Muons in four prong data.

Nana Djaoshvili,Lucien Montanet,Crtomir Zupancic

CERN

In 8000 events fitted as $2\pi^+2\pi^-\eta$ (with a soft CL greater than 0.1 %) we find 107 events with one track with dE/dx less than 0.006 in the region where we can distinguish muons from pions by dE/dx ($p \leq 100 MeV$). See Fig.1. With CL cut greater than 10 % we keep almost half (47 events) of all these events.

No muons (0 events) are expected from the decay of the π from Monte Carlo phase space simulation. However, the analyses of 200 000 Monte Carlo events simulated as

$$\bar{p}p \rightarrow E\pi^+\pi^-,$$
 (1)

where $E \to \eta \pi^+ \pi^$ with $\eta \to 2\gamma$.

and of 200 000 Monte Carlo events simulated as

$$\bar{p}p \rightarrow \eta' \pi^+ \pi^-,$$
 (2)

where $\eta' \to \eta \pi^+ \pi^$ with $\eta \to 2\gamma$,

where the charge pions are softer than for phase space events, explains quantitatively this effect. Statistically this effect is not very strong. We loose up to 5 % of the E - signal and less than 3 % of the η' - signal , well within the statistical errors given for these reactions (See CB-Notes 318). However, these events create spurious narrow peaks in the $\eta\pi^+\pi^-$ and $\eta\pi$ invariant mass distributions "low mass" η' and a_0 signals. (See Fig.2) Among the 107 " μ - candidates " , only two events are pair (+-) of "light" charged particles. Both of them are identified as Dalitz pairs. We also find that the 105 events with one muon candidate have a "missing momentum" which is larger than the "missing momentum" for normal $2\pi^+2\pi^-\eta$ events. This conforts the interpretation of the 105 events as due to pion decay into muon and neutrino.

2 REFERENCES

References

[1] N.Djaoshvili et al., CB-Note-321