

has a large glueball component. According to Isgur et al., a confined gluon is not a
gluon in its ground state, but is excited with a component L = 1 along a direction
about which it rotates. They have shown that hybrids should decay preferentially
to gq states containing L = 1 between the quarks. This implies that the excited
gluon cannot readily transfer its orbital angular momentum to the spin of the
quarks, because the spin-orbit interaction is too weak. It is plausible that the same
will be true for two gluons in a glueball. If one views the process pp — w(gg)
in reverse as a virtual decay of the glueball, there should be a preference for
producing a pion with L = 1 and a pp system with internal L = 1. That would
be consistent with the observed strong dominance of L = 1 over L = 0. The
argument is however incomplete, since Table 3 shows that the ®F; partial wave
with {5, = 3 is stronger than *P; with {5, = 1. The argument also fails to explain

why m = 1 dominates.

Regardless of these conjectures, Fig. 6 makes it quite obvious that the broad
2% object is present. To optimise its mass M and width T, the following procedure
was adopted. The entire fit was made at each momentum for a grid of values of M
from 1850 to 2100 MeV in steps of 50 MeV and T from 300 to 600 MeV in steps
of 50 MeV. Values of log likelihood were added from fits to data at 5 momenta
from 1350 to 1940 MeV/c. The optimum is at M = 1980 MeV, I' = 500 MeV.
This is illustrated in Fig. 9. However, it is likely to be an approximation to use a
constant width. The pp and ww channels are opening rapidly from 1550 MeV and
K*K* opens at 1780 MeV. Our experience in fitting the broad 0~(1750 — 2100) is
that opening of these channels and the s dependence of the width may play quite
a strong role. From the present data, there is some indication of this. The data
at 1350 MeV/c optimise at M = 1900 MeV, those at 1525 MeV/c at M = 1940
MeV and with increasing beam momentum the optimum mass gradually increase
to 2020 MeV; as the mass increases, the fitted I' increases gradually from 400 to
590 MeV. A reasonable compromise amongst these results is M = 1980+ 50 MeV,
I' = 400-600 MeV.
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8 ay(1660)

Earlier work at 1940 MeV/c, with which I agree, has shown a clear optimum for
this resonance at M = 1660 £ 15(stat) £+ 15(syst) MeV, I' = 280 4 30 + 30 MeV.
The key feature which identifies it is the constructive interference between the two
a2(1660) bands at the right-hand edge of the Dalitz plot. This is illustrated in Fig.
10. The m = 0 amplitude is completely dominant. It has an angular dependence
PJ(cos a), which peaks at each end of the band, where cos @ = +1. Constructive
interference between the two bands in the m = 0 amplitude is responsible for the

enhancement at the right-hand edge of the Dalitz plot.

There is a strong requirement for a;(1660) at all beam momenta from 1350 to
1940 MeV/c. Typically it improves log likelihood by 50-70. Detailed numbers for

this channel and others are given in Table 6.

However, a,(1660) lies towards the top end of the available p7 phase space.
In consequence, data below 1940 MeV/c do not improve the determination of its
mass and width. As these are varied, log likelihood gets rapidly worse as M is
decreased below 1630 MeV, so this is a safe lower limit on the mass. But for
masses above 1700 MeV, log likelihood flattens off and I' increases. One cannot
see a real optimum. The VES group presented data at Hadron’97 showing an
a2(1700) decaying to pw [15].

9 fs(2100)

I begin by reviewing results from earlier work at 1940 MeV /c. Joerg Ludedmann
and Holger Stoeck have not included the broad f,(1980) and have used only a
single resonance which optimises in the mass range 2120 to 2160 MeV, depending
on the choice of J. However, it was always clear that most of the preference for
J = 2 (or 4) arose from the mass range below 2000 MeV. When the amplitude
was cut off below that mass, all J gave fits of similar quality.

There was a second disturbing feature. One expects the centrifugal barrier to
suppress the L = 1 cross section by at least a factor 2 compared with L = 0. If J =
2, allowing for multiplicies available to the various partial waves, one anticipates
that the ' D, cross section (L = 0) should be roughly similar in magnitude to the
sum of L = 1 cross sections from 3Py, 3P,, ®F, and 3®F;. But the fits gave a very

different picture. Results of my fits are summarised in Table 5.

Let us start from a reference fit without f7(2100). Since the zero of log like-
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lihood is arbitrary, I define this as the zero. If one adds a J = 0 resonance with
only L = 0 and optimises its mass and width, log likelihood immediately improves
spectacularly by 96.1 (entry 2 of Table 5). Adding L = 1 from 3P, has very little
further effect (entry 3).

Next consider J = 2. With only L = 0 (*D;), entry 5, log likelihood is much
worse than for J = 0. The reason is that the decay angular distribution is com-
pletely incompatible with |Y;)(a)|?. However, adding L = 1 production from 3P,
3P,, ®P, and 3F; allows a good fit to both production and decay, entry 6 of Table
5. With hindsight, this is obviously helping to fit the broad f»(1980) contribu-
tion. ce Next consider J = 4. The story is very similar to J = 2. Distinguishing
between these two possibilities is hindered by the drop in acceptance near the
beam direction, cos & = +1. The L = 0 contribution alone, entry 7, gives a poor
fit, even if M and T are fitted freely. The reason is that |Y2(a)|? fails to fit the
decay angular distribution. However, again adding L = 1 production from *F3,
3F,, ®Hy and 3Hy allows a good fit to both production and decay, entry 8. The
J = 4 fit is able to fit wiggles in the data which could easily arise from statistical

fluctuations.

A J = 4 contribution seems likely to come from f4(2050); if we fix M, T at
PDG values, log likelihood is decidedly worse, namely 116.1.

Entry 4 shows a fit including the broad f,(1980) and fo(2104) with T' = 216
MeV and only L = 0. The mass and width have been fixed at values from expt
E760 at Fermilab. This experiment has by far the highest statistics, and shows

an exceedingly strong peak in 7.

Table 5, entry 6, shows that f(2120) including L = 1 is capable of fitting
the data, but with a remarkably small L = 0 contribution. If this fit is to be
believed, the production cross section should show a k* dependence on the centre
of mass momentum k of the resonance. Strictly speaking, this will be modified
to k*/(k* 4 0.0608) with k in Gev/c by the centrifugal barrier factor (Bj)?; but
in practice the effect of B; is small, because k> < 0.0608. On the other hand,
if J = 0, the cross section will be proportional to k, with perhaps some form
factor attenuating the cross section for large k. Fig. 11 shows the cross section
for f,(2100) as a function of k. Both curves are drawn arbitrarily through the
point at 1800 MeV/c as a guide. The full line is linear in k, corresponding to
L = 0 production; the dashed curve refers to L = 1 production. It obviously fits
much better to L = 0, hence J = 0, though there is an obvious indication that
the cross section is saturating as the momentum rises. If one fits with J = 0, the

cross section is almost indistinguishable from that of Fig. 11.
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If one persists in fitting with J = 2, the decay angular distribution at 1940
MeV/c, calculated from the fit, is isotropic within errors.

Much of the discussion presented so far in this section has arisen because
it was necessary to challenge the conclusion of Joerg Luedemann that J = 2 is
statistically better than J = 0. Once the broad 2* component has been recognised,
it is in fact straightforward to insert into the fit one broad component with spin 2
and a second narrow one with J = 0 or 2 or 4. This procedure leads immediately
to a well defined optimum choosing J = 0 for f;(2100) and optimising the masses
and widths of the two contributions. The latter than optimises at 2115 MeV with
a width of 210 MeV. These results are consistent within errors with results of the

E760 group, but the latter are statistically superior.

In summary, the conclusion is that J = 0 from (i) a strong isotropic contribu-
tion to production, Fig. 6(h), (ii) a flat decay angular distribution, and (iii) the
k dependence of the production cross section, Fig. 11. This result agrees with
the JP analysis of J/¥ — ~(47) [8]. The strong peak in E760 data has never
been properly analysed, mainly because of strong anisotropy in their detection
efficiency. There are also data on 7~ 7t — 77 data from GAMS [16]. These data
may be fitted with two alternative solutions, because of Barrelet ambiguities. One
of the two solutions shows a very strong peak at 2100 MeV in the S-wave, consis-
tent with what we find. Their second solution seems to have no relation to CBAR
data.

10 Further Details of Fits

I have examined angular distributions for production and decay of resonances by
making cuts which select events above the half-height of each resonance. Fig. 12
shows production and decay angular distributions for f,(1980) at 1800 MeV/c, the
acceptance and the fits. The loss of events near the beam pipes is obvious. Fig.
13(a)-(d) show production angular distributions for a¢(980), a2(1320), fo(2100)
and fo(1500); the histograms show fits. On Figs. 13(e)—(h) the same data are
shown and the histograms display the angular acceptance. Figs. 14(a)-(d) show
decay angular distributions, where D means o/; histograms on (e)—(h) show the ac-

ceptance. Figs. 14(i)—(p) show corresponding results in terms of cos a. Note that

what is lablelled as f3(2100) includes a substantial background due to f»(1980).

Table 6 shows changes in log likelihood when each contribution is removed

from the fit and remaining contributions are re-optimised. As a general guide,
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past experience is that a change in log likelihood of 20 is significant and a change
of 40 is definitive.

11 The fo(1700 — 1780) in #7.

As concerns data for beam momenta 1350-1940 MeV/c, this resonance plays little
role. At 1350 MeV/c, these is a definite peak at ~ 1770 MeV. If you look along
the diagonal carefully, you can just see the signal by eye. The data cannot be
fitted without a signal at ~ 1770 MeV; this is demonstrated in Fig. 15. It is well
fitted by fo(1770 4 20) with T in the range 115-160 MeV. If one tries to fit with
f» instead, log likelihood is worse by ~ 10, a rather marginal difference, although
the fit with f, uses one more helicity amplitude.

The story at 1050 and 900 MeV /c is similar. At all momenta, fo(1770) does a
better job of fitting the data than f,(1770) or f5(1710). There is some evidence
at 900 MeV/c for the presence of f5(1710) in addition to fo(1770). But present
work, although favouring the presence of fy(1770), does not discriminate clearly

the possible presence of fo(1710) or f,(1710).

The weakness of present fits in this mass range is that the production process
is not fitted in full, only decays. By bad luck, at three of the four lowest momenta
the mass range M,, ~ 1700 — 1800 MeV is obscured by two crossing a,(1320)
bands or by two crossing ao(980) bands or by ao(980) crossing a,(1320). In order
to extract reliable information, those crossings must be fitted accurately and that
implies a full analysis of the production process. That will be the subject of a
further detailed study, but requires completely different programmes. Data at
1200 and 600 MeV /c will play a crucial role.
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13 Figure Captions

Fig. 1. Dalitz plot for (a) data (b) fit, (c) projection on to M(n), (d) projection
on to M(nm) at 1800 MeV/c; (e)-(h) likewise at 1642 MeV/c; (i)-(1) likewise at
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1525 MeV/c; (m)-(p) likewise at 1350 MeV/c. Points with error bars are data
and histograms show the fit. Units are GeV? in (a) and (b), GeV in (c) and (d).

Fig. 2. As Fig. 1 for beam momenta of 1050 and 900 MeV/c.
Fig. 3. As Fig. 1 for a beam momentum of 1940 MeV//c.
Fig. 4. Angles used in the Wick rotation. The dashed lines indicate the

direction of decay particles from resonance X in the rest frame of X after the
Wick rotation.

Fig. 5. Production angular distribution do/d|cosf| (arbitrary units) for four

ranges of M,, at a beam momentum of 1800 MeV /c.

Fig. 6. Decay angular distribution do/d|cos a| for several ranges of M,,; (a)-
(g) are at a beam momentum of 1350 MeV/c; (h) is the distribution for M, =
2050-2200 MeV at a beam momentum of 1940 MeV /c.

Fig. 7. As Fig. 6 for a beam momentum of 1525 MeV//c.

Fig. 8. Branching fraction of a5(1660) versus its centre of mass momentum k

(arbitrary absolute normalisation).
Fig. 9. Variation of log likelihood with M and T for f,(1980).
Fig. 10 Contribution of a»(1680) to the Dalitz plot at 1940 MeV/c.

Fig. 11. Production cross section for f5(2120) as a function of centre of mass
momentum k. The full line shows the expectation for L = 0 and the dashed line

that for L = 1.
Fig. 12. (a) production angular distribution of f,(1980) at 1800 MeV/c un-

corrected for acceptance, and compared with the fit (histogram), (b) the same but
corrected for acceptance, (c) decay angular distributions v. cos a, uncorrected for

acceptance and compared with the fit, (d) the same, corrected for acceptance.

Fig. 13. Production angular distributions (corrected for acceptance) for data
at a beam momentum of 1800 MeV/c: (a) ao(98) + 50 MeV, (b) a2(1320) + 60
MeV, (c) fo(1500) £ 60 MeV, (d) fo(2100 £+ 108 MeV. (e)-(h) compare data with

the acceptance.

Fig. 14. As Fig. 13 for decay angular distributions. (a)—(d) the fit to cos o’
uncorrected for acceptacne, (e)—-(h) data v. cos @’ compared with acceptacne, (i)-
(1) the fit to cos a uncorrected for acceptacne, (m)—(p) data v. cosa compared

with acceptance.
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Fig. 15. Projection on to M,, at a beam momentum of 1350 MeV/c; the
histogram shows the fit without fo(1770).
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Confidence Events Background from Wrong
Level wmor® n3m° 7% 37° Other Combinations total
20% 4790 2.8 2.2 03 01 0.0 1.0 6.4
10% 5672 3.4 2.8 05 01 0.0 1.0 7.8+0.6
5% 6348 4.2 3.3 0.7 01 01 1.2 9.6

Table 1: Numbers of events at 1800 MeV/c for three confidence levels, and corre-
sponding background levels (%).

Beam

Momentum

(MeV/c)

Data

Monte Carlo

Background (%)

1940
1800
1642
1525
1350
1050
900

5832
5672
4929
4425
4648
6607
9023

23540
22868
42130
21471
17816
22629
22928

8.0
7.8
6.7
5.4
4.2
3.3
3.9

Table 2: Statistics of events and Monte Carlo at each beam momentum and

background levels.
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Beam Momentum (MeV/c) nnm° events/10® beam counts

1940 29.2
1800 37.7
1642 46.4
1525 49.8
1350 52.1

Table 3: Events per 10® incident p after correction for (a) detection efficiency, (b)

backgrounds, and (c) system livetime.

Process 1350 1525 1642 1800 1940
f2(1980)r 'D 2.9 1.3 1.7 2.1 0.4

f2(1980)7 *P, 29 4.0 5.6 2.0 1.9
£2(1980)7 2+ =0 0.1 0.2 0.0 0.2 0.0
f2(1980)7 2T m 74 103 78 47 59
f2(1980)w 3 F: 6.8 5.2 8.2 6.9 6.8
ao(980)n 17.2 148 146 145 16.0
a»(1320)n 30.3 25.6 24.2 26.2 29.2
ax(1660)n 5.4 7.5 8.9 10.7 134
fo(975)m 3.3 1.9 43 2.7 54
f2(1270)x 7.5 5.9 7.0 7.1 5.4
fo(1500)m 9.7 119 73 10.1 6.1
fo(2100)7 0.8 3.8 5.6 8.9 8.6

Table 4: Branching fractions for five beam momenta (MeV/c).
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Entry J % L=0 %L=1 % f2(1980) log likelihood

1 - - - - 0

2 0 8.5 - - 96.1

3 0 8.4 0.2 - 97.5

4 0 8.6 - 15.8 166.5 (best fit)
5 2 1.8 - - 16.9

6 2 0.8 15.5 - 154.3

7 4 0.4 - - 6.4

8 4 0.9 13.2 - 148.5

9 None 0 0 20.9 96.1

Table 5: Fits at 1940 MeV/c with various possibilities for fo(2100), f»(2100),
f2(1980) and f4(2050).

Channel 1350 1525 1642 1800 1942
£2(1980)x 1D, 125 110 119 273 41

£2(1980)x 2P, 9.3 175 207 118 145
£2(1980)x 3P, 12.7 278 247 194 218
£2(1980)7 3F, 19.2 40.1 266 166 23.6
£2(1980)7 3F3 21.1 195 281 254 242
£(1980)r (L =1) 458 539 547 472 379
all £,(1980)x 62.0 724 847 8L1 43.2
a0(980)7 82.6 91.0 69.1 936 87.3
a5(1320)p nr 1162 201.1 2285 2555
a(1660)n 355 5461 44.4 728 427
£o(975)x nr 140 368 30.8 745
£2(1270)x nr 306 542 442 377
Fo(1500)x 29.1 511 562 69.6 62.9
£2(2100)x nr 214 562 T7.8 927

Table 6: Changes AS in log likelihood at the five beam momenta (MeV/c) when
these contributions are omitted and others are re-optimised; log likelihood is de-
fined so that AS = 0.5 corresponds to a one standard deviation change; nr means

‘not recorded’.
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