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Abstract

We report on an analysis of the reaction pp—KgK* 7% with data taken by the Crystal Barrel with the kaonic
trigger of April 1996. The final dalitz plot contains 60K events, much larger than the combined statistics
of all previous experiments. The partial wave analysis uses P and S-wave annihilation. Contributions from
ag(980), a§(1450), K3(1430) and p(1450,1700) are discussed. If the well-known K (1430) is included in
the fit, it perfectly recreates the K K threshold enhancement without an explicit resonance, i.e. the ag(980)
is no longer needed. A I = 1 resonance is suggested at roughly m = 1500 MeV, but the spin is not well
determined, so it may be either p(1450) or ag(1450).
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Chapter 1

Introduction

The study of pp annihilations is a useful method for the spectroscopy of low mass mesons in the 1-2 GeV/c?
mass spectrum. Annihilations into three scalar particles are especially useful, because of the simplicity
of describing the complete kinematics with only two variables, which can be nicely plotted in a Dalitz
plot. Three body channels involving pions and etas have been well studied and have resulted in many new
discoveries of mesons. The true nature of these mesons, however, is still not well understood.

Some of the various ¢g meson nonets are fairly well established, including the pseudoscalars (i.e. m, 7,
n', K), vectors (i.e. p, w, ¢ and K*) and tensors (i.e. az(1320), f2(1270), f4(1525), K5(1430)). The scalar
nonet is not well established. In fact, none of the members are assigned without controversy (except perhaps
the K3(1430)). But the scalar sector is where the lowest mass glueball is predicted. A glueball is a bound
state of two or three gluons; the only hard predictions are from the lattice QCD community[20] and [43] who
predict the scalar glueball to be in the 1.4-1.8 GeV range.

Two of the new mesons discovered in pionic and eta-mesonic physics are the fy(1500) and the ag(1450).
The fg(1500) is believed to be either the glueball alone or a mixed state of glueball and ¢g meson, while
the ag(1450) is rumored to be the I = 1 member of the 07+ meson nonet[44, 9, 41]. The best evidence
for the glueball nature of the fy(1500) is its decays into channels of different flavor, i.e. up, down and
strangeness. Its decays into non-strange channels is well known, but its decays into strange channels is less
so. It is crucial to know the coupling into strangeness, because this will aid in determining whether it is a
flavor-blind glueball or if it is the s5 member of the ¢g nonet.

The first measurement of the branching ratio of fo(1500)— K K was done in an analysis of pp— K K1 7°[2].
In this case, the fy(1500) was seen decaying into Ky Kr. However, the ag(1450) (if it exists) can also decay
this way, and it was seen that it was difficult to separate the contributions of these two scalar mesons. What
was needed was a channel where only one of these scalar mesons was allowed, in order to definitively measure
their strangeness couplings without interference. Even without a constraint on the ag(1450) the s3 coupling
of the fp(1500) was “small”, making it low in s§ content. This means that another meson must be the s me-
son, e.g. the f7(1700) or some other undiscovered f; meson. A better constraint on the BR(fo(1500)—K K)
value requires a precise measurement of BR(ao(1450)— K K) from another channel.

One such channel is pﬁ—J{OKiﬂ'”F where the neutral kaon is either Kgs or K. The reaction with K,
has been studied in a previous work; however, because the K, is virtually undetected by our experiment, the
resolution of this study was not ideal. The alternative, with K decaying in its charged mode, Kg—nt7~,
has higher resolution because the event is fully reconstructed, and also allows a trigger to enrich the data
sample. The only drawback is that in order to get high statistics, a Kg trigger requires a secondary vertex
outside of the vertex detector. This requirement makes a large effect on the momentum-dependent efficiency,
cutting on low momentum kaons that decay inside the vertex detector, thus vetoing the trigger. With proper
Monte Carlo simulations, this trigger effect can be corrected.

There were three aims of this analysis.

1. The first goal was to determine which resonances make up the pp—KgK*7F annihilation channel.
Besides the well known mesons (K*(892) and a2(1320) which are visually apparent), there is some
confusion over the contributions from ao(1450), a»(1650), p(1450), and p(1700). The KK threshold
enhancement (typically called the ap(980) resonance) needs to be better understood.

2. The second goal was to describe the properties of the ag(1450) (if it exists) including its mass, width



and branching ratios from pp annihilation. Knowledge of the ag(1450) will help in determining the
KK decay mode of the f3(1500).

3. The third goal was to determine the properties of the ag(980)— K K decay with high statistics.

In the process of doing this experiment, several new results were found. First, the contribution from
K3(1430) was surprisingly important in the fits. The statistical significance of this channel is much greater
than the evidence for the “expected” resonances, such as the a¢(980) or ag(1450). Second, the unique shape
of the K3(1430) mimics the ezact shape of the KK threshold enhancement, and can entirely replace the
ao(980) intensity. This means that the ag(980)—K K branching ratio can be much smaller than previously
measured, consistent with zero. The true nature of the ag(980) has been a mystery since its discovery (see
Cahn’s “Mystery of the [ ag(980) ]7[27] for a discussion about how the @g(980)’s branching ratios seem
to be dependent on the production), and this discovery may aid in developing a consistent picture of this
“particle”. Finally, the statistical evidence for the ag(1450) is not as high as previously thought, and the
signal may be instead the p(1450).



Chapter 2

Physics background

2.1 pp Annihilation at rest

Theoretical understanding of pp annihilation is lagging far behind experimental observations, mostly because
quantum chromo-dynamics (QCD) is not directly calculable at this energy scale because the color coupling-
constant becomes too large for perturbation calculations. The limited theoretical guidance comes from
conservation of quantum numbers, including angular momentum, parity, charge parity, isospin and G-parity.
Some success has been had by treating the quarks as confined in bags [32] or a harmonic oscillator potential[30,
38, 39].

In pp annihilation at rest, the three antiquarks of the p, the three quarks of the p and all the gluons and
other sea-quarks interact with each other. This quark gas of energy 2 GeV evaporates into an average of five
pions, and may be thought of as a statistical thermodynamic process. There are similarities between this
low energy process and that of the quark-gluon plasma sought in high energy experiments (such as RHIC)
[15]. Within this color-rich environment, bound states of gluons, called “glueballs”, and other exotic mesons
are expected to be formed. An exotic meson is one that is not formed by a simple ¢q pair, but by ¢qg or

q999.

2.2 Capture and Cascade in Hydrogen

In liquid or gaseous hydrogen, very slow antiprotons (200 MeV /c¢) eventually come to a stop and are captured
by protons in a hydrogen-like atom called protonium. For a complete description of pp annihilation at rest,
see [22]. The capture states usually have a quantum number of n ~ 30 and high angular momentum of
L ~ 30. Eventually this excited state decays to a low angular momentum state through the emission of
x-rays. Typically, annihilation does not occur until L < 2, because the orbital wave-functions do not overlap
sufficiently.

In rare gaseous hydrogen, the 1P (L = 1) state is arrived at first in the cascade, and thus annihilation
occurs primarily from the P wave. This contrasts the situation in the liquid where S (L = 0) wave annihilation
dominates. Due to the higher density of liquids, the increased collisions with neighboring Hy atoms cause
significant Stark mixing of levels. The Stark effect causes transitions to the S state to occur faster than
annihilation in P states. In fact, annihilation in liquid is nearly 90% due to S-wave. The exact ratio of
P to S wave annihilation is still not understood because the ratio depends on the final state observed.
Historically, P wave annihilation in LH; annihilation at rest has been ignored to simplify the partial wave
analysis calculations, and this has been successful to a large extent based on the quality of the final fits.
However, in this analysis with its high statistics, including P wave annihilation in the fits improves the x?
significantly.

Because the cascade process involves interaction with the surrounding medium, the quantum coherence
between different states is lost. Essentially the constant bumping of neighboring hydrogen atoms and the
emission of real X-rays has “measured” the state of the protonium, and thus collapsed the wave-function
before annihilation takes place. Thus channels that proceed from different initial states do not coherently
interfere with each other. The initial state is defined by the JF¢ of the pp state, listed in section 2.6.
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Figure 2.1: The topology for the reaction, starting with pp annihilation at vertex V0 into Kg, K* and 7F,
with subsequent Kg—mT7~at vertex V1.

2.3 Isobar model

In the two-body isobar model[37, 17], pp annihilation proceeds primarily through two-meson intermediate
states. In a three-body final state, pp proceeds through a short-lived resonance, called the isobar, and a
spectator meson. The isobar then further decays to two mesons.

The dynamics and angular momentum of the isobar dictates the final form of the Dalitz plot. For a
particular isobar in a Dalitz plot, one axis of the intensity is described by the dynamical form, usually a
Breit-Wigner or K-matrix. The perpendicular axis is described by the spin-parity function, a function of
the various angular momenta of the particles, the total angular momentum and Clebsch-Gordan coeflicients.
Spinless particles have a flat distribution in this perpendicular axis, while vector and tensor particles have
variations similar to the shapes of the letter “U” or “W.”

This analysis is concerned with analyzing the K Kn system. In this three body reaction, there are two
possible classes of isobars, the non-strange K K isobar and the strange K= isobar. The particular choice of
K K7 system determines which isobars are present and which initial states are allowed.

In particular, the reaction

pp— KK+ 7¥

is the physical reaction of interest. This channel is unique in that the KK system must have isospin
I = 1,13 = %1 because it is recoiling against the #F which has isospin I = 1,3 = F1. This rules out
contributions from I = 0 states such as ¢, fo(980), fo(1300), fo(1500), and f2(1525), leaving only I =1
states such as p(1700), ag(980), a2(1320) and ag(1450). Also, the strange K« states include both charged
and neutral combinations of K and w#. This makes for interesting interference patterns where the two
combinations cross in the Dalitz plot.

2.4 The reaction K¢K*r*

The K° meson is the strong eigenstate, but it is not observed. It is a linear combination of two other
states, the K; and K5, which are C'P eigenstates and are nearly the observed states. The observed states
are actually Ks~ K; and Ky~ Ks; the small C'P violating differences are not important in this analysis.
Because the K° is then half Ks and half Ky, the branching ratios that are quoted for states with K° are
usually double that quoted for states with Kg or Kp.

The specific reaction that is analyzed in detail in this report is

pp— K*n¥Kg

‘—’ atn—.
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7t 1= 0
ap 1 0+
p° 1 1~
K* L0-
Kg % (s
K*(890) = 1--
K§(1430) i ot
K3(1430) g 2t

Table 2.1: The quantum numbers for some mesons. G is not defined for strange mesons and C' is not defined
for charged particles.

where annihilation occurs at the primary vertex V0 and the Kg decay occurs at the secondary vertex V1
(see figure 2.1). The displacement of the secondary vertex (er = 2.68 cm) allows a fast experimental trigger
(see section 4.1) as well as a clean event tag on the Kg.

The resultant four charged particles can be directly measured via their ionization tracks in the Jet
Drift Chamber (JDC). Because the trigger also required long tracks, low energy tracks have lower efficiency
because they can curl up. Also, the charged kaon can decay (K*—pu*v) within the JDC fiducial volume at
low energy. Neglecting these minor losses, the complete event is reconstructed.

2.5 Particles, Quantum Numbers and Selection Rules

In this section, we discuss the properties of the particles involved and the appropriate selection rules for pp
annihilation.

2.5.1 Final-state particles

In this reaction, there 5 distinct final-state mesons,
at, 77, Kt K~ and Kg.

These are all pseudoscalar mesons, meaning

JP=0".

2.5.2 Intermediate state isobar particles

The isobar decays into pairs of final-state particles. To determine allowed isobars, we shall combine the final
pseudoscalar mesons together pairwise with a relative angular momentum [ = 0,1,2. Using P, = —1' and
the fact that the pseudoscalars have no spin, we see that the intermediates can only be

JP =0t 17 2% ...

Next, considering isospin I, the pair 7K can have isospin 1/2 or 3/2. However, if we limit our analysis
to intermediates that can be described by the quark model, I = 3/2 is eliminated because it can not be con-
structed with only two quarks (3-quark baryons are eliminated by insufficient energy from pp annihilation).
In addition, the spin-parity structure is the same for I = 1/2 and I = 3/2. Thus we limited ourselves to
I =1/2 for 7K resonances. The allowed quantum numbers for 7 K resonances are

p_ Lo 1 _ 1 .
1J _20 ,21 ,22 .
These correspond to the known resonances K§(1430), K*(890), and K3(1430).

For the pair KK, we can get I = 0 or I = 1. In the next section, we will show that I = 0 is not allowed in
this particular annihilation channel. G = —15+5+1 = 1241 for § = (0 and I = 1. So the allowed quantum
numbers for K K resonances are

19 JF =1- 0%t 1t 17,1~ 2%,



corresponding to the known states ag(980, 1450), p(1400, 1700) and a3(1320). Of course, there can be addi-
tional energy poles with the same quantum numbers.

2.6 pp Initial states

The allowed quantum numbers for pp annihilation states can be easily enumerated by combining all
possible values of L' = 0,1 (the prime is to distinguish this L’ from the L used later on) with all possible
values of spin. We know that pp annihilation at rest proceeds dominantly from L' = 0 and somewhat from
L’ = 1. Since the spin of the proton is %, the total spin of pp is either 0 or 1. Then J can take on 0,1 or 2.
The parity of a fermion-antifermion pair is calculated using

P = _1L+1
while the charge-parity is calculated using

C=—1t*°
L’ S 25+1LJ JPC
0 0 1So -+
0 1 381 1=-
1 0 tp 1+-
1 1 3P, 0+t
1 1 3P 1++
1 1 3p, 2t+

The isospin can be either |II3) = |10) or |IIs) = |00). Note that the I3 component must be zero.
Assuming annihilation through the two-body model, one of the bodies is a spectator meson and the other is
a shorter-lived intermediate resonance. In this analysis, the spectator is one of the mesons 7%, K% or Kg, or
in other words, a 0~ pseudoscalar, with /¢ = 1~ or I = 1/2. If the spectator is the 7% with |I3) = [1£1),
the intermediate must have Is = F1, requiring I = 1. This explains why I = 0 K K intermediates are not
allowed, as mentioned in the preceding section.

To see which states are accessible from pp, we make all combinations of spectator pseudoscalar and
intermediate, in relative spin-states of L. This L is between the isobar and spectator, not to be confused
with the L’ in the previous table which was between the proton and antiproton.

PS + Inter. ||L:0 L=1 L=2

(0= +0%), 0~ 1+ 2-

(0 +17)¢ 1t 0—-,17,2~ 1+, 2% 3+
(0= +2%), 2- 1+,2+ 3t 0-,17,27,37,4-

2.7 Isospin and C-Parity Considerations

Because the initial states are well defined J¥C states, the intermediates need to be written in eigenstates of
P and C. This process coincidentally puts the intermediates in eigenstates of I, even though the initial pp
state is not an eigenstate of I. In the notation of |I I3},

pp) = 1E e —1b — 5 =—/E10)+[00)).

The isospin doublets and triplets used in the following discussion are defined as follows. The assignment
is true for excited states (e.g. K*) as well.

()-00)(5)( ) ()

1 ot at ot
0= =® || « |.[ #°
-1 T a” p-



Isospin I Is) P C BR Factor Wave-function

00) 14 3/2 (/5 (latn) + Jamat) — o)
10) —1 1 fi(latrn) — Jamt)

12 0) _pLHl g 3 VA (atam) + ) + 20a%7°)

+

00) —1E =32 [ () et - 1607%)
10) S Y Y (s R Taad)

20) —1 = [ () L) + 20p00)
I70) —1k+ ¢ 3/2 -1 [K*+K ) + (=1) |K*OK0)
+C (|K*—K )+ (—1)f K*OKO)N

Table 2.2: The isospin and C-parity eigenstates. The BR Factor is described in section 2.7

The C-parity operation gives the following:

Clata™) = +|a~77T)

Clp*a™) = ~[p~77)
KK )= KK’ )
C|Ix*+[x )= —|K*"KT).

The intermediate states pp—an and pp—p7m are mixtures of I = 0,1,2. The initial states pp—K*K are
mixtures of 7 = 0, 1. However, the simplest isospin eigenstates of the later are not C-parity eigenstates, so
linear combinations must be taken to arrive at C-parity eigenstates. The simple decompositions are

10, = VHIKTET) +
10), = J3(-IK"K*) +

(-
(

100), \f(_u{*m )~ |F
(—

00), = /35-IETKY) -

The C-parity linear combination of |I 0>a,b is given in table 2.2, as well as the decompositions for |aw) and
pm). The quantity L is the relative orbital angular momentum between the isobar and its spectator.

What these wave-functions in table 2.2 tell us are the branching ratio scaling factors to be applied to the
measured branching ratios to account for the entire wave-function, observed and unobserved. For instance,
in the I = 0 decomposition of the |aw) state, we see that each of the charge variations (la*7™), |a®#"),
|a=7*)) have equal coefficients. Since we only observe |at7~) and |a~#1), the final answer needs a factor
of 3/2 to account for the unobserved |a®#°)
no correction factor necessary. For the |K*K), all charge variations are measured, so there is no correction
for unobserved channels, but there is a 3/2 correction because of the way the K* decomposes, which comes
from (2.5). These scaling factors are given in the “BR Factor” column of table 2.2. In addition to these
scaling factors, only half of the K° decays are seen as Kg, so there is another global factor of 2 applied to
all channels. This net scaling factor is given in table 2.3.

K*KO 2.1

*0[10

o

2

7*OIX 0

[N}
w

*OI\

)
)
)
)) 2.4

(2.1)
(2.2)
(2.3)
(2.4)

. For the I = 1 decomposition, there is no |a’x°), so there is

2.8 Kaon decays

The strong decays of excited kaons are as follows. If they decay into a kaon and a pion, then we need
to consider 1 x 1/2 Clebsch-Gordan coefficients. By conserving strangeness and observing the isospin sign

10



[15T7C S [ a%ay | a%pF | ntay | KEK'o | KEK™ | KEK'5 |

0F0—F IS, [[0(3) 231 03) | 113 | 203
1-0-*+ 1S 1(2) 03 | 13) | 203
0F1—— 335, 1(3) 1(3) | 2(3)
1-1-— 35, 2 (2) 1(3) | 2(3)
0F1IF—  1h 0.2 (3) 1(3) [02@3)| 13)
-1+ e || 1(2) 12 | 13) [023)] 1(3)
0FoFF  °R,

1-0t+  3p

0t1+t  3p || 1(3) 13) | 13) 023 | 10
-1+t 3p 0,2 (2) 1(3) |023)| 1(3)
0t2tt 3P, 1(3) 2(3) | 1(3)
1-2t+  3p, 2 (2) 2(3) | 1(3)

Table 2.3: Initial pp states and allowed two-body final states. The values in the table are given as “L (f)”,
where L is the allowed spin state(s) between isobar and spectator and f is the branching ratio scaling factor
(see section 2.7).

convention for K~ we get

K —  \/2/3|atK°) — \/1/3|z°K ) (2.5)
K*= — /2/3|7~ K% + \/1/3|x°K ") (2.6)
K — —\/2/3]z~ Kt) 4+ /1/3|x°K") (2.7)
K — —/2/3|ntK~) — \/1/3]x°KD0). (2.8)

The strong eigenstates of the neutral kaons, K° and K0 are not C'P eigenstates. When they do decay,
they decay into either two pions (C'P = +1) or three pions (C'P = —1). These two decays have very different
rates because of the phase space involved. Thus it appears that the K° and K" have been transformed into
two new states, Kg and K, which are C'P eigenstates. The Kg is the short lived particle, which is seen in
this analysis. The decomposition is as follows:

Ks =+/1/2(]K°) + | K°)) (CP=+1)
Kr, = /1/2(]K°) — |K%)) (CP=-1)
or transforming to the other basis,
K% = 1/2(|Ks) + |KL)) (2.9)
Ko = 1/2(|Ks) — |KL)) (2.10)

2.9 Connecting initial pp states with isobar states

The next step is connecting the pp initial states with the isobar-spectator intermediate states, by comparing
allowed quantum numbers. This is done in table 2.3, using the tables in section 2.6 and table 2.2. Only J¢
values are needed for selection criteria. The C-parity is critical in determining the isospin.

One can see that there are many allowed initial and intermediate states, with 45 allowed combinations!
In practice, not all combinations are used in the fits. This is true especially for P wave annihilation and
L = 2 states when a L = 0 state is also allowed for the same final state. We also note that there are no
allowed states from 3 P;.

11



2.10 A discussion of the states used in the partial wave analysis

In the partial wave analysis, we need to know not only how many resonances to use in the fit, but also if
there are symmetry restrictions to the number of amplitudes to use in the fit. If there are identical particles
in the final state, the dynamical amplitude must be symmetric under interchange of the particles. However,
in practice the measured particles are not the original interaction particles and have undergone decays and
flavor mixing (i.e. the Kg). In some channels, there may be symmetries that are not obvious from the list
of final-state particles. For instance, in the Dalitz plot analysis of 7° K¢ K, the dynamical amplitude is
symmetric under interchange of Kg and K.

For this analysis, all final-state particles are different (ﬂ':t, K#* and Kgs), but there may some hidden
symmetry. There is also some freedom to choose which basis to use in describing the isobars. In the past
[31], the 7K K system was written in terms of eigenstates of isospin. This was fine in the distant past
when isospin was believed to be a good symmetry, but in the present we know that isospin is broken by the
differences in up and down quark masses. This difference is small, but easily measurable, for example in
the mass difference of K*(892)* and K*(892)°, which is 4.4 4 0.4 MeV/c?, or about 0.5%. If one does the
analysis in the isospin eigenstate basis (which is suited for isospin invariance), this mass difference needs to
be inserted by hand in the formula depending on which axis the dynamical amplitude is being calculated.
Since isospin invariance is not true, there is no reason to use the isospin eigenstate basis.

In the following steps, we derive the basis states used to describe the # K K system. At first, we work in
the isospin eigenstate basis, but then show at the end that we can we write the basis in terms of charged and
neutral K* resonances equivalently. Once written in this manner, the mass difference is easier to include in
the fitting algorithm. More importantly, the result of the fit gives the amplitudes in terms of charged and
neutral K* contributions, allowing a direct check of charge invariance in the strong reaction of pp annihilation
which is believed to be charge-blind.

If we expand the intermediate states in table 2.2 with (2.5), (2.6), (2.7) and (2.8) we get the four states
¢1,c where I = 0,1 and C' = +1,—1. The order of particles listed in the kets is important; the pion and the
first kaon decay from the K* isobar, while the second kaon is a spectator.

—|7°KtK=)  +/2atKOK-)

1) —(=)IV2]7m KTKY) (=1 |x°K°KDY)
orc =\ 13 +C[=|m°K~K*) 2]z KOK™) (2.11)

+H(=)I2mt K- K% (=D |7"KOK?)]

We can replace the K© and K0 particles with Ks and K. Since we do not observe the K nor the x°
we can simplify the isospin-C-parity |I, C') state expressions by suppressing all terms that are not observed
in this analysis:

+|atK,K™)
—(=Df |7~ KtK,)

o1~ +C(=|m" K, Kt)
+(=D)! |7t K~ K,))

We note that each term has the same amplitude up to a sign. For C' = +1, there are two states I = 0,1
or

(2.12)

bo4 = |7TKK™) — |77 KTK,) — |77 K,KT) + |2t K~ K)
¢1 4= |7t K, K™Y+ |77 KTK,) — |[=" K,Kt) — |=t K~ K,)

Because each of these states will have an independent production amplitude in the partial wave analysis,
we can take linear combinations of these two states and get the same result. Let us take

’l/).|_ = ¢07++¢17+ = |7T+](SI{_> - |7‘T—[{s[(+> (213)

Yo = ¢o4— b1 4= |7 KYK,) — |7t K™ K,) (2.14)

We can see in this basis that the ¥ state describes K** 7% K, and that ¢ _ state describes K*°—rT K ¥,
This shows that the amplitude can be separated into two parts which represent the two axes of the Dalitz

plot, i.e. the z axis which is m?(7* Ks) and the y axis which is m?(7* K¥). This approach is better than
previous analyses which fit using the isospin eigenstates, because
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1. The data Dalitz plot is obviously not symmetrical
2. The masses of K*(892) depend on the axis chosen, so isospin is broken anyways.

3. The amplitudes of the charged and uncharged K* can be fixed to the same magnitude, but keeping
individual phases. This can test the hypothesis that the intensities of the charged and uncharged K*
might be the same.

4. The ratio of charged versus neutral components of the K'w wave can be directly compared.

2.11 Resonances expected in KgK*r*

The first experimental results for K¢ K* 7% were published by the Saclay 81 cm bubble chamber collaboration
at the CERN PS in May 1965 [16]. From only 1145 events, they noted strong K* bands at 890 MeV in
the K systems, as well as two other enhancements, the KK enhancement at threshold and another KK
enhancement at 1250 MeV. The two K K enhancements are known as the ao(980) and as(1320) respectively.
We scanned the original data and binned it into a 30x30 histogram, which is shown in figure 7.14.

A later analysis with more statistics from the same bubble chamber (2000 events) attempted a partial
wave analysis[31]. In this analysis, they introduced another broad resonance, the so called K7 S-wave,
which they parameterized with a scattering length amplitude. With these four resonances, they were able
to adequately fit the data.

There is an interesting asymmetry in the Dalitz plot. If one divides the plot into four sectors defined
by the strong K*(890) bands, the lower-right sector has many more events than the upper-left sector. In
addition, the left-end of the horizontal K*(890) band has much more intensity than the lower-end of the
vertical K*(890) band.

Until the Crystal Barrel, this was the limit of knowledge of the KgK*7% system. The Crystal Barrel
published a paper on K7 K*7F with much higher statistics (13K)[4]. The fundamental physics behind this
reaction, which substitutes a Ky, for the Kg, should be the same as for KsK*a%. In addition to the bubble-
chamber resonances, two extra resonances were need to describe the data, the ag(1450) (recently discovered
by the Crystal Barrel in decays to 7%7) and the p(1450,1700). The p(1450,1700) was characterized by two
poles, although in the past it was characterized by one pole, called the p(1600). The K# S-wave was also
improved by using the characterization from the LASS experiment[18].

Two other resonances which may play a part in this reaction are the K3(1430) and a2(1660). The
K3(1430) is a well known resonance in the K« system as measured by LASS [18], but because its mass is
slightly above the limit of phase space and its spin is high, was not considered previously. The a3(1660) was
used in an analysis of 7°7°7[11], but its significance was not emphasized. The K7 K*x¥ analysis of [4] did
not require this resonance.

We discuss the history of all of these resonances in detail below.

2.11.1 K*(892) resonance

This resonance appears as the dominant vertical and horizontal bands near 0.8 GeV? in the dalitz plot. It
is the most visually obvious resonance in the reaction.
This resonance is modelled as a relativistic Breit-Wigner,

mol'o/p(mo)

2 . :
mg —m? 4+ imglg

The mass and width of the neutral K* is mg = 896.10 MeV and 'y = 50.5 MeV, while the mass of the
charged K* is mg = 891.59 MeV and I'g = 49.8 MeV. The K* is a vector meson, so its angular distribution
appears as cos? in the 1Sy state, and sin® @ in the 35, state. Because the intensities of the two initial states
are approximately equal, the bands appear flat because the complementary angular distributions cancel to
some degree.
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Figure 2.2: The LASS data for K — 7w S-Wave scattering, and the fitted function given by (2.17), (2.16) and
(2.15). Shown are magnitude and phase of T'.

2.11.2 K — 7 S wave

The K& S-wave is not well understood on theoretical grounds, but is required empirically in all partial wave
analyses to date.
The bubble chamber analyses [31] parameterized the S-wave using a scattering length parameterization
which rises slowly with increasing mass. .
I —iarpkr
01/2 = +03fm, a3/2 = —03fm
Later, the LASS collaboration[18] directly extracted the S-wave component from K — 7 scattering, and
parameterized it as a sum of an inelastic Breit-Wigner amplitude and a background term parameterized as
an effective range. The same data was refit using the K-matrix formalism, with a pole term due to the
K{§(1430) resonance, and with a background term which describes the additional K — & S-Wave component.
. mol'o/p(mo) am
K= P 2 2
mi—m 2 + abq
mo = 1343.0, Ty = 400.0, ¢ = 0.00181, b = 0.00258 (With MeV as units for mass). In the K-matrix

formalism, the Lorentz-invariant transition amplitude is given by

T=(1—-iKp) 'K (2.16)

(2.15)

where p is the two-body phase space. In the Dalitz plot, the Lorentz-invariant transition amplitude T is used
rather than the non-relativistic 7". The original LASS data and the fitted T" function are shown in figure 2.2;
in this case, the non-relativistic form 7" is shown. 7' is calculated using

T="Tp (2.17)

and equations (2.15) and (2.16).

In practice, the fit is insensitive to the exact parameterization of the K7 S-wave because it is so broad; for
example, the y2 of the fit did not change significantly if the background term was omitted or parameterized
as a first-order polynomial with two real coefficients. None of the individual contributions changed much,
at least a lot less than the systematic error of the fit, when the background term was removed entirely. For
example, the contribution from the K7 S-wave in 'Sy dropped by only 15%, when the systematic error for
this wave is estimated to be somewhere between 25 and 500% (see table 8.1).
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Figure 2.3: The K*#~ invariant mass distribution of events produced from K= scattering. The shaded
curve represents the effect of removing events from N* production, which is not important to the discussion
here. Figure is reproduced from the LASS experiment[18], Fig. 3.

2.11.3  K;(1430)

The K3(1403) lies significantly outside of the phase space for this annihilation channel. However, because it
is a strong resonance, the tails have a significant effect on the Dalitz plot. The LASS experiment has shown
that this tensor K3(1430) has roughly twice the intensity of the vector K*(892) in the K — m wave when
there is no phase space limitation. See figure 2.3 which shows the large contribution from K3 (1430) and the
significant Breit-Wigner tail which extends down to at least 1 GeV/c2. Of course, in the K¢ K*7% Dalitz
plot, there is significant suppression due to phase space and the angular momentum barrier.

The shape of the distribution in the Dalitz plot is somewhat odd, because the central mass lies above
the edge of the dalitz plot and because the angular momentum barrier function suppresses the intensity at
the edge. The tails that appear in the Dalitz plot do not have the obvious horizontal or vertical ridge that
is seen in the K*(892). Instead, the 1S, partial wave has diagonal bands caused by the characteristic “W”
decay pattern of tensors. Figures 7.4, 7.5 and 7.6 show the unusual resonance patterns of the K5(1403) from
different initial states.

2.11.4  ag(980)

The ag(980) is an interesting resonance. It has two primary decay channels,
ag(980)—mn
ao(980)—KK.

However, in both channels, the resonance distribution in mass is severely distorted. The distortion in the
KK channel is due to the fact that the mass of the ag(980) is at the KK threshold, so the decay can not
happen at all below the threshold. Due to unitarity and analyticity of the dynamics, the shape of the KK
amplitude directly influences the shape of the #1 amplitude, giving it a cusp-shape. This phenomenon is
explained in the Flatté [35] parameterization of the a(980), discussed below. The Flatté shapes are shown
in figure 2.4. It is clear that neither the 7y nor KK amplitudes can be described by a Breit-Wigner.

The first bubble chamber analysis[31] parameterized the edge enhancement with a Breit-Wigner with a
mass-dependent width .

SKK — S0+ IDKKY
In the limit of a narrow resonance far from threshold, this width v may be related to the more classical
“constant width” T" by the relation.
I' = prkv/Vs0
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This is an approximation to the Flatté distribution, whose width also increases with breakup momentum,

PKK-
The actual Flatté distribution is as follows

- g1
(s) = - 2.18
() = =7 —i(oadT + e 219
g+ g3 =mel (2.19)

where g1 = gxx and g2 = gpr. The details of the Flatté function and the connection to the K-matrix

formalism is given in section 7.7.
1_ Mgz — My 2 1_ Mgz + My ?
m m '

The phase space terms are
M+ — Mo ? Mg+ + Mgo 2
P (1_<K7K>)(1_<K7K))
m m

The phase space signs are taken to be + when calculating the physical resonance, but can take on either
sign when calculating on the complex /s plane.

Because of this definition, the total width ' is about 250 MeV, even though the peak width in the wp
channel is visibly much narrower, about 60 MeV. This has caused lots of confusion in getting a consistent
number for the width, as the value is model dependent.

The physical resonance parameters are not the values used in any of the above formulations, but are
extracted from the pole positions of the T-matrix of the form

H

1=

Epote = mg — il'/2.

Because the Flatté formula involves two phase space quantities (p; and p3), each which have square-root
branch cuts, there are four Riemann sheets in which the poles can be found. The two Breit-Wigner poles
are always found on the second and third Riemann sheets (see [19] for a classification of the poles). In the
partial wave analysis of this report, we shall cite the relevant pole position to obtain the correct values for
the mass and widths
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2.11.5  ao(1450)

The assignment of the scalar ¢g nonet to experimentally seen resonances is controversial. Many candidates
are available for the I = 0 f component, while the historical assignment of the a¢(980) to the I =1
component has been called into question because of evidence that the ag(980) could be a kaonic molecule or
four quark state. Moreover, the mass appears to be lower than expected, assuming that the K3 (1430) is the
I =1/2 component.

A search for a replacement candidate has yielded some observations in the 1300-1500 range. Boutemeur
and Poulet[25] announced at Hadron 89 an isovector scalar meson with mass ~1320 and width 130. In
1994, the Crystal Barrel announced observation[11] of the a¢(1450) with mass m = (1450 &+ 40) MeV and
[ = (270 £40) MeV, seen in the ag(1450)—n7" decay mode in pp—7°x°rn. The reduced y? decreased from
2.1 to 1.3 with Ng.¢ = 1249. The ao(1450) is 5% of the Dalitz plot.

A later coupled channel analysis[12] confirmed the ag(1450) with BR = (0.29 &+ 0.11) x 1073, m =
1470 + 25 MeV and I' = 265 £ 30 MeV. A further analysis[1], used a(1450) with a 3% contribution and
BR= (0.203 £ 0.038)~3, which agrees with the previous coupled analysis. However, the focus of this paper
was on the I = 0 resonances, not the ag(1450).

At Hadron 97, the Crystal Barrel announced observation of the ag(1450)’s decay into K K[4], while the
OBELIX collaboration announced observation of an ag(1300)’s decay into K K[46]. The mass, width and
branching ratio parameters of these 2 resonances were not compatible. The Crystal Barrel’s ao(1450), with
m = (1480 £ 30) MeV and I' = (265 £ 15) MeV, had decay rates into KK that agree with the SU(3)
prediction.

In other analyses, inclusion of the ag(1450) was not incompatible with the data, but not absolutely
required. In the 7%7% Dalitz plot[3], the ag(1450) was needed. However, the contribution could be as
small as 1.5+ 1.2 % and the mass parameters were not well constrained according to the text. In Ehmann’s
paper, pp—7 T 775, and they claim that the ag(1450) is necessary, but don’t give any numbers. In the exotic
paper[5], the ag(1450) was not needed in the fit at all. In truth, the ag(1450) has only been seen in the nn°
and Kp K*7F Dalitz plots.

Because the parameters of the ag are not well determined, we explored the complete parameter space of
mass, width and branching ratio for this isovector, scalar resonance, modeling it as a Breit-Wigner resonance.
If the mass is indeed above 1300 MeV, the K-matrix formalism is not necessary to describe the distortion

from the a¢(980).

2.11.6  p(1450) and p(1700)

The p(1450) and p(1700) are two “new” resonances which used to be lumped together as the p(1600). The
p(1700) has been seen in its decay into K K [29], while the p(1450) has not[33]. The evidence against the
KK decay mode of the p(1450) is not terribly convincing, because it assumes that the I = 0 and I = 1
amplitudes are real and positive, which is mostly likely not the case. For example, if the amplitudes were
real but relatively negative, there would be evidence for the K K decay mode.

The problem with a p(1450) is that it has nearly the same mass as the a¢(1450), making it hard to
disentangle the two.

2.11.7  a5(1660)

The a2(1660) was introduced for the first time in a Crystal Barrel analysis on 7%7%[11]. As stated in the
paper,

We find that the fit ... can be improved by adding a small contribution of a higher mass 7%
D-wave resonance with a mass of 1600 MeV to 1700 MeV and a width of 180 MeV to 250 MeV.
As the contribution of this additional resonance is marginal, (1.0 £ 0.5) %, and localized at the
edges of the Dalitz plot where acceptance corrections are relatively more important, we refrain
from attaching any physical meaning to this effect.

Recently, the a3(1660) has aroused more interested in the spectroscopy community, so we attempt to include
it in our fits.
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2.11.8 K*(1410)

The strange vector K*(1410) could also be a part of the Dalitz plot, even though its coupling to K is
somewhat small. We attempt to include it in our fits.
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Chapter 3

Software tools

This chapter discusses the software used in the analysis, including the software written by the author.

3.1 cblbl++

A C++ class library was written by the Uni-Bochum group to wrap all of the FORTRAN code in a C++
interface. However, with the advent of the CLHEP standard C++ class library for High Energy Physics,
much of the code needed to be rewritten to take advantage of the better list handling classes, better interface
to HBOOK, as well as improving the data I/O classes. Further more, wrappers for charged data did not exist
and needed to be written. This rewritten class is now known as cblbl++.

A detailed description of the software is omitted here, because most of it concerns technical details of
data management, i.e. pointer juggling or simple 4-vector arithmetic. One of the interesting classes that is
part of cblbl++ is KinFit, the general purpose kinematic fitter. This is described below.

3.2 Vertex Fit

The section summarizes the operation of the vertex fit which was specially written for this analysis. The
details are given in a technical report[42].

3.2.1 Introduction

There are two components in making a proper multi-vertex fit to an event. First is determining the track-
to-vertex topology, and second is constraining the tracks to the measured JDC hits.

The Crystal Barrel was designed primarily for detection of neutral particles, a task that was nearly
impossible in the 1960’s bubble chamber experiments, especially if there was more than one neutral particle.
In most cases, resonances or other intermediates decay via strong or electro-magnetic forces, meaning that
the lifetimes are very short (¢ << 107!° s). The distance such a particle can move in such a short time is
only a few nanometers or less, which is entirely undetectable in a drift chamber or vertex detector which
have resolutions of 0.1 to 1 mm in the Crystal Barrel. It appears that all charged tracks and nearly all
neutral photons originate from the same spot, the pp annihilation point.

Thus the old vertex fit algorithm simply assigned all tracks to one vertex. For computational simplicity,
the fit did not constrain the tracks to lie on the “hit” positions. It simply took the results from the helix
fit, which did constrain the tracks to the hit positions, and adjusted the helix parameters via an iterative
algorithm so that they all passed through a common point in space. In practice, this was a reasonable thing
to do for 2-track events with long tracks. However, for short tracks in 4-track events, the fit tended to severely
rotate tracks around to force a single vertex. These rotated tracks no longer intersected the measured hits;
in some cases the rotation was as large as 90 degrees, totally changing the true direction vector of the track.
In addition, vertices separated by less than 1 cm would be incorrectly merged into a single vertex if the helix
constraints were “soft”.

In the unique case of Ks—wT7~, the Kg travels a few cm before decaying. This distance is easily
measurable in the Crystal Barrel, and creates a distinct second vertex. A new vertex fit algorithm was
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Figure 3.1: An example of a good (2,2) fit to Monte Carlo data

thus needed for two reasons. First, this analysis required a vertex fit that can determine two (or more)
simultaneous vertices, which became the “TCVER3” routine. Second, because the distance between vertices
can be small (down to 1.2 c¢m), the vertex fit had to be constrained by the original JDC hits, not just
the reconstructed helices. This routine was called “TCVRHX”. If not, the vertex fit could force true disjoint
vertices into a single incorrect vertex. An example of a good fit is shown in figur3.1.

3.2.2 TCVRHX

The new vertex fit code TCVRHX implemented a new track-to-hit fitting algorithm, based on the helix fitting
code. The geometry of the detector is a cylinder on the z axis, with +z the direction of momentum of the
incoming p beam. The 1.5T magnetic field points in the —z direction (something that wasn’t discovered
until the second year of running). The tracks bend in the (z, y) plane, which is defined with +y as vertically
up (opposing gravity) and +x is defined through the right-hand rule. In the helix fitting code, each set of
hits was fit to a parametric curve of 5 parameters: curvature (o ~ 1/Py), center of circle in cylindrical
coordinates (rg,io) , pitch (tan A), and offset in beam direction zg. This resulted in 20 parameters for a
4-track event. In the TCVRHX fitter, tracks were parameterized as coming from a vertex in space (z,y, z) and
then moving with a curvature, azimuth (¢g) and pitch (tan A) (see figure 3.2). Because tracks share vertices,
this results in 18 parameters for an event with two vertices with two tracks each, or 15 parameters for a
single vertex with four tracks. This method of finding the vertex is superior in finding the true position
of the vertex, especially when used with the fine precision of a vertex detector which highly constrain the
path of the helices. It is better in distinguishing closely spaced vertices, and the momentum resolution is
comparable to the old vertex fit routine.

3.2.3 TCVER3

As a companion to the actually fitting code, a new topology generator and selector was written (TCVER3).
This routine generates all vertex topologies that are possible from all the tracks of an event. Topologies are
written in the following notation:

(n1,na,...nm)

where m is the number of vertices and n; is the track multiplicity of the #** vertex. The n; are sorted in
decreasing order. A track that appears to come from “nowhere” is assigned a vertex multiplicity of 1 and
the vertex position is the closest approach to the z-axis. For two-track events, there are only 2 topologies:
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Figure 3.2: The parameterization of the TCVRHX vertex fit.

(2,2) 4) (3,1) (2,1,1)

Figure 3.3: Common event topologies. See text for notation

either the tracks come from a common vertex (2) or they don’t (1, 1). For three-tracks, there are 3 topologies
(1,1,1), 3 x (2,1) or (3), where there are 3 permutations of the (2, 1) topology. For four tracks, there are
(1,1,1,1),6 x (2,1,1),3x (2,2) 4 x (3,1) and (4). See figure 3.3 for a schematic of common topologies for
4 tracks.

The algorithm for finding the “best” topology was designed to be robust and independent on the original
order of the tracks. The routine starts by assigning each track to a null vertex. It then forces pairwise sets
of vertices together and calls the track fitter. The best pairwise combination of all pairwise combinations is
kept, if the y? is below a threshold. This process is continued until no vertices can be compared together
than would result in a y? below the threshold. The result of this algorithm is to return the topology with
the smallest number of vertices. In order to eliminate some combinations, the user can require that 2-track
vertices have zero net charge.

The vertex fit uses the reduced y?/Ng to determine whether a fit is good or not. Using data with 4
golden long tracks, it was determined that a cut off of x*/Ng < 1.8 was a good discriminator between the
(4) and (2,2) topologies. For Ng = 40, this cut should accept more than 99% of good events. This value
was varied to see its effect on the K K*at MC. A higher cut off of 3.0 increased the number of accepted
(22) events by 5%. This small increase in statistics was not deemed significant enough to merit using 3.0 as
the cut off instead of 1.8, since the vertex fit quality of the additionally accepted events was worse.

Additional “outlier” rejection is applied to hits in the vertex fit. In earlier processing, outliers are tagged
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Data Type S(og) S(o.)
Monte Carlo  0.720 0.840
Real Data 0.952  0.936

Table 3.1: The error scalings applied to the hit errors of real data and Monte Carlo

by assigning an enormous error to it, thereby “effectively” removing the influence of the hit from the fit.
However, leaving these outliers in the fit makes the y2/N calculation incorrect because N remains the same
but x? decreases. Thus these hits are discarded in TCVRHX. If the number of “good” hits drops below 10,
then the entire track is discarded. This can cause an event with 4-long tracks on input to have only 3 (or
less) tracks on output of the vertex fit.

3.2.4 Hit Error Scaling

The vertex fit used the y? value to determine the goodness of fit. A x? calculation depends directly on the
estimated errors of the measured values. In this case, the estimated errors are the measurement errors of the
JDC hits, measured in two dimensions: the azimuthal ¢ position which is a direct function of the drift time,
and the z position which is a function of the charge division measurement. The third position measurement,
the radial position of the hit, is a function of the fixed geometry of the JDC fields, and thus does not have
significant error compared to the other two measurements. In addition to the small error, because the tracks
are mostly radially, the additional constraint on the helical track due to a radial position measurement is
minimal. Thus the y? is due only to the ¢ and z errors and not the p errors.

The fast Monte Carlo simulation does not simulate the true physics of the ionization due to the track,
for example tracking delta electrons, but simply assigns a drift time and z position to the hit. These values
are then smeared additionally by a Gaussian to mimic the true data.

Even with this additional smearing, the Monte Carlo is still “too good” compared to the data. To get
consistent results, the error estimates of the hits need to be scaled differently so that the final y? distributions
take the proper mean. The error scalings S which scale the errors as

!
0, = Sog

are given in table 3.1, and the resultant pulls

B r—T
Ve - @

are shown in figures 3.4 and 3.5. The pulls as a function of layer number (or equivalently radius) are fairly
constant except for the first and last layers. The gap at the 6th layer is due to a missing layer in the JDC.

The pull distributions for Monte Carlo and data are shown in figures 3.4 and 3.5. The pulls are reasonably
Gaussian, with no significant mean shift. The ¢ pull distribution deviates from Gaussian slightly, but is
satisfactory for this analysis. The width of the z pull distribution is consistent with unity, while the width
of the ¢ pull distribution is a little two narrow, and the resultant confidence level distributions are likewise
peaked towards high confidence levels. To smooth out this effect which is a result of experimental errors
being estimated too large, the experiment errors of the ¢ position are scaled. This results in a flat confidence
level for the x? of the individual hits (with 2 degrees of freedom). The scalings for Monte Carlo and data
are given in table 3.1. The global scaling is applied to all other scalings.

The reconstruction accuracy is shown in figure 3.7 where the vertices V0 and V1 of Monte Carlo generated
events are plotted. The differences to the reconstructed vertices are shown as short line segments. The
majority of vertices are correctly reconstructed. The errors are well described by the statistical fitting errors
and a the variation induced by multiple scattering between the JDC and the target. The pulls for the
kinematic fit, which depends on the 3 x 3 error matrix of the momentum for each track, are shown in
figure 4.14.

22



TN
O
~

@ pull
N
'
@)
~—~
z pull
N b

IW‘

9] 0

1 —1 Er=—

—2 -0

_3 3 ;

74 \\\\‘\\\\‘\\\\‘\\\\‘\\ 74:\\\\‘\\\\‘\\\\‘\\\\‘\\
0 5 10 15 20 0 5 10 15 20

JDC layer JDC layer
@ pull vs. layer z pull vs. layer
2450 | ¥'/ndf 5858 / 96 | & e X°/ndf  138.7 / 95
00 B (c) P1 355.3 | - 400 E (d) P1 353.0
g P2 0.1712E-01 550 B P2 0.5801E—02
= 0.9718 g 1.021
E 300 F
2 250 F
= 200 [
= 150
& 100
50 |
C ‘ O c ‘
0 —4 0
¢ pull z pull

Figure 3.4: Vertex fit pulls for MC. (a) The ¢ pull versus layer number, (b) The z pull versus layer number,
(c) The ¢ pull with superimposed Gaussian fit, (d) The z pull with superimposed Gaussian fit
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the two plots of the V0O and V1 vertices, and that only one quadrant of the detector is shown for V1.
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3.3 KinFit - General Kinematic Fitter

One of the new classes of cblbl++ is KinFit which is a general kinematic fitting algorithm. A kinematic fit
is a technique where the measured particle 4-momenta are improved by applying constraints to ensembles
of the momenta and varying the momenta slightly to satisfy these constraints. Typical constraints include

1. the total energy of an ensemble of particles
2. the total momentum of an ensemble of particles, either in magnitude or in each spatial component.
3. invariant mass of an ensemble of particles

There are two other uses of the kinematic fit besides improving momenta. The first is to do 7+ /K* particle
ID on an unidentified charged track. Because the 7% and the K* have different masses, the total energy
of a set of tracks depends on the identification of the track as a 7% or K*. By testing both hypotheses
in a kinematic fit and looking for the lower x? or higher confidence level, the identity of the tracks can be
determined usually, unless the momenta of the two tracks are the same. We do not use the kinematic fit for
the actual particle identification (this is done by dE/dx), but for particle identification validation.

The second use of a kinematic fit is to test the hypothesis of one or more missing particles. For example,
a soft 7%—~vv could escape the detector through the end gaps. A kinematic fit of an event with a lost particle
will typically be much worse than of an event with all particles seen.

For pp annihilations at rest, the total energy and momentum components are known. They are £ = 1876
MeV and p'= 0. Typical invariant mass constraints are applied to gamma-gamma pairs to constrain the mass
to the 7% mass (139 MeV) or n mass (547 MeV). Another mass constraint is applied to #+t 7~ or #°z° pairs
to the Kg mass (497 MeV). In the case of the later pair, where the 7%—v7, two levels of mass constraints
can be imposed.

In KinFit, one constructs a hypothesis using the Particle class. The annihilation ensemble is assigned
to a pseudo-root particle called “pbarp” with mass of 1876.54 MeV. This root particle then decays into two
or more daughter Particles, which can further decay if necessary. Then, each data event is constrained to
this hypothesis, with a y? calculated based on the following constraint equations f:

Yopf —pi? = fi=0 (3.1)
m2 — m2

s s =0 3.9

2mos fs (3.2)

where a runs over all final-state particles (the leaves at the end of the decay tree), i is z, y or z, 3 runs over
the mass constraints of intermediate particles, mg and mgg are the measured and correct invariant masses,
respectively, of the 8 intermediate particle. In this analysis, there are four measured tracks, so four terms in
the momentum sum. Also, there is one mass constraint on the Kg—at 7~ decay, where mgg = 497 MeV /c?
for the 7t 7~ pair.

The details of the fit algorithm are given in appendix 10.

3.4 awp - Partial Wave Analysis

The software for the partial wave analysis was called awp (a reversal of the acronym for what it does). It
originally began as a program written in FORTRAN, and then translated by hand into C++. Unfortunately,
the translation was impenetrable gibberish, and did not take into any of the features of object oriented
programming. In an effort to understand all of the details of the partial wave analysis, the entire program
was rewritten from scratch using C++ objects.

The theoretical physics details are given in the partial wave analysis, chapter 7. Here we describe the
software interface. The input file outlines the structure of the partial waves for each Dalitz plot. The form
is given here abstractly:

PWA {
ResonanceDefinition
ResonanceDefinition
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ResonanceDefinition

DalitzPlot {
InitialState {
FinalState {
ResonanceProduction
ResonanceProduction

¥
FinalState

}
InitialState

¥
DalitzPlot

}

The program first reads all external histograms into memory, and then calculates the spin-parity functions
for each bin for each initial state and final state. These values are cached. Then control is given to MINUIT[40],
which calls awp to numerically calculate the second derivative matrix of the log-likelihood, and then varies
the parameters in order to minimize the negative log-likelihood. The source code is attached in the enclosed
CDROM.

Some of the features are

1. Free or constrain an overall fudge function of arbitrary polynomial order. This feature is used to take
care of any discrepancies between the Monte Carlo and real data.

2. Ability to set two or more production amplitudes to the same value. This is used to constrain the two
K axes to the same production strength.

3. Ability to constrain the percentage of each of the different initial states, for example constraining
P-wave annihilation to 10% of the total Dalitz plot.

The textual output of the program is in the same format as the input, so the output can be slightly
edited and then resubmitted to the program. The histograms are outputted in a private format, and printed
using a custom program that generates the postscript directly, to avoid using any of the CERNLIB libraries.
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Chapter 4

Data Selection

This chapter reports on the steps taken in the data collection and data reduction. We discuss the online
trigger, the event reconstruction, and the four stages of processing from the raw data to the final Dalitz plot.
Table 4.1 gives the event statistics at the end of each stage.

4.1 Kg Trigger

The general trigger system is discussed in the detector chapter. Here we give a description of the specific
Kg trigger.

A Kg decays into 7T 7~ with a branching ratio of 69%. In this reaction, K¢ K*7¥, the K*x¥F tracks
originate from the original annihilation point, forming a 2-prong vertex there. The Kg—atm~ forms a
second vertex at a typical radius given by ¢r = 2.6762 cm. The momentum-dependent mean path length of
a decaying particle is given as

d:Tg
m

where 7 is the particle’s rest frame lifetime, p is the particle’s momentum and m is the particle’s mass. This
formula takes into account the effects of velocity (8 = p/E) and the relativistic time-dilation (y = E/m).
Because the detector is in a cylindrical configuration, the crucial distribution is in 7, which is shown in
figure 4.1. This is not a pure exponential decay distribution, because the proper time (lifetime in the Kg rest
frame) is momentum dependent. However, a plot of the proper time would also not be a pure exponential,
because of the radial cut imposed by the SVX.

The Silicon Vertex Detector (SVX) was used as the main tool for determining the Kg vertex, because
of its close proximity to the annihilation point. It sits at radius 1.2 cm, which is just slightly larger than
the liquid hydrogen target. A Kgs that decays outside of the SVX will leave no signal, while other tracks
originating from the annihilation vertex will leave a hit in the SVX with high probability.

The trigger was run with two independent configurations. If the criteria of either configuration were met,
the event was written to tape. The first configuration was designed to trigger on events with one or more
Kg’s outside of the SVX and no other tracks, and was named “0—2” meaning 0 charged tracks inside the
SVX and 2 (or more) charged tracks outside the SVX. The 0—2 trigger would select events of the type

0

pp—KsKrm'7® pp—KsKs"n07°

pﬁ—J{SI(Lﬂ'O pp—KsKs"n

Stage Description Events | rel. fraction
0 Trigger 9,448,575 -
1 Kg skim 2,300,360 24 %
2 Energy/Momentum 287,400 12 %
3 Vertex reconstruction 118,372 42 %
4 Particle ID and Kinematic Fit 57,099 48 %

Table 4.1: An overview of the statistics at each processing stage
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Figure 4.1: The distribution of radial (r = \/22 + y?) positions of the Kg decay vertex. The vertical lines
indicate the radial positions of the SVX and the first 10 layers of the JDC.

where Kg" indicates the Kg in its neutral decay mode, Ks—7%7°.

The second configuration was designed to trigger on events with one or more Kg’s outside of the SVX
and either 1 or 2 tracks inside the SVX, and was named “2—4” meaning 2 (or one) charged tracks inside
the SVX and 4 (or more) charged tracks outside the SVX. The 2—4 trigger would select events of the type

pp—Ks K*nF pp—KgKgm®
pp—KsK*nFn pp—KsKgn'm
pp—KsKpatat pp—KsKg"nt

0

¥

The reaction of this thesis is the first one listed in the later configuration.

The hardware trigger consists of a set of discriminators hooked to the signal outputs of the SVX and
JDC. The SVX has a fine-grained front side, with 128 wires spaced a few hundred microns apart. However,
the readout is too slow for a fast trigger, so instead the back side of the SVX is used for triggering. The
backside is simply the common current drain, so it acts as a logical OR of all 128 front-side wires. The JDC
sense wires are readout by flash ADC’s whose analogue output is discriminated by the trigger system.

The hardware trigger consists of a system of programmable logic units (PLU’s) connected to multiplicity
counters. The multiplicity counters work by analogue summing of the discriminated signal of all 30 JDC
sectors of a particular layer. The sum is digitized and converted to a integral value for the PLU’s. The
PLU’s output goes high when the integer count on its input lie between two predefined values.

The specific trigger condition for the 0—2 trigger was exactly 0 hits in the backplanes of the SVX, and
2 or 3 hits in each of JDC layers 19 and 20. The specific trigger condition for the 2—4 trigger was exactly 1
or 2 hits in the backplanes of the SVX, and 3 or 4 hits in each of JDC layers 9 and 10, and exactly 4 hits in
each of JDC layers 19 and 20. These two conditions were part of trigger ksh44 v2.

During the run, it was decided to modify ksh44 v2 slightly by adding a third condition. The SVX
backplanes overlap significantly in order to make up for the fact that the pitch of the planes opens gaps
between them. However if a particle moves purely radially, it can travel through two backplanes in the
overlap region, and this would cause an increase in backplane multiplicity. To recover these events that
would otherwise be rejected by the 2—4 trigger, a third condition allowed three backplane hits, as long as
there was also a signal in the front-plane in the overlap region, which was about 13 wires wide. This revised
trigger was named ksh44 v3.

Data taking occurred during the April 1996 run period at the LEAR ring at CERN, from April 13 to May
6. In addition to the ksh44 v2 and ksh44 v3 triggers, 4-prong and minimum bias triggers were also taken,
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for absolute rate calculations and efficiency corrections. This data was recorded on 26 Digital Linear Tapes
(DLT’s) with 10 GB of data on each. These were copied and brought to Berkeley for further processing.

4.2 Reconstruction and Skimming Stage

The first stage of processing is reconstruction, followed by cuts to reject events that probably do not contain
useful information, resulting in a summary data set of good K candidates. Reconstruction is the process of
decoding the raw data and extracting the momenta of the measured particles. This data processing stage is
the most CPU intensive because it involves the full data set and the charged tracking algorithm (Fast Fuzzy
Radon) requires a lot of calculations. The cuts used to remove poor events are described below.

4.2.1 Reconstruction Performance

Some distributions of important event parameters, including the number of reconstructed tracks (all tracks,
just long tracks and the charges of the tracks), the total energy and momentum of the event, and the momenta
of all charged particles and of all photons, are given in figure 4.2. The sharp peaks in the track multiplicities
are at four, which is exactly what was expected coming from the trigger. Most of the events contain two
positive and two negative tracks. Most of the tracks are fully contained by the detector as evidenced by the
peak in the momentum vs energy plot (see figure 4.2 (d)) which peaks at near zero momentum and around
1900 MeV energy, exactly that expected from pp annihilation. The charged track momenta peak at 200
MeV, while photon energy peaks at the lower reconstruction threshold. This is to be expected because by
selecting 4 charged tracks, there is little phase space left for any neutral particles.

The invariant mass and opening angle of pairs of 777~ are shown in figure 4.3. A peak is clearly seen at
the Kg mass of 497 MeV (figure 4.3 (a)). There is also are large broad combinatorial background, as well
as a large spike at 2m,. This spike is correlated to the spike in the angular distribution (figure 4.3 (b)) at
cos(f) = 1. These events are gamma conversions, y—e+e™ that occur on the JDC field and sense wires or
on the inner wall. This background is easily removed at a later stage.

The stability of the data is good over the 3 week period that the data was taken, as seen in the many
faces of figure 4.4. Figure (a) shows the number of 2—4 triggered events per run; the large step near run
35800 is a result of the trigger definition change. The gaps are simply runs that were not taken with the
trigger.

In Figures (b),(c),(e), and (f), one can see a slight hiccup in trend (up for energy and momentum (b,c),
down for efficiencies (e,f)) which is most likely due to variations in the barometric pressure at the experiment.
Because the JDC is very fragile, the Isobutane/CO5 gas within is held at atmospheric pressure. Most of this
variation is corrected by the reconstruction software, which takes into account the pressure. The momentum
accuracy is corrected to greater degree than the absolute acceptance.

In figures (d,e,f), the relative efficiencies of the first selection criteria are shown. The change in efficiency
in (d) is due to the change of trigger, which shows that the data was positively enriched by the change,
which was intended.

In figures (g,i), one can see a spike near Run 35450 in the number of hits per track and the dE/dx values.
We determined that this spike was caused by a faulty gas flow meter or pressure gauge. At the time of the
spike, the ratio of CO5 to isobutane dramatically increased. The problem was resolved during the periodic
inspection during data taking, but it took much longer for the gas mixture to readjust to the proper ratio.
When the COg; level increases, the gain of the JDC increases, resulting in bigger signals (leading to bigger
measured dF/dz values) and more hits being seen. The dE/dxz values were corrected later on, described in
section 4.5.

In figures (j,k,m,n), the first and last layer of hits of a track are seen, and these are in good condition.
There is a small gap in the “first layer” histogram (fig k), which is caused by a slight misalignment between
in the inner and outer sections of the JDC, but this is not a major problem. Note that fig (j) shows the
average first layer of all tracks in a run; the average is higher than “1” as can be seen in (k). For the purpose
of stability checks, figures (j,m) are nicely stable. In figures (l,0), the number of low momentum and high
momentum tracks per event are stable.

4.2.2 Skimming cuts

1. 2—4 selection. Because the data contains two triggers (0—2 and 2—4), the first step is to extract
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Figure 4.3: (a) The invariant mass of all 777~ pairs. (b) The opening angle of all #¥7~ pairs.

the desired trigger (2—4) and only process those events. This is to save some reconstruction time since
33% of the data is the 0—2 trigger.

. Exactly 4 Long tracks. This cut requires exactly long tracks (with at least 10 hits) and exactly no

short tracks (with no more than 9 hits).

From previous experience with reconstructed charged tracks, tracks need at least 10 hits to have a
reasonable reconstruction accuracy, even though the helix fit only requires 5 hits. Requiring long
tracks of untriggered data typically reduces the solid angle acceptance, since polar-directed tracks can
not hit many layers before exiting the JDC. However, the long track condition was already part of the
trigger specification, so this cut does not reduce the statistics greatly.

Many events have “splash-back” tracks which typically originate from interactions of hadrons with the
crystals. These junk tracks are not part of the desired physics and in principal could be ignored. For
two reasons, however, they are not ignorable. First, the junk tracks tend to mess up the reconstruction
of the other “good tracks”. Second, if one accepts events with extra unidentified tracks, one is opening
up the probability of increasing background. Using Monte Carlo simulation (see chapter 5), we found
that allowing one short track (that was ignored) increased the signal statistics at the skimming level
by 10%. We felt that this small gain was not significant when compared to possible problems with
extra background and later data reconstruction.

This cut rejects 43% of all the events of the data, and 22% of the signal as calculated via Monte Carlo.
2 positively-charged and 2 negatively-charged long tracks. Because the pp has zero net charge,
this cut is natural. The events that are rejected could come from 3 sources:

(a) pp—6 tracks, where 2 positive or 2 negative tracks were lost down the polar directions,

(b) pile-up events, where two annihilation events occur so near in time that drift electrons from the
previous event linger into the next event causing spurious readings, and

(c) reconstruction errors which assign the wrong curvature to a track.

This cut rejects 14% of the data, and 6% of the signal as calculated via Monte Carlo.

. K mass cut. This last cut was chosen for a technical reason rather than for physics reasons: It was

desired to fit the entire skimmed data on one 20GB tape. Without this cut (which rejects 14% of the
data), the result would not fit on one tape.
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The mass of the K is 497 MeV, and thus the invariant mass of the decay products (77~ ) should be
497 MeV. However, because the vertex of the decay products was not known at this stage in the data
processing (the vertex fit was not completed), the correct invariant mass could not be calculated. So
an approximation was made by assuming that the vertex position was at the annihilation point. This
approximation is worst for true decay vertices that are far away, but only affects the angle between
the two pions and not the momenta. Because of the approximation, the mass window was chosen to
be much larger than the true experimental width of the Kg.

This cut required at least one pair of 7t~ (4 possibilities) to have a mass between 400 and 600
MeV/c?. This only rejects 1% of Monte Carlo events, while rejecting 14% of data events, which was
sufficient to have the output data fit on one tape. The larger rejection fraction is due to much more
background in the data, for example from gamma conversion (y—nte™).

4.3 Energy and momentum selection

The first pass on the data described in section 4.2 was intended to be a general “good event” selection, but
did not specifically select the channel KgK*x®.

The channel KgK*n* consists pure of 4 charged tracks and no photons. Because of this, we could
ignore the crystal calorimeter (except much later when it is used as for an anti 7% cut). The momenta of the
charged tracks is well defined (by the curvature and pitch of the helix), but the energy (£ = /m? + p?) is
not because the particles have not been identified as pions or kaons and thus the mass is unknown. For high
energy particles, the energy asymptotically approaches the magnitude of the momentum, but in the case of
pp annihilation, the mass is important.

To select good KgK*a# events, the magnitude of the total momentum

[Prot) = | D Bl < 180MeV /c?

i=14

was required to be less than 180 MeV /¢, in concordance with at rest annihilation. By assuming that all
particles are pions, a fake energy E’ quantity can be calculated as

Eéot = E E;

i=1,4

EZI-: \/ﬁZQ»—Fmgr.

Through Monte Carlo simulation, the minimum value of E;;ot for Kg K*a% is 1400 MeV, where the shift in
energy from 2m, = 1876 MeV is due to one particle being misidentified as a pion rather than kaon. Thus
all events were required to have an E’ greater than 1400 MeV. Figure 4.5 shows the energy and momentum,
and the cut limits.

In figure 4.5.a, there are five features of note. The desired signal lies at A, which shows full conservation
of energy and momentum. At feature B are events of the type mTatz~ 7, for example from KgKs.
These lie at the true energy and momentum conservation spot because no tracks are kaons misidentified as
pions. At feature C, are events of the type KgK*7*7? where the neutrally decaying 7° appears as missing
momentum. The narrow diagonal blob of C can be extrapolated to feature A by following the slope. This
implies that the in both A and C, one of the tracks is truly a kaon and not a pion. Feature D are due the
events with one massive lost particle (not a pion) and perhaps other lost neutral particles. If the event truly
contains a Kg seen by the trigger, then the lost massive particle is most likely Ky,. for example Ky Kgntm™.
Extrapolating this blob to 0 momentum does not intersect A. Because feature E does not have an axis

pointing diagonally down, it is due to more than one lost or neutral particle, for example KgK*a*z070.

4.3.1 Statistics

13.9 Gigabytes of skimmed data were read and 1.75 GB (12.6%) of data with proper energy and momentum
were written to Exabyte. The number of runs used was 709.
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Figure 4.5: Cuts on total energy and momentum. (a) The total energy vs total momentum plot for data.
(b) The total energy vs total momentum plot for Monte Carlo of Ks K*x%. (c) The total energy with data
drawn as a solid line, the MC drawn as a dashed line, and the cut limit. (d) The total momentum, with
same definition as (c).
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T

Figure 4.6: (a) A properly reconstructed vertex configuration. - d> 0. (b) A improperly reconstructed
vertex configuration. p’-d < 0.

Cut Events Net %
Event Read 2300360 100.0
Momentum Cut 449653 19.5
Energy Cut 287400 12.5

A few runs after this step were removed because either (a) they were the wrong trigger type, (b) the
antiproton beam conditions appeared to be bad based on gross asymmetries in the crystal hits, or (¢) the
SVX did not appear to be working. This accounted for a removal of only 318 events out of 287400.

4.4 Vertex fitting

The third data selection operation was vertex fitting and selection. This involves running the specially
written multi-vertex fitter, fine tuning the fit parameters(see section 3.2), and selecting the desired topology.

The vertex fit takes the results of the helix fit and combines tracks pairwise to see if they come from a
common vertex. An overview of the special vertex fit and a description of the topology notation is given in
section 3.2.

The desired event topology is an inner vertex due to the charged kaon and the charged pion, and an
outer vertex due to the decay of the Kg into two charged pions. Thus we select events with a topology equal
to (2,2). See figure 3.3 for a schematic of common topologies. At this point, the two remaining vertices are
sorted by their radial distance to the origin. The inner vertex is labeled VO and the outer vertex is labeled
V1.

The third cut requires that the vertices open in the correct direction relative to the annihilation vertex.
Because the Kg is moving away from the annihilation vertex, the momentum of V1 must point away from
the annihilation vertex. However, sometimes there is rare condition where the tracks are accidentally paired
to a fake set of vertices which are pointing the wrong way, see figure 4.6. The cut is calculated as follows.
First the mean position of V0O and V1 is calculated as

- . .
Lcenter — 5(170 +21).

Actually, any point lying on the line connecting the two vertex positions would work for this cut, since we
are just interested in the unit direction vectors from this point to each vertex. For each vertex ¢ = 0,1, a
direction vector is then defined

-

di = & — Teenter
and the cosine of the angle between this direction vector and the momentum of the vertex,

-

L gt -
pi=p +pf

is required to be greater than zero,
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Figure 4.7: The reconstructed vertices. The left column is for the inner vertex, VO, and the right column is
for the outer vertex, V1. (a,b) The invariant mass of the #¥ 7~ pair at the vertex. The large peak in (b)
is due to the Kg. (c,d) The invariant mass vs. the cosine of the angle between the 7t 7~. (e,f) The (z,y)
position of the vertex, with the target and SVX boundaries drawn.
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The next cut required that all SVX hits be assigned to the reconstructed tracks. The efficiency of the
SVX is higher than the efficiency of the JDC, so it possible for short tracks to be seen in the SVX but not
reconstructed properly because some of the JDC hits were below threshold.

The next pair of cuts required the inner vertex, V0, to lie within 0.5 ¢cm of the axis of the LH» target,
which was centered at (-0.31864, -0.01232, 0), and required the outer vertex V1 to lie outside of the SVX
cylinder boundary, with a transverse radius of 1.2 cm.

4.4.1 Statistics

The event counts for the real data and the Monte Carlo of KsK*n% are given in table 4.2. The most
important cut is cut # 2 which requires exactly two distinct vertices. Most of the reject real data events
are of the topology (4), which means that the event was most likely a pp—xtat 7~ 7~ event that leaked
passed the SVX at the trigger level. The reason that the “Real data” column does not follow the “Kg K+ 7+
MC” column is that there are still background events in the real data, which are not removed until after the
kinematic fit.

NB: An updated JDC calibration database was used at this step of the real data processing. Because the
tracks were reconstructed again with the new calibration, some new tracks were found and some old tracks
were lost. This explains the > 4 track statistics in table 4.2, which account for less than 0.5% of all events.
The < 4 track statistics are due to 2 reasons. The first is due to the new database. The second is that some
tracks are rejected in the vertex fit if there are too many “outlier” hits.

4.5 Particle identification using Energy Loss (dFE/dx)

At this stage of the analysis, there are exactly four reconstructed charged particles, with two originating
from the annihilation vertex and two originating from a displaced vertex outside of the target region. The
only possible long-lived, charged particles allowed in this energy range (Ei,; < 1876 MeV) are pions, kaons
and electrons.

Direct pp annihilation into electrons is highly unlikely; the strong color force dominates annihilation
processes. The branching ratio BR(pp—ete™) = 3.2 x 1077[15] is several orders of magnitude less than the
reactions of interest, for example BR(pP—J(OKT) = 1.6 x 1073 [15]. Electrons are formed however through
photon conversion on the JDC sense or field wires. The process creates a displaced vertex, but because of
the zero mass of the photon, these vertices (y—n*e™) have a # = 0 opening angle, and are kinematically
easily separated from Kg—nt7™.

The remaining track identification problem is between kaons and pions. At this energy scale, the outer
V1 vertex can only be due to the decay of a Kg or a photon conversion, so the tracks originating from V1
are not kaons. By strangeness conservation, there must be an even number of kaons. There is no phase
space for pp—4 K, so events are limited to only 2 kaons with 0 or more pions. The tagged Kg is one of these
kaons. The other kaon could be K* Kg, K. Thus the inner vertex VO could be 7% 7¥F with a missing kaon
(and zero or more missing pions), or K*7F with zero or more missing pions.

4.5.1 Ks K X°

The background channel with X°—zt7~
pﬁ—>[{5[([,71’+71'_

would give two tracks at the inner vertex. However, the missing mass of the K makes it very unlikely to
pass the kinematic fit. Events with additional neutral particles are suppressed even more by the kinematic

fit.

4.5.2 Ks Ks X°

In this reaction, the second Kg decays quickly inside the target region into #t7~. From figure 4.7, a small
narrow peak (about 500 events) at m(zt7~) = 497 MeV can be seen in the VO Mass plot. Background
events of the type

p]3—>[{5[{5ﬂ'0
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Real data KsK*z* MC

# | Cut Events % | Events %
1 | Event in 287092 100 | 33692 100.0
2 | type (2,2) 153908 53.6 | 27389  81.3
31d pP>0 141567 49.3 | 26515  78.7
4 | all SVX hits matched | 131359 45.8 | 26306  78.1
5 | VO inside target 121941 425 | 23680  70.3
6 | V1 outside SVX 118861 41.4 | 23277  69.1
Topology Events % | Events %

4 track 279671 97.4 | 33629  99.8
4) 75377 26.3 1037 3.1
(2,2) 153908 53.6 | 27389  81.3
(3,1) 14582 5.1 539 1.6
(2,1,1) 31342 10.9 4443 13.2
(1,1,1,1) 4462 1.6 221 0.7

<4 track 6186 2.1500 63 0.187
(1) 1 0.0003 0 -

(2) 87 0.0303 0 -

(3) 1688  0.5880 6 0.018
(1,1) 64 0.0223 0 -
(2,1) 3541 1.2300 51 0.151
(1,1,1) 805 0.2800 6 0.018

>4 track 1235 0.4300 0 -
(5) 26 0.0090 0 -
(3,2) 52 0.0180 0 -
(4,1) 258 0.1080 0 -
(2,2,1) 456 0.1590 0 -
(3,1,1) 141 0.0490 0 -
(3,2,1) 1 0.0003 0 -
(4,1,1) 1 0.0003 0 -
(2,1,1,1) 229  0.8000 0 -
(2,2,1,1) 2 0.0006 0 -
(3,1,1,1) 1 0.0003 0 -
(1,1,1,1,1) 68 0.0230 0 -

Table 4.2: The statistics for the vertex fitting.

39



have the highest probability of being mistaken for the desired channel, K¢ K¥ 7% since the missing energy
of the 7% could incorrectly assigned to one of the inner pions, giving it a higher probability to be identified
as a kaon. However, as we shall see, this background does not appear significantly in the final data sample.
Background events of the type

pp—KsKg

do not pass the kinematic fit because it is nearly impossible for a 7% to fake a K*.

4.5.3 K¢ K* X¥T

Assuming one of the tracks from V0 is K*, then the other track (X¥) is #F. The events with missing
particles in addition to X¥ should be suppressed by the kinematic fit.

Because there is virtually no background from the first two channels, the particle identification must only
distinguish K*7F from K¥7*. In this case, only one particle must be positively identified; the other is
identified by process of elimination. This greater simplifies the particle identification process.

4.5.4 dFE/dx Theory

As charged particles travel through matter and ionize the surrounding medium, they lose energy. In the
limit of particles that are not ultra-relativistic, i.e. 2ym, << M, where m, is the mass of the electron and
M is the mass of the charged particle doing the traveling, the equation for the rate of energy loss is given
by the Bethe-Bloch equation ([36] Equation 23.1).

6
— 2__
p 2

dE Z 1 2m,. 232>
_dE a2 L 2mectBTy7

dzx A2 I

The variables K (overall constant), Z (atomic number of medium), 4 (atomic mass of medium), I (mean
excitation energy of medium) and § (density effect correction) are a function of the medium. The variable
z is the charge of the incident particle, which is £1 in the case of pions and kaons. We do not care about
the actual value of these parameters, because we fit the dE/dx curves with a simpler function in (4.1). We
measure the d£/dz in the JDC, so the medium is a Isobutane/CO2 gas mixture. The remaining variable is
3, the velocity of the particle. The velocity of a particle is given by

== —m—s
L= Jpemt
Because a pion and kaon differ in mass, for a particular momentum they will have different velocities, and
thus different values of dE/dz. This fact allows identification of particles with the same momentum. Because
the dependence on mass m becomes less significant at higher momentum (i.e. f—1 for both particles as
p—00), the identification is good for 7/ K momenta up to about 500 MeV/c. Beyond that, the identification
is not unique.

The ionization energy is measured by integrating the collected charge on each JDC sense wire. The
analog-to-digital converters (flash ADC’s) on each wire measure the current versus time for each wire at
each end, and this data is written to tape with the entire event. Offline, each signal is linearized, integrated
and corrected for non-linearities in the electronics and scaled by a calibrated factor for that wire. This is
the raw value for the dF/dx measurement.

At the same time, the Monte Carlo simulation simply applies the Bethe-Bloch equation to the particle and
gas and calculates a value for dFE/dz. Because neither the Monte Carlo nor the data is properly absolutely
calibrated, there is no need to use most of the parameters given above. Instead, we can fit the data and Monte
Carlo with a simplified 3-parameter equation, and make adjustments to each if necessary. The equation is
thus

dE M N2

Tde 2| M1

where M = —2.8 x 107 MeV/ecm, N = —0.668 and & = 20055. Since the the dE/dz of the JDC was never

properly calibrated in absolute terms, the units of M is arbitrary, although they are stated to be “MeV /cm”
in the literature. The fit to the data and MC is shown in figure 4.8.

—pB*—6/2 (4.1)
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Figure 4.8: The dE/dx profiles for (corrected) data and (corrected) MC. The simplified Bethe-Bloch curves
are described in the text.

4.5.5 Corrections applied to data

A comparison between the raw data dE'/dz values and the values in the Monte Carlo calculated theoretically
with the Bethe-Bloch equation showed a marked discrepancy. This appears to be due to the fact that there
was an unsubtracted positive DC bias to all JDC signals in the real data. It appears that the calibration
committee did a quick and dirty job calibrating the dE'/dx values for the data using only minimum ionizing
particles, thus only at one momentum. As can be seen in figure 4.9, the minimum ionizing point lies more
or less on the unity line relating the data to the Monte Carlo. However, everything above that point is
incorrect. For each slice of momentum, the mean data value for dF /da was plotted versus the Monte Carlo
value for dE/dx (see figure 4.9), and a line was fit giving the following

y = 0.00118 MeV/cm + 0.564x.

This equation was then inverted and applied to the data, and the resulting curves for Monte Carlo and data
became sufficiently similar (see figure 4.8).

4.5.6 Corrections applied to Monte Carlo

We found that the dE/dx values arrived at through ¢cBGEANT did not have the same statistical variation that
the data did. As was to be expected, the default Monte Carlo values were too “clean”. The default Gaussian
smearing added to the dF/dx values was not enough. To correct for this, additional Gaussian smearing was
added to the Monte Carlo values, using the following formula, where gauss() generates a random value from
a normal distribution with mean 0.0 and width 1.0,

dE ,
— = (4.0 x 107*M : 15— : .
T MC—smear+ (4.0 x 10 eV/cem) - gauss() + (0.15 T MC) gauss()
The resultant width of the dE'/dz distribution is about 20-30% of the mean value, depending on momentum.
A comparison between data and Monte Carlo with the preceding smearing is given in figure 4.10. The overlap
in the critical region above 450 MeV /¢ appears to be well described by the Monte Carlo.

dFE

4.5.7 Curves used for Particle Identification

As long as the data and Monte Carlo are virtually indistinguishable, one can make graphical cuts on the
distributions. We choose to make two curves; one curve gives the upper limit of dE/dx for pions and the
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Figure 4.9: The calibration curve for data dE/dx values versus Monte Carlo (Bethe-Bloch) values. The
diagonal line indicates what the proper relationship should be.

other gives the lower limit of dE/dx for kaons. Above 400 MeV/c, there can be an ambiguity as the two
curves cross. Thus all tracks are classified into one of four disjoint regions:

1. “a” - must be a pion
“K - must be a kaon

“ambig” - could be either (ambiguous)

Ll

“nil” - 1s neither.

See figure 4.11 to see the positions of the curves.

To generate these curves, we fit each arm with the simplified curve given above in subsection 4.5.4 and
shown in figure 4.8. The curves are then shifted in momentum by 50 MeV/c (z axis) and shifted in dE/dz
by 0.0015 MeV/cm (y axis). The pion curve is shifted up and right, while the kaon curve is shifted down
and left (figure 4.11).

4.5.8 Particle Identification Logic

Events are rejected if both tracks are “ambiguous,” meaning that the dF/dz points lie in the ambiguous
region: either track could be a pion or kaon. Events are also rejected if either track is “nil” meaning that it
lies in the “nil” region. The remaining events have at least one track that is uniquely identified. Because of
the arguments given at the beginning of this section, the other particle is also identified: it is a « if the first
particle is a K and vice versa.

In the Monte Carlo events, a few events are misidentified. In the KgK+tm~ MC events, 28 events out of
15K are misidentified as Kg K~ a1, while in KsK~at MC Events, 56 events out of 15K are misidentified
as KgK*tm~. This is a total of 84 events out of 30K, or only 0.3 % of data points in the Dalitz plot.
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Slices of dE/dx for data and MC
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Figure 4.10: The dFE/dz distributions in slices of momentum. Each plot shows a double peak, with the left
peak due to pions and the right peak due to kaons. The left column is real data, right right column is MC.
The agreement between data and MC after corrections and additional MC smearing is good.
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Figure 4.11: The graphical particle identification cuts. There are four labeled regions, “nil”, “K”, “z” and
“ambig”.

4.6 Corrections

4.6.1 Run by run momentum scaling

The drift-velocity of ionized electrons in the JDC is inversely proportional to the pressure of the JDC gas.
Because the Crystal Barrel JDC operates at atmospheric pressure which changes with the ambient weather
conditions, the atmospheric pressure is measured concurrently with the data and corrections are applied
offline. Also, the JDC gas mixture (isobutane/COz) ratio affects the signal pulse height on the wires and to
a lesser extent the measured drift-velocity.

During the April 1996 run period, one of the gas flow valves became stuck and the JDC gas mixture
became too COy rich. The regulator was fixed shortly thereafter, but it took a significant number of runs
for the ratio to reach the desired 1:10 ratio. The impact on the data can be seen in 4.4 where the dE/dx
measurement spikes up.

To correct for both of these effects, the measured momenta of each event was scaled by a factor for each
run. A run typically lasts on the order of 30 minutes, over which time scale the weather and beam conditions
are relatively stable. The scale factor was determined by averaging the invariant mass of the vertex V1 over
each Tun and comparing to mg = 497.672 MeV/c?. The run-by-run scale factors are plotted in figure 4.12.
The sharp dip near run 35450 is due to the gas mixture problem; the valve stopped working near run 35430
and was fixed near run 35470. The broad dip around run 36000 was caused by weather conditions.

4.6.2 Error scaling

Just as the errors of the JDC hits used in the vertex fit needed some tuning, the error estimates of the
reconstructed momenta needs some tuning in order that the probabilities returned by the kinematic fit make
sense. For accurate measurements with Gaussian errors of the proper channel, the probability distribution
(also known as the confidence level) is uniform from 0 to 1.0. The probability is the probability that
subsequent events will have a better fit to the hypothesis.
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Figure 4.12: The momentum scale factor as a function of run number

MC Data
Momentum z, y Scaling  0.9985 1.0055
Momentum z Scaling 1.0035 1.0709

Momentum Error Scaling  1.25 1.55

7% correction parameters for energy loss
a1 —1.3566

Qs —2.283 x 1072

as 6.728 x 1073

Qg —9.316 x 1075

K#* correction parameters for energy loss
o 0.8719

ay —1.966 x 1072

as 1.533 x 1072

Qg —2.033 x 1075

Table 4.3: The correction parameters for momentum scaling due to JDC geometrical distortion, energy loss
and error scaling.
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Figure 4.13: The fractional momentum correction vs momentum for K* and 7% as derived from Monte

Carlo.

4.6.3 Energy loss Correction

Charged particles experience an energy loss due to ionization in material before entering the JDC, especially
at low momenta. This energy loss results in the measured momentum to be systematically too low. This
effect increases at slower velocity, so low momentum kaons are affected the greatest. Figure 4.13 shows the
correction fractions as a function of momentum for K* and 7.
The following phenomenological correction function was applied to all tracks, based on their particle
identity:
Jms =1+ e L g 4 ayp

where p is the particle’s measured momentum and «; are the parameters given in table 4.3. The functions
are plotted in figure4.13.

4.6.4 JDC geometrical distortion

The z-dimension of the JDC was discovered to be incorrectly calculated in the reconstruction by a significant
amount. This was discovered independently by two groups. We found that the invariant mass of the V1
7T 7~ pair was dependent on the orientation of the decay. If one takes the normal to the K5 decay plane

n= ﬁ7r+ X ]5’71__ (4.2)
and then looks at the invariant mass of the pair as a function of
cosl = n,/|n|, (4.3)

one could see a significant drop in mass as cos#—1. This is because for cos§ = 0, the z dimension has
no affect on the opening angle calculation, but as cosf#—1 the z dimension becomes important. If the z
dimension is compressed, the angle becomes smaller too, and the invariant mass falls. This is shown in
figure 4.16.

To determine the correct JDC z dimension, the z dimension was scaled by a parameter until the invariant
mass was no longer dependent on the polar angle of nn. The scaling factor of 1.0709 &+ 0.005 was determined
to satisfy this condition.

A second group in the collaboration discovered that the track-to-PED alignment was significantly off,
with the JDC z dimension about 6% too small. This agrees well with the determination made using the
m(Ks) vs n method. Figure 4.16 shows that the V1 mass is now constant with respect to decay plane angle.
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Figure 4.14: The statistical pulls of each particle’s momentum component as seen in the real data. Each
row represents one particle, in the following order: (from V0) K*and 7
column is the particle’s total momentum, the second column is the pull in « (curvature), the third column

is the pull in tan A (pitch), the fourth column is the pull in ¢ (azimuth).
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Figure 4.15: The statistical pulls of each particle’s momentum component as seen in the Monte Carlo. See

figure 4.14 for a description of the plots.
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Figure 4.17: The Confidence Level or Probability of the 5C kinematic fit. The shaded region are the accepted
events at 10% confidence. (a) real data (b) Monte Carlo

4.7 Kinematic Fit

4.7.1 Introduction

The measurement accuracy and precision can be improved if there are additional constraints imposed on the
data beyond the direct measurements of the apparatus. For example, if the total momentum of the event is
known to be zero even though the measured values do not sum to zero, the measured values can be slightly
adjusted (within the estimated errors or error matrix) by a minimization procedure until they do sum to
zero. This typically improves the accuracy of the measurements and always improves the precision. For
“good” events, the kinematic fit will return a probability that lies uniformly between 0.0 and 1.0.

At the same time, a kinematic fit can perform two other useful tasks. First, it can help distinguish
between charged kaons and pions, because the total energy is a function of the mass of the constituent
particles. The correct assignment will have a higher probability. Second, it can reject events that have
“missing” particles (such as a Kp or other neutral particle) or are otherwise bad, because these events will
have a low probability, typically less than 1%. The algorithm of kinematic fitting is given in chapter 10.

The channel of interest in this analysis has five additional constraints that may be imposed on the
measured momenta.

1. Total momentum is 0 (three constraints).
2. Total energy is twice the proton mass (one constraint).
3. Invariant mass of V1 vertex is Kg mass.

At this point in the analysis, all particles have been identified already, so the kinematic fit is used to
reject bad events as well as improve the accuracy of the good events.

The kinematic fit depends directly on the estimated errors of the measured momenta. The errors are
determined by the vertex fit based on the fit itself plus corrections for multiple-scattering. The errors are
diagonal in the vertex-fit basis (« (curvature), tan A (pitch), and ¢ (azimuth)) but in the Cartesian (pg, py, p-)
basis, the errors are described by a symmetric 3 x 3 matrix. These errors need to be adjusted slightly in
order that the final probability calculated by the kinematic fit makes sense. This procedure is described
below.
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Figure 4.18: The V1 invariant mass distribution, before the kinematic fit (dotted), after 4C phase space fit
(dashed) and after full 5C kinematic fit (solid).

The events are first subjected to a phase space 4-constraint kinematic fit, meaning that the Kg mass
constraint is not imposed, i.e.

pp—KEaFata—.

If the fit converges with a reduced y%/4 < 20.0 (a very loose constraint), then the events are submitted to
the 5-constraint kinematic fit which includes the constraint that the pions from the outer vertex have the
Kg mass,

pp— K*n¥Kg

‘—> ata—.

The confidence level for this hypothesis is required to be greater than 0.10, as seen in figure 4.17.
The cleanliness of the signal after the kinematic fit can be seen in figure 4.18. The background level from
non-Kg events is negligible.

4.7.2 Reconstruction Accuracy

The invariant mass of the V1 7t7~ pair and total energy of the event, after all the corrections, is his-
togrammed in figure 4.19.

The momenta of physical interest are the momenta at “¢ = 07, i.e. the momenta at the interaction
point(s) rather than the momenta as tracked in the JDC. Ideally, the momenta measured in the JDC can
be corrected for multiple-scattering and then kinematically fitted to obtain the physical ¢t = 0 values.

A check of this reconstruction accuracy can be done by comparing the ¢ = 0 values generated by the Monte
Carlo (the “physical” values) with the reconstructed values. To make a meaningful plot of the comparison,
the Dalitz plot coordinates X = (z,y) for each event are calculated twice, once using the MC generated
values X™M¢ and once using the kinematically fitted reconstructed values XKf, Ideally, these two values are
the same but in practice each event is slightly off. All the events are binned according to the Xme value,
with a 2-dimensional vector weighting equal to

R, = X6 _ gme

where ¢ runs over the entries for a particular bin. Once all events are binned, a mean deviation and RMS
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deviation are calculated,
=3 1 -

"~ 1 — _
s [T
1)

A% = (A7, A7),

where

Figure 4.20 shows the results of these calculations. As can be seen, the mean shifts are randomly oriented,
with large deviations only coming from edge bins with low MC statistics. The shifts are all much smaller
than the bin size. Likewise, the RMS spread of the shifts (figure c) are also smaller than the bin size,
approximately half the bin size, showing that this bin size is a good choice. Figure (d) shows the fractional
reconstruction error for all events in the Dalitz plot variables

Az xkf _ pmc

x:—:27
J, z xkf+xmc

Ay kaf_ymc

== =2 g mc

y ¥ty

There is a small systematic shift of about -0.06 % and the RMS error is about 0.8 %, both of which are
excellent for this analysis and independent of axis.

4.7.3 7" Suppression

This analysis has only looked at charged data so far. This is because the electro-magnetic calorimeter is
plagued by hadronic split-offs from the charged particles. Many of the “PEDs” turn out to be not be from
physical photons, but caused by dislodged neutrons and other uninteresting hadronic debris (caused by the
collision of the desired pions and kaons hitting the crystals) flying from one half of the detector to the other
side. These PEDs are not part of the interesting physics and just cause additional random background to the
photon signal. Luckily, in this analysis we are not looking for photons, so this background doesn’t matter.

However, the PEDs can still be used to check to see if events with a 7%—~+y (for example pp—Ks K*nF 70)
are surviving the preceding cuts and kinematic fit. Happily, the answer is no, as seen in figure4.21. The
invariant mass of all pairs of PEDs before the kinematic fit cuts is plotted first. While most PEDs are junk
and therefore form just a smooth combinatorial background that decreases with energy, a significant 7° peak
can be seen above the background. This peak totally vanishes for events that pass the kinematic fit, shown
as the second dashed histogram. No n—~v peak was seen before or after the kinematic fit.

4.8 Charge symmetry

The two reactions
pp—Kg Ktn-

pp—>K5K_7r+

should have identical Dalitz plots if the strong force is charge independent. The experimental Dalitz plot
may have some charge dependence, however, for two reasons.

First, the JDC is inherently chiral. The external magnetic field causes the drift lines to rotate about each
sense wire by 7.2°[8], the Lorentz angle. Tracks which curve in opposite directions will not see the mirror
symmetric fields, and this could cause a small asymmetry between measured tracks of opposite sign.

Second, hadronic interactions with the detector are charge dependent. For example, the biggest asymme-
try is between KT and K~ which interact differently with protons. For kaons between 0.1 and 1.0 GeV /e,
the K ~p cross section is roughly 5 to 10 times that of K*p [36]. This increased interaction probability can
cause more interactions in the JDC and the Barrel, raising the probability that splash-back particles can
re-enter the JDC and cause an event to be rejected.
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Figure 4.20

at the center of the bin; the other vertex is the mean of the deviation, A, as described in the text. Figure
(a) shows the unscaled deviation vector, while figure (b) shows the deviation vector scaled by a factor of 4
to make the deviations easier to see. Figure (¢) shows the RMS deviation, with each box dimension (I x w)
equal to twice the RMS deviation in that direction. (d) Shows the accuracy of all events, f; and f, (see

text).

()

: A comparison between the reconstructed and MC generated Dalitz plot variables. Figures (a)
and (b) show the average mean deviation for each bin. The short line segment in each bin has one vertex
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Figure 4.21: The PED-PED invariant mass for events before (solid line) and after (dashed line) the kinematic
fit cut.

The ratio of charge configurations accepted in the final Dalitz plot are

N(KsK*r™) 26994
N(KsK~nt) 26736

= 1.0097 £ 0.0086

which very nearly consistent with unity. The projections of the Dalitz plot for each charge configuration is
given in figure 4.22. There is a slight enhancement of Kg Kt~ events below 1 GeV?2/c* but it is probably
not significant in the fit. The y? comparison between the two Dalitz plots (shown in figure 4.23)

2 Z [NZ'([(SI{+7T_) — NZ'(I(SI(_TT+)]2
N T L N(KsK¥r) + Ny(Ksk-n)
i bins
gives x?/Ng = 457/505 = 0.91, showing good compatibility.
For the Monte Carlo, 1 million events of each charge configuration were generated. The ratio of accepted
events was

N(KsK*tz™) 15087
N(KsK=w%) 14964
which is also in agreement with unity and even better agreement with the observed ratio. Thus the small

(< 1%) charge asymmetry in the data is due to the detector and reconstruction and not interesting physics.
Since the effect is only 1o from unity and the asymmetry is consistent with the Monte Carlo, it will not be

considered further.

=1.008240.012
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Chapter 5

Monte Carlo Simulation

A good simulation of the experiment is necessary for several reasons.
1. Determination of corrections to the measured momenta, caused by losses in the detector.
2. Determination of overall efficiency for branching ratio calculations.
3. Determination of momentum dependent acceptance corrections to be applied to the Dalitz plot
4. Estimation of backgrounds

The first point has been discussed already in the data selection chapter 4. The second point is discussed
in the branching ratio chapter 6. The final two points are discussed in this chapter, along with a discussion
on the SVX positioning.

The Monte Carlo program, CBGEANTI[6], is based on the general detector simulation program GEANT[26]
from CERN. The program fully simulates the passage of the initially generated particles and any decay
particles through all matter of the detector volume, except for the ionization of the gas in the JDC. The
full JDC simulation, with tracking of delta rays, is too computationally expensive. The “fast” simulation
method simply generates a statistical “time” signal for each wire that the track passes. However, the electro-
magnetic and hadron interactions with the crystals is fully simulated, using the FLUKA hadronic interaction
package.

5.1 Channels simulated

The signal channel KsK* 7% requires the most Monte Carlo statistics in order to get a smooth acceptance
correction function. We generated 1,000,000 events of K KT 7~ and 1,000,000 events of K5 K~7t. However,
since the acceptance of the trigger and data selection is smaller (about 1.5%), only about 30K events survive
in the final Monte Carlo data set. This is sufficient for constraining the acceptance function, which is
discussed in section 5.4.

For the purpose of background estimation, we also generated 100,000 events of the type 7t 7tz 7~ 79,
and 100,000 events of the type KsK+t7~ 7%, 10,000 events of the type KsKrmt 7=, 100,000 events of the
type Ksmt7~, and 100,000 events of the type KgmT 7~ 7%, The later two do not conserve strangeness unless
the 7+ 7~ pair originates from Kg, thus they are supersets of the KsKg and KgKg7° channels.

The “Kg” was the standard GEANT Kg, which decays into both neutral pions (Ks—7%7°) and charged
pions (Ks—7T7~) , and there was no radial cut on the annihilation vertex. This explains why the efficiency
for all channels was so low, since 1/3 is lost to the neutral decay, and another half or so is lost to decays
inside the SVX. We used the standard Kg because these Monte Carlo data sets were used in other analyses
too.

5.2 Parameters of the Monte Carlo

The Monte Carlo software is CBGEANT which is the Crystal Barrel customization of the CERN library GEANT
3.21. Tt includes all detector and structural components of the experiment. Most of the precise positioning
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Figure 5.1: The positions of reconstructed vertices and SVX hits, showing the centering of the annihilation
vertex distribution inside the SVX.

of large components is not absolutely critical to having a reasonable Monte Carlo. The critical positioning
parameters are the JDC sense wire positions relative to each other and the positioning of the SVX detector
relative to the annihilation spot. Because there are gaps in the SVX detector, annihilations that are far
from the center of the SVX can produce tracks that leak through without being detected. Because of the
handedness of the SVX detector planes, this can also create a charge asymmetry; positively charged particles
are more likely to pass through this gap than negatively charged particles.

The position of the SVX can be measured directly only to within a few millimeters. A more accurate
position can be determined by an iterative calibration using charged tracks, which minimizes the y? of the
helix fits to the SVX hits by adjusting the parameters of the SVX geometry. The position and pitch of each
of the 15 segments was determined in this manner. These positions were then used to define the correct
geometry in the Monte Carlo. The mean shift of the SVX relative to the external JDC was determined to
be about 2.5 mm to the left.

The annihilation vertex ideally lies exactly at the center of the SVX detector. However, because of
the complications of beam steering and non-ideal beam shape, the distribution of annihilation vertices can
be slightly skewed or shifted. Using 4-prong triggered data, we have determined the mean position of the
annihilation vertex to be (-0.24, 0.02, 0.00) £0.01 cm and the Gaussian 1-sigma widths to be (0.20,0.22,0.40)
40.01 cm. See figure 5.1 The Gaussian width is due to both physical and reconstruction uncertainties. In
the & — y plane, the Gaussian width is due mostly to the beam profile, while in the z plane the width is due
entirely to the limited precision of z-reconstruction. (The JDC produces hits with  — y errors on the order
of 200 microns and z errors on the order of 1 cm.)

We generated the Monte Carlo annihilation vertex distribution with the parameters given above, except
that the z width was set to 0.20 cm. The reconstruction of this simulated data produced measured means
and widths consistent with the 4-prong real data.

Note that the center of the SVX was at (-0.319, -0.012) c¢m which is slightly off from the center of the
annihilation point.

5.2.1 Vertex position

The vertex (inner and outer) is reconstructed within typically 300 microns of the generated vertex. However,
there are long tails that extend to 1 cm or more. On inspection with the event display, these are due to bad
pattern recognition on the tracks, where the track finding algorithm missed several hits which would have
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MC set Efficiency BR Relative Intensity

[1077]
Ks K*r*(signal) 1.5 x 1072 2.820 100.00 %
KsK*r*(Km swap) 2.8x 1073 2.820 0.19 %
KsKs[n°] 6 x 107° 0.760 0.11 %
Ks[Kp)rm <3x 1076 2.600 <0.02 %
KnKg[rY] 3x 107° 5.500 0.02 %
4m[n0] <3x 1078 178.500 <0.01 %
KsKs[n) <3x 1078 0.410 < 0.003 %
KsKg 6 x 107° 0.005 0.0007 %
Total Background - - 0.32 to 0.44 %

Table 5.1: The estimates of primary background. The relative intensity is the product of the efficiency times
the branching ratio, renormalized to the signal channel. The particles in [brackets] are lost particles.

dramatically moved the track. The common problem was that these tracks either crossed several boundaries
or the track ran along a sense plane or field plane.

5.3 Background Estimation

The analysis channel is surprisingly low in backgrounds. The displaced vertex and mass of the Ks—at7™
decay is virtually background free. The biggest source of background comes from the signal channel itself,
when the particles are misidentified. The remaining background comes from soft particles lost in the kine-
matic fit. The estimated total from all backgrounds is estimated to be no more than 0.44%. The total
statistics is about 57K events, so there are about 250 background events over the entire Dalitz plot. With
about 500 bins, that makes about 0.5 event per bin on average of background, while the Poisson noise of
a typical bin will be ~ 1/57000/500 ~ 10. Because the background is much smaller than the noise, no
background subtraction is necessary.

Below we discuss the possible forms of background. In each case, we generate a number of Monte Carlo
events of the specific background type and feed it into the same analysis chain, and count the number of
events that survive all the cuts until the final Dalitz plot. This gives us the efficiency for that channel. We
multiply this efficiency by the known branching ratios’. The results are in table 5.1.

5.3.1 KsK*n¥(Kr swapped)

This of course is the signal channel. Since the Kg is well tagged, the most likely background from the signal
channel itself is reverse identification of the K* and #F at V0. Using Monte Carlo data, we find that only
28 £ 5 events are misidentified, which translates to 0.19 % of the Dalitz plot.

5.3.2 ](5[(5[770]

The KsKg [WO] channel becomes a background when one of the Kg’s decays inside the vertex. Because there
is missing mass due to the lost 7, one of the V0 pions could assume the missing energy and mimic a kaon
in the kinematic fit. This turns out to be the largest background, with 0.10% of the data. Note that there
is no visible 7% peak in figure 4.21. However, we do see some events at the V0 vertex, which is due to the
second Kg, which is seen in figure 5.2. There are 60 & 40 events seen in the fitted Gaussian on top of the
4th order polynomial, which translates to 0.10 & 0.07 % of the Dalitz plot. This agrees perfectly with the
hypothesis that this peak is due sole to Ks Kg[7?].

1 Compiled by Lucien Montanet of CERN
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Figure 5.2: The small Kg contamination at V0. The curve is a Gaussian plus 4th order polynomial, with
the small bump visible at 497 MeV.

5.3.3 Ks[Kp] n*n¥

Out of 10000 events, no events survived into the Dalitz plot. Before the kinematic fit level, there were 4
events. The channel KgKg[7°] should have a similar kinematic fit efficiency, which was 6 out of 781 events.

Thus the efficiency of Kg[K]at7F should be less than 4/10000 x 6/781 = 3 x 10~°.

5.3.4 KrKs[r"]

This is similar to the signal channel, except there is an additional 7°. If the 7° is very soft and undetected
in the kinematic fit, this channel can feed through. Three Monte Carlo events survived out of 100000.

5.3.5 4r*[rY]

The 47% 7% channel is copiously produced in pp annihilation. However, because it lacks a tagging K, the
feed-through is very small.

100K events were generated, but none survived all data processing cuts. We can put an upper limit on
the efficiency. The last step where events existed was the after the “V0 inside target” cut, with 3 events.
This is an efficiency of 3 x 1075, Now we compare to the KgKg[w°] channel, which should have a greater
kinematic fit efficiency. This channel had 781 events at the “V0 inside target cut”, and then 6 events in the
Dalitz plot, or less than 10~3. Thus the efficiency for 47% 7% should be less than 3 x 10~5.

5.3.6 f(s](s[n]

This is very similar to the preceding channel, Ks[Kp]m¥7¥; the lost 5 is nearly the same mass as the lost
K, so the kinematics are the same. We didn’t run any Monte Carlo for this channel, but use the same
efficiency as Ks[Kr]rtn¥.

5.3.7 KsKg

There is a small background from KgKg Monte Carlo, but the branching ratio is very small. 6 events
survived out of 100000 generated.
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5.4 Acceptance Correction

The acceptance (or sometimes referred to the efficiency correction) of the detector varies as a function of the
momenta of all particles. The biggest effect is the trigger acceptance, which is biased towards high momenta
of the Kg. Also, the 7 and K% are have low acceptances at low momentum because of curl ups or decays.

The partial wave analysis will only be accurate if the data is acceptance corrected. There are two methods
of acceptance correction: The first method generates lots of Monte Carlo events, and divides the data by
the Monte Carlo. The second method generates a smaller amount of Monte Carlo events and then fits a
functional form, assuming some level of smoothness.

In order for the first method to work and not increase the statistical noise, the number of Monte Carlo
events should be an order of magnitude more than the data. In this case, with roughly 50K data events in the
Dalitz plot, we would like 500K MC events in the Dalitz plot. Our efficiency is on the order of 1.5%, so this
would mean generating at least 30M MC events. With our fastest computer, we generate 100K events/day,
so this would take 9 months of computing, which is clearly a waste of time.

Instead, we have generated 2M MC events of the form KsK*z% (in an equal ratio of both charge
conjugate states). We then describe the net efficiency as a product of the efficiencies for each particle as a
function of momentum, followed by an overall fudge-factor seventh-order polynomial. That is,

A
€p = A_Z€Ki(PKi)€Ks(PKs)f7ri(pwi)p7($’y) (6.1

where Ay is the area of bin b within phase-space, Ag is the total area of a bin, €;(p;) is the efficiency of
particle z as a function of the momentum of particle z, and pz(z,y) is an overall seventh order polynomial
in terms of the Dalitz plot variables (z,y), given in equation 5.6.

In most fits, the coefficients of the polynomial p7(z,y) are free. In a fit to just the Monte Carlo gives
(x?)™M¢ = 630. When both the Monte Carlo and data are fitted simultaneously, the x? due to the Monte
Carlo increases, of course, to compensate for a decrease in the y2 due to the data. This increase, is typically
small, about Ay? = 20 — 30 for the best fits.

E(mi2, ma3) = E1(p1)E2(p2) Es(P3)pr(maa, mas) (5.2)

To determine the momentum efficiency from MC, we start with the fact that the MC is generated flat in
phase space. The phase space factor for a dalitz plot is

dLIPS = dmZ,dmZ,

which may be also written as
dLIPS = dEsdm3,

or P

dLIPS = —2dpsdm3,

B3
If we plot ps for each generated MC event with the weight
p3 [ dmi;’

this weighted distribution will be a constant within the limits of phase space. Deviations from this constant
factor give the momentum dependence. Note that the integral is

w

/dm%3 = m%B(m(m:, myz) — m§3(min, mya)

A plot of the weighted K¢ momentum distribution is given in figure 5.3. The efficiency is zero at zero
momentum, and rises roughly linearly with momentum. (The last point at the end of the plot near 750 MeV
has not been weighted correctly because the bin exceeds phase space, so it should be ignored. The same
would go for the lowest momentum bin, but it has zero events.) The probability of a Kg to decay outside a
cylinder of radius p = 1.2 cm is

Psvx() = [ dexp(~—Lo) (53

pT sin
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Figure 5.3: The efficiency as a function of Kg momentum. The histogram is due to the MC, while the
smooth line is the functional form described in the text.

where m = 497.672 MeV, 7 = 2.6762 cm (in units where ¢ = i = 1). The limits of ¢ are determined by the
JDC geometrical acceptance, but the functional form is relatively insensitive for values of ¢ = (0,30°).

We plot the form of Fj,, in figure 5.3 with the appropriate normalization to the MC distribution. We
see that the I, functional form describes the MC well.

There are additional corrections from the reconstruction efficiency of each track. To put these corrections
in functional form, we generated 10000 Monte Carlo events each of Kt and w%, distributed evenly in
momentum space between 0 and 750 MeV. We then fit a parabolic function to each, with the following
results.

(275.0 + 0.1p — 0.0002p?)/333.3 125 < p

Ex(p) = | 275.0/333.3(p— 50.0)/75.0 50 < p < 125
0 p <50
(84.0 + 0.47p — 0.00037p%)/333.3 180 < p
Ex(p)= | (84.04 0.47p—0.00037p%)/(p — 140.0)/40.0/333.3 140 < p < 180
0 p < 140

Ek.(p) = 1.0+ 0.0004p

The seventh order polynomial is found by simultaneously fitting the Monte Carlo and the data with
the same function. In truth, since there are more statistics in the data, the data probably constrains the
efficiency more than the Monte Carlo. The zeroth order term of the polynomial is set to 1, so there are
7(7+ 1)/2 — 1 = 35 parameters. The fitted efficiency function (5.2) is shown in figure 5.4. The polynomial
is a function of z, y which are

r = mi,—1.1GeV?/c* (5.4)
mi; — 1.1GeV?/c* (5.5)

<
[l

pr(z,y) = 1+chi—j,j$i_jyj (5.6)

i=1 j=0
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Figure 5.4: The acceptance function for the Dalitz plot. The fitted function (at left) is the result of a
polynomial fit to the MC distribution (at right). The vertical scale is events per 0.06 x 0.06 GeV*/c8.

The coefficients are given in table 5.2. We chose a seventh order polynomial, since seven was the minimum
order that gave the best y2/N to the data. We show the efficiency fit for orders zero through eleven in
figure 5.5.

We discovered quite late into the analysis that the random number seeds used for the various runs com-
prising this 2 million event Monte Carlo set were not adequately “random”, and that there were correlations
between events. This caused the fit of the efficiency function to have an abnormally high x2/N ~ 1.7, even
when the function was expanded to 11th order. When each individual Monte Carlo run was individually fit
(each with its own seed), the xy2/N ~ 0.96 to 1.2 at Tth order, regardless if the run was 100K, 200K, 300K or
500K events. Any combination of two runs caused the x? to increase enormously to x2/N ~ 1.4 to 1.6. In
the interest of time, we did not regenerate the full statistics using the correct seeds, but used the only 500K
event set of Kg K~ 7T, which fit the efficiency function with y2/N = 0.96. We have shown in chapter 4 that
the data is charge independent, so this single run is equivalent to using both Ks K~7t and KgKT7~.

Term  Coefficient  Term  Coefficient  Term  Coefficient
z -0.07 £ 0.24 Y -0.95 £ 0.22 z? -1.5 £ 0.65
zy -0.67 £ 0.72 y? -2.2 £ 0.73 z3 3.0+ 3.1

z2y 9.2+ 29 zy? -1.3+34 y3 8.1+ 23
z* 8.1+35 3y 19455 x2y? 10.5 £ 8.5
zy® 6.7+ 64 vt 171 £ 4.0 z° 16.1 + 13.
zty  -19.0 + 12. 3y? -21.7 £ 20. 23 -55.7T £ 17.
zy* 35.5 &+ 15. y° -33.8 £ 8.4 z8 -125 4+ 5.7
oy -1.0 + 12. zty?  -14.5 £ 20. x3y3 18.1 £+ 23.

2yt -13.9 + 25. xys  27.6 + 14. y° -29.0 + 6.0
£’ -23.0 £ 16. 2%y 7.8+ 19. | 25 54.3 £+ 33.

x4y 76.5 £+ 40. z3y* 23.3 £ 46. z2y®  110.0 £ 34.

zy®  -66.4 + 23. y’ 43.6 + 10.

Table 5.2: The coefficients for the seventh order “fudge-factor” polynomial
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Chapter 6

Absolute branching ratio
measurement

In order to calculate the total branching ratio, minimum bias events are counted and then corrected for
acceptance. To select the proper events, we use the same cuts as in chapter4, except for one difference.
Because we do not need to simulate the online Kg trigger, we do not apply the trigger simulator to the
Monte Carlo.

Of 154 300 generated KgK*x* Monte Carlo events, 5660 are accepted into the final Dalitz plot.

There were 867 995 minimum bias events collected during the April 1996 run. The minimum bias trigger
simply requires an incoming p and no outgoing p downstream. Of these, 86 survive into the K¢ K* 7% Dalitz
plot after applying all of the same cuts there were applied to the triggered data, except for the online trigger
condition. These 86 events are well spread over the Dalitz plot, as shown in figure 6.1.

Because the acceptance varies considerably, each event must be individually corrected, rather than taking
the total number of events and dividing by the acceptance.

To correct for the acceptance variation, the

N, A; 1
Nmb-cor = % Z "
tot eventsi

where Aiqt and A; are the areas of the total Dalitz plot and the bin, respectively,

Atot = 1.71126 Gev*/c®
A; = 0.06GeV?/c* x 0.06 GeV?/c* = 0.0036 Gev?*/c®
Npetot = 154 300,

and n; is the number of Monte Carlo events in the closest bin to the i-th minimum bias event. For bins on
the boundary of phase space, the value of n; is corrected by dividing by the fractional area within phase
space. This gives

Npb-cor = 23901530
where the negative error is statistical and the positive error is due to one specific minimum bias event that
appears to be an outlier. This event is the right-most dot on the Dalitz plot in figure 6.1.

Thus the branching ratio is
N,

BR(KsK*z*) = —bcor (6.4)
Nmb-tot
+330

_ 2390—260 (65)
867 995

= (2753 x 1073 (6.6)

This agrees within 20 with Baresh et al. [21] ( sBR(K°K*a¥) = (2.13 £ 0.28) x 1073), and within lo
with Armenteros et al. [16] ( BR(KsK*at)= (2.8240.11) x 10~3) and with the equivalent Crystal Barrel
result[4] BR(Kp K7F) = (2.91 £ 0.34) x 10-3).
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Figure 6.1: The Dalitz plot from 86 minimum bias events. The rightmost data point is discussed in the text.

As these are all independent measurements, the error-weighted average of all four measurements is

BR(KsK*at) = (2.68+0.14) x 1072, (6.7)
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Chapter 7

Partial Wave Analysis

7.1 Introduction to Partial Wave Analysis

The primary purposes of this analysis are to quantitatively measure the masses, widths and branching ratios
of the intermediate isobar resonances involved in the reaction Kg K*7*. Up to this point, the data selection
has worked to select out the three final state particles, but has not made any requirements on the isobars.

Selection of the isobars is not a trivial task. Because the isobars decay via the strong interaction, their
lifetimes are very short and hence widths are very wide. A typical isobar width is on the order of 100 MeV,
much wider than the experimental resolution. Therefore one can not simple count the number of events in
a narrow mass window to measure the isobars. More importantly, since there are many wide isobars in the
same reaction, there is a lot of overlap, causing quantum mechanical interferences between the resonances.

Thus in order to determine the masses, widths and especially branching ratios of the resonances, a full
theoretical calculation of the quantum mechanical amplitude is necessary. Each amplitude due to each
resonance must be carefully summed, either coherently or incoherently as necessary.

We wish to calculate this amplitude using the fewest number of independent observables. For this; we
use a Dalitz plot.

7.1.1 Dalitz plot
The differential Lorentz Invariant Phase Space (dLIPS) is given by

< d®p;
do(P;p1,...pn) =[] (27)32E;
i=1 ¢

where P is the total four-momentum and p; the four-momentum of particle i. Since n = 3 for pp—KgK*nt,
there are 12 parameters (p!') describing phase space. Since all of the particles are identified and have a unique
mass, this removes 3 arbitrary parameters (pg = \/p;p’ + m?), leaving 9 parameters. We have applied a
4C kinematic fit to the data, requiring total energy and momentum conservation. Thus the number of

parameters describing the phase space is further reduced by 4 to 5, and dLIPS becomes

d®(p1,...pn) = / §Y (P — Zpi)dCD(P;pl, .. Pn)
P i=1
which simplifies to the 5 parameter expression

1
d®(E1, E3,a,8,7) = WdEl dE3 da d(cos 3) dy

where Fq, E'5 are the energies of two of the three particles and «, 8, v are the Euler angles that describe the
plane of the final three particles. At-rest annihilation is not polarized, so there is no external orientation
that affects the physics, so we integrate over the three Euler angles, reducing the parameters to only 2,

1
dq)(El,Eg) = WdEl dE3
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Figure 7.1: The Dalitz plot m? axes.

The energy values E; are dependent on the total center-of-mass energy, but we prefer Lorentz invariant
quantities. We note that in the center of mass system where P = (1/s;0,0,0) = p1 + pa + ps,

miy = (p12)° (7.1)
= (P — p3)2 (72)
= P 4pl—2EE3) +2P - p3 (7.3)
= 5 +md—2+/s5Es) (7.4)
dimi,) = 0+0—2y/5dEs. (7.5)
Thus were can substitute d£; = —;ngg) and dE5 = —;Tmfz and get
1
dd(m?,, mi,) = —————dm?, dm2,.
(miy, mys) 16(271')7\/52 12 23
Then the rate of the process is just
2m)*
ro= 8702 aps (7.6)
2/s
1
= ———— |M|* dmi, dmi; (7.7)

(27)332,/5

where the coefficient is a constant over the Dalitz plot. This simple expression shows that the intensity of
the Dalitz plot at a point (m%,, m33) is directly proportional to the matrix element squared. There is no
additional phase space term.

The particles are labeled in this fashion: 1=a=Kg, 2=b=n%  3=c=K*. The Dalitz plot has two orthog-
onal axes, m?, and mZ,; the third axis m3, is measured diagonally, starting with zero at upper-right and
increasing while moving to the left and down, as seen in figure 7.1. In this Dalitz plot,

Axis  Equivalent Example Isobar

my, mi(Ksm¥) K*(892)*
mi;  m?(K*aF) K*(892)°
m3, m*(KsK*) a»(1320)%
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Figure 7.2: The isobar model showing pp—r + ¢, r—a + b

7.2 The total intensity

As discussed in chapter 2, the different initial states of pp are produced incoherently. Thus each the contri-
bution from each initial state is added incoherently. For a specific initial state, all amplitudes that produce
the same final state are added coherently. The intensity of the Dalitz plot is calculated as

2

I(mib ) mzc) - Z Z AT(jJ La la mab: mbc) (78)

initial states, s, |71, aXes

The sum over axes represents the three pair-wise combinations of the final particles.

7.3 The matrix element
The matrix element A of the process (see figure 7.2)

pp— r+c
I—’a—}—b.

is given by

Ar(f; L;l: Map, mbc) = Z(j: La l; COS@)FL(prc)Tr(mab)a (79)

where
is the resonance particle

r
a,b are the decay particles of the resonance r
¢ 1s the spectator particle
J  is the total angular momentum of entire system (pp or re)
L is the orbital angular momentum between r and ¢
! is the orbital angular momentum between a and b
Pre 18 the break-up momentum in the r — ¢ system
Jap 18 the break-up momentum in the a — b system
cosf,. s the angle between pand ¢ in the a — b system.
Mgy 18 the invariant mass of the a — b system
Z() is the Zemach function which describes the angular distribution of
the particles
F() is the Blatt-Weisskopf barrier factor for the production of r — ¢
with angular momentum L
T. () is the dynamical function describing the width of resonance r
Note that some of these parameters are redundant. cosf is derived from p and ¢, which are in turn
derivable from m?, and m2,.
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Rank Np Tensor J = L & | | Coupled Tensor
(L) (2L +1) 0=0®0| 2Z=PQ
0 1 P=1 0=1a1]|Z=PQ
Q=1 0=2o2 Z:fijﬁi]’
1 3 Fi:ﬁi l=0a1| 7 =PQ,
Q=47 1l=1®0|7=PFQ
9 5 ?Zj :]AS‘ZE}'] —36; 1=1@&1|Z =exPiQy
Q=0 1=201|7 :fijaj
l=1®e2|7Z=PQ;
2=0a 2 Z:P@j
2=2¢0 fu Iﬁ'j
2=1a2|Z; :T~S(€zk1?k5w)
2201 ?” :T~S(€jkz$ik51)
2=262|2Z; :T~S($ik5kj)

Table 7.1: The definitions of the P and @ Zemach tensors (left) and the coupling of the P and @ tensors
to form the Z tensor (right). S() is the symmetrization operator S(X;;) = %(XZ-J- + Xj;), and T() is the
trace-removing operator, T'(X;;) = X;; — %&jTr(X)

7.4 The Zemach formalism

The Zemach functions[48] are used to describe the angular distributions of the decays of the resonances.
An unpolarized particle in free space decays uniformly. However, because of the coupling of the two orbital
angular momenta L and [ to J, certain magnetic sub-states are forbidden by the Clebsch-Gordan coefficients.
For example, let us pick a reaction with L = 1 and Z defined along the direction of p, the resonance
momentum. Then

L.=:-Le~p-(Fx7)=0.
Then the state |L L,) = |1 0) is empty while the states |1 =+ 1) are not. This essentially polarizes the
resonances along their momentum direction, and thus the decay pattern is governed by the shapes of the
Y™ (0 ¢) spherical harmonics. In general the magnetic states are populated symmetrically in m, so all
distributions are symmetric in cos. In addition, because there is only one axis of polarization 2z, the
azimuthal decay distribution is flat. The distributions as calculated by Zemach are given in table 7.2 if one
sets the relativistic correction parameter z to zero, see (7.10).

The formalism is based on the Wigner-Eckart theorem, which separates a matrix element into the angular
part (which is the Zemach tensor) and into the the reduced matrix element which does not depend on the
orientation in space. The recipe for forming the Zemach tensor is as follows.

Construct a representation of the angular momentum group, and then form combinations of the elements
that transform in the desired way. For instance, consider coupling L = 1 (quantized on the paxis) with L =1
(quantized on the § axis to get L = 0 (on any axis). An L = 1 state transforms as a 3-component vector (e.g.
Y™ with m = —1,0,41); let us choose the axis of quantization to represent it. The final L = 0 transforms
as a scalar; 1;3' (}": cos # also transforms as a scalar. Then the amplitude due to coupling transforms as that
scalar, and the intensity |A|? transforms as cos? #, which is the right answer. An L = 2 state transforms as
a 5-component tensor (e.g. Yy with m = —2,—1,0,+1,+2).

First construct the Zemach tensors for L = 0,1,2 and { = 0,1,2 S(see table 7.1). Then contract the
tensors together, using 6;; or €;;; as necessary, to get a tensor with the proper rank of J. For rank-2 tensors,
take linear combinations to verify that the final tensor is traceless and symmetric. This final tensor i

The components of the coupled tensor are amplitudes of each of the components of angular momentum
J. Because the coherence between different |J,) states of the same J is destroyed by the pp annihilation
cascade, the amplitudes due to each state of J, are summed incoherently.
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State J L 1 | Angular distribution z#07 | Isobars
1So 0 0 0]1 K} K, agm
0 1 1|cos?d K{K, pm
0 2 2| (cos?f— )2 KiK, ayw
39 I 1 1]sin%0 KiK, pm
1 2 2| —(1+2%)—2+4z%cos* 0 +42%cos? 0+ (1+ . KiK asm
222 + 16(1 + 22) cos? 0 — 16(1 + 22)% cos* 0
which simplifies to (cos 0sin 6)? if z = 0
Tpiand3P; 1 0 1] 14 2%cos?f ° KiK, pm
1 2 1|14 (3+4+42%)cos?0 . -
1 1 0|1 K{K, agm
1 1 2| (14 2% [3cos? 0+ 32%(cos? 0 — £)?] . KiK asm

Table 7.2: Relativistic Zemach Angular distribution functions. Those which depend on z are marked with a
bullet.

The Zemach formalism is restricted to reactions where a,b and ¢ are spin-0 particles, which applies in
this case. For final states with vector particles (w, 7), the helicity formalism is needed.

Even though the Zemach formalism has been used successfully in pp annihilation analyses for thirty years,
it is not covariant. A covariant form (the Rarita-Schwinger form) has been given by Filippini et al.[34]. The
authors suggest that there can be significant differences for certain resonances in certain initial states due
to the relativistic corrections. The fact there are non-uniform distributions at all is given by the fact that
certain magnetic sub-states of the angular momentum are not populated evenly. The relativistic effect causes
even more uneven population of the magnetic states because of the Lorentz boost.

The present analysis has been done using the non-relativistic Zemach functions. In table 7.2 we show
the relativistic Zemach functions. They are functions of z,

z = |prc|/mr =V 72 -1 (7.10)

In the non-relativistic limit of 3—0 or y—1, then z = 0. The largest z comes from the lightest and fastest
moving resonances, i.e. the K*(892). The following table gives the 22 values for the different spin-1 or spin-2
isobars. Spin-0 isobars always decay uniformly.

Intermediate  p m range 22

KiK 618 865 to 915  0.53 to 0.43
ax(1320)r 458 1220 to 1420 0.19 to 0.07
p(1450)m 357 1350 to 1550 0.10 to 0.03

KiK 0 1330 to 1430 0.02 to 0.00

Looking at table 7.2, one can see that there are no relativistic corrections for any state coming from 1Sg.
From 3S; annihilation there is only one function that is affected by the relativistic correction ((J|L ) =
(1]2 2)). The a3(1320)7 contribution from this initial state is about 2% according to the partial wave analysis,
and the 22 ~ 0.13 so this is a small effect.

In P-wave annihilation, only the p(1450)7 and K} K isobars have significant amplitude, and of these two
only the KT K amplitude has a significant z factor for relativistic distortion of the angular amplitude, shown
in figure 7.3. The non-relativistic flat distribution begins to look more like ~ 1+ cos? . Because the K} K
also originates from 'Sy and 35 initial states, this error can be compensated in the fit by increasing the 'S
contribution.

In order to determine the impact on the K7 K branching ratio, we have repeated the fit using no K7(892)K
contribution from 'P;. The total branching ratio for the K;(892)K decreased by only 5%. Because the
relativistic distortion effect is much smaller than total removal of the entire partial wave, we estimate that
the error that the distortion brings to the branching ratio at less than 2%, which is smaller than the statistical
error in table 8.2.
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and relativistically (solid line)

_ a2/lSO rho/lSO
[E
1450 1700
ktsn/ 1S0

[E6]

[E6]

0.5 I 0.5 I

05 1 15 2 05 1 15 2 15 2
(6] (6] (E6]

K3 (1430)* K;(1430)° Coherent Sum
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7.5 Two-body breakup momentum and phase space

The breakup momentum for a system into two particles with masses m, and m; is

VImg, — (ma + m)?][m3, — (ma — m)?]

qab = Imas
where mg; is the invariant mass of the system.
The phase space of a two body decay is
2QGb
p(mgp) =
(Map) s

7.6 Angular barrier factor

Because the strong force only works over small distances, i.e. 1 fm, the maximum angular momentum L
possible in a strong decay is limited by the linear momentum p

1

L =
L =

X P (7.11)
1 fm) - |p|. (7.12)

—_~~ =

In other words, decay particles moving very slowly with an impact parameter of order of the size of the
resonance (i.e. 1 fm) can not generate enough angular momentum to conserve the spin of the resonance.
The functions calculated by Blatt and Weisskopf[47] weight the reaction amplitudes to account for this
spin-dependent effect. The functions Fr(z) for resonances with L = 0, 1,2 are

Fo(q) = 1 (7.13)
N =\ (7.14)
Fy(q) = (2,_133)% (7.15)

where the unitless quantity z = (¢R)? is in terms of the breakup momentum q and the range of the interaction,
1 fermi or R = 1/200 MeV~1!c. See figure 7.7 for the shape of these functions.
It is convenient to define the normalized Blatt-Weisskopf functions

B (¢,q0) = (7.16)

where qq 1s the value of ¢ on resonance.

These functions appear in two places. The first place is as a momentum-dependent correction to the
“width” of a resonance I'y. The second is as a momentum-dependent correction to the overall amplitude,
which appears in the production factors.

7.7 Dynamical functions 7, (m)

Nearly all resonances in pp physics are characterized by the complex energy poles (Ey) of the transition
matrix 7',

EO = Mg — ZFO/? (717)

where the real part mg is the central resonance mass and the imaginary part il'o/2 contains the defined

width.
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Figure 7.7: The Blatt-Weisskopf functions for L =0, 1,2

7.7.1 Breit-Wigner

One of the simplest forms for T is the Breit-Wigner form, which is derived from 2-particle partial wave
scattering phenomenology for narrow resonances (I' < mg). Briefly, the elastic scattering amplitude (non-
relativistic) is

1
f= coté —1
which has a maximum at 6 = 7/2. If ['y/mo < 1, and defining 2/I' = d cot 6/d m|,,_,, , this can be written
as
To/2

=

(mo — m) — ZFO/Q
where m is the invariant mass of the decay particle system, where I' is defined in terms of a fast moving
phase. Note the pole positions are in the correct place, as given by (7.17). The relativistic form is written as

Fomo
= 1
! (mZ —m?) —imgly’ (7.18)

again with the T pole position in the same spot (but only if T'y < my).

Of course, since many resonances are wide, the assumption 'y < mg does not hold well. This was
first noted in the p-meson (I'y/mg = 150/770 = 19%) where deviations from the Breit-Wigner are visually
apparent. In this case, the Breit-Wigner is given a varying width, which is usually proportional to the
phase-space of the decaying particles. In addition, resonances with spin have a dependence on momentum
due to the centrifugal barriers (equation 7.16). Thus the improved Breit-Wigner looks like

TomoB'(g, q0)

)ty |23

f= (7.19)

where p(m) is the phase space and B'(q, ¢o) are the normalized Blatt-Weisskopf functions given in (7.16).
For this analysis, the Breit-Wigner function is used to parameterize all resonances except for the ag(980)
which requires a Flatté distribution and for the p(1450) and p(1700) which require the K-matrix because of
the proximity of the resonance poles.
A variation of the Breit-Wigner uses m instead of my in the numerator and in the third term of the
denominator. A refit of fit #81 using this hypothesis insignificantly changed the y? by 1.99 less, and did
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not change any of the branching ratios by more than ~ 10 % except for the 1Sy contribution from as(1320)
which decreased by 21%.

7.7.2 K-matrix

The K-matrix formalism is more general than that the Breit-Wigner function. It allows having more than
one T matrix pole and coupled channels, while preserving unitarity. In fact, the Breit-Wigner function is
equivalent to a one-pole, one-channel K-matrix and the Flatté function is equivalent to a one-pole, two-
channel K-matrix. The derivation of the Flatté form from the K-matrix is given in [28]. Here we just
give the 1 x 1 description of the K-matrix, which is used for the K§(1430) S-wave and the multiple pole p
resonance.

In scattering applications, the 7" matrix looks like

T=(1-ipK) 'K (7.20)
where the 1 x 1 K matrix is a summation of pole terms,
. (9B (2))?
i=poles
where ¢ = /m;T;/p, p is the decay phase space, B(q) is the Blatt-Weisskopf factor, m; is the resonance
mass, m is the invariant mass of the system and ¢ is an optional background term.

In production applications, such as in pp annihilation, the 7" matrix is written as

T=(1—ipK) 'P, (7.22)
the only difference being the production vector P replacing the K matrix. The production vector is defined
as

2L
5 9°B"(q)
P= > Bisr— 5 +e (7.23)
i=poles ’

which is nearly the same as the K matrix, except there is a production coefficient 3; and one power of B (q)
is suppressed.

Flatté

The Flatté distribution is used to parameterize the ag(980). Because the ag’s mass is on top of the KK
threshold and it can also decay into wn, the shape is affected in a somewhat weird way. See the discussion

around equation (2.18) for a description of the dynamical form,
- g1

F(s) = - .
(s) mg —m? —i(p1g3 + p293)

The p P-wave

The p is described by a two pole K-matrix, with
(m1,T1) = (1430,170) MeV (7.24)
(m2,T2) (1740, 190) MeV, (7.25)

the values taken from [4].

K — 7 S-Wave

The LASS parameterization of the K — 7 S-wave requires a broad background term ¢ to be added to the
pole term. The value of ¢ in (7.21) and (7.23) is defined as
B am
€73 + abg?(m)’
It turns out that the fit is not very sensitive to the exact parameterization of the background term. The

negative log-likelihood actually drops slightly (by 15) if the background term is not included. The dynamical
form is discussed in section 2.11.2.

(7.26)

7



Table 7.3: Results of every fit, with percentages of each resonance

7.8 Fit algorithm

In most analyses, the efficiency function is calculated from the Monte Carlo, and then held constant in the
fits. In this analysis however, because the statistics of the data are much higher than the statistics of the
Monte Carlo, the efficiency can be better determined by using the data rather than the Monte Carlo. Of
course, the data reflects both the efficiency and the dynamics. For this reason, we simultaneously fit the
Monte Carlo (for the efficiency) and the data (for the efficiency and the dynamics).

MINUIT was used to minimize our y? value,

X* = Xine T Xdata (7.27)
where
Xine= Y X*(N" e 0) (7.28)
b=bins
and
X?lata = Z Xz(Nbdata’ € - Ip) (7.29)
b=bins

where b is the bin index, N is the number of events in bin b, ¢; is the net detector and reconstruction
efficiency of bin b, ¢ is an overall normalization constant and [; is the total theoretical intensity of bin b.
The x? for binned Poisson data is the same as twice the negative log-likelihood,

where NOPS is the observed integral number of events and Nth s the theoretically expected real number of
events. If NOPS = 0, then the second term is zero.

Both ¢; and I are calculated at the phase-space center-of-gravity of each bin. For bins whose perimeter
lies entirely within phase space, this point is simply the center of the square bin. For bins on the edge of the
dalitz plot, this point is not at the center of the bin.

The efficiency function is described in chapter 5.

7.9 The reduced y?

Because the fits are done simultaneously on the data and the Monte Carlo, the total y? is due to both
sources. The best y? fit to the Monte Carlo alone gives y2 = 438, for 490 bins with 36 free parameters, or a
reduced y2/N = 0.96. To get the x? due to the data alone, we subtract the expected contribution from the
efficiency. Since the 36 efficiency parameters are shared between the data and the efficiency fit, we divide
this count by 2, and then subtract from the number of bins to arrive at the expected contribution due to
the efficiency alone, 490-36/2 = 472. The degrees of freedom of the fit include all the dynamic parameters
and half of the efficiency parameters, since again the later are shared with the pure efficiency fit.

Y2 — 472

7 7.31
472 = Npar (7.31)

X*/Ngot =

where Npar are the number of free parameters in the theoretical dynamic function.

7.10 Results

The Dalitz plot has one obvious resonance, the K*(892), appearing as a horizontal and vertical band. Thus
this resonance is in all fits. The other resonances are not so immediately evident, and we must develop an
algorithm to discover the remaining resonances. First, we examine the K7 wave, then we examine the K K
wave. For reference, for a fit to the data assuming a “phase space” hypothesis, that is the dynamical function
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Resonance Mass [MeV/c?]  Width [MeV/c?]

K (892)% 891.921 54.7
K*(892)° 896.056 53.4
K;(1430) 1342 400
a(980) 999 353,353 *
a0(1450) 1489 265
a5(1320) 1318.1 107
p(1450) 1430 170
p(1700) 1740 190

Table 7.4: The reference masses and widths of fit #81, taken from [4].

Fit X2 X3/ Ngor K*(892) K3(1430) K;(1430) K*(1410)

0/201 994 1.29 . . . .
1/81 1032 1.34 . . .

2/156 1112 1.53 . .
3/80 1290 1.91 . .

4/159 1547 2.45 .

5/157 12800 28.7 . .

6/160 13000 28.8

7/161 13300 29.1 .

Table 7.5: The components of the K7 wave. See figure 7.8

is simply a constant, the y? = 23924 for 489 degrees of freedom, or a reduced X2/Ndof = 49. This number
is meant to set a scale for a “bad” fit, compared to 1.0 being a “good” fit.

We also attempted a fit without any interferences between the different resonances. This gave a totally
unacceptable fit of Y?/N ~ 10; allowing some interference between the KK components improved the fit
to a still unacceptable y?/N ~ 5. Thus the interferences between the K7 and KK waves are a critical
ingredient in the Dalitz plot. This also means that it is difficult to determine the branching ratios of
individual components because there is so much interference.

For comparison purposes, the fits in table 7.5 were done with all masses and widths fixed to those of
table 7.4, and the K K wave included all five resonances: ao(980), a2(1320), ag(1450), p(1450), p(1700). The
fits in table 7.6 were done with all masses and widths free, except for those of the K(1430) and K (1430),
and the K7 wave included all three resonances, K*(892), K;(1430) and K(1430).

7.10.1 Standard Fit

The reference fit is fit # 81 in table 7.5 with a reduced x?/N = 1.34. Releasing the masses and widths
improves the fit to x2/N = 1.22, in fit #144. The Dalitz plot of the theoretical fit and the projections of
the Dalitz plot are shown in figure 7.10. The fit quality is visually excellent. The x? plot, showing areas of
bad fit, is given in figure 7.13.

Because the angular decay distributions of the ' P, and 3P; initial states are exactly the same for each
final state, we use only 'P; in the fit for computational and convergence reasons. However,if the relative
productions of each isobar is different from these two initial states, then there can be a net difference between
1Py and 3Py, but only due to the interferences between the isobars.
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Figure 7.8: The fits of the K'm wave. See table 7.5
0(930) 2(1320) a0(1450) 2(1450) 2(1700)
Fit  -LL m ggK?) m r m r m r m r
nw
MeV/e2  MeV/c? MeV/c? MeV/hi | MeV/e2  MeV/h | MeV/e?  MeV/h | MeV/e2  MeV/h
"R
1/144 961 1004 + 2 (i%jig;) 1308 £ 3 112+ 6 | 1488+ 14 144+30 | 1478+ 17 277+£29 | 1701+ 13 225+ 24
2/145 973 1309+ 3 109+7 | 1481 +£13 132430 | 1488+ 17 2568 +33 | 1705+ 16 231+ 31
3/89 974 | 1023 +£21 (iggigg) 1308+ 3 102+ 7 1438 +24 222426 | 1668+ 15 177 +20
4/141 987 919 + 22 (0713:::4510) 1312+ 3 112+ 8 | 1472+ 15 204+ 40 1624+ 7 140+ 14
5/146 997 1308+ 3 105+ 6 14524+ 18 203+£24 | 1669+ 13 179 422
6/147 1000 1314+ 3 107+£7 | 1491+£12 122427 1634+ 10 174421
7/96 1025 | 1042+ 13 (??i:;g?) 1311+ 3 106 + 6 1625+ 6 176 + 15
8/ 148 1048 1315+ 3 109+ 6 1633+9 226 £ 30
9/155 1190 1304+ 3 98+£6 | 1663 £12 258+21
10/151 1364 1302+ 3 83+ 6
11/149 1471 1319+ 5 88+ 7
12/152 1725 1593+ 7 182+ 13
13/150 1924
PDG 983.4+0.9 n/a 13181+ 0.6 107+5 | 1474+19 265+ 13 | 1465+ 25 31060 | 1700+ 20 240 £ 60

Table 7.6: The components of the K K wave. Blank entries mean that that resonance was not used in the

fit. See figure 7.9.
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Figure 7.9: A graphical display of table 7.6.
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Figure 7.10: Fit 144, the standard fit. (a) Data Dalitz plot, (b) Fitted Dalitz plot, (c,d,e) The projections
of the Dalitz plot. The solid line is the fitted function and the error bars are the data.
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Figure 7.11: Fit 148, the minimal fit. (a) Data Dalitz plot, (b) Fitted Dalitz plot, (c,d,e) The projections of
the Dalitz plot. The solid line is the fitted function and the error bars are the data.

83



w3 oI g
e =} goof
r a- 1.25¢
2.5 i :
f I 1f
2r 3r E
Lok i 0.75[
i 2 E
1 i 05
0_5; 1; 0.25/
s T I 2 s T T I 2 T T
E6 E6 E6
m?(Ksnt) (= m?(KFr¥) (= m?(Ks K*) (=
() (d) (e)

Figure 7.12: Fit 123, the fit without the a¢(980) on a fine grid. (a) Data Dalitz plot, (b) Fitted Dalitz plot,
(c,d,e) The projections of the Dalitz plot. The solid line is the fitted function and the error bars are the
data.

84



[E6]

Figure 7.13: The x? plot for (a) the standard fit # 81, (b) fit #87 with no P-wave or K3(1430), (c) the
standard fit # 144, (d) the minimal fit # 148, (f) fit #123, without any a¢(980) on a fine grid. Values of
x? > 4.0 are truncated to 4.0, shown in red.

Figure 7.14: The KsK* 7% Dalitz plot, taken at the Saclay 81 cm bubble chamber in the 1960’s [31]. The
data is not acceptance corrected, but the acceptance is nearly flat for the bubble chamber. The units of the
axes are GeV?2/c*
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Chapter 8

Discussion

8.1 Systematic errors

8.1.1 Masses and widths

For the masses of resonances, we assign 2 MeV of systematic error based on the comparison of the K*(892)
mass in section 8.2.1. For the widths, we subtract 30 MeV in quadrature from the fitted widths and assign
8 MeV of systematic error, also based on the result for the K*(892).

8.1.2 Goodness of fit

The best fit (fit #144) to the data has x?/N = (961 —472)/(490 — 88) = 1.22. An ideal fit would have given
a reduced x?/N = 1, so this fit is still not ideal. A toy Monte Carlo fit (see next subsection) shows that a
fit to ideal data does indeed return a reduced x?/N = 1.0. The additional x? in our best fit should be due
to one of the following reasons:

1. There is something wrong with the data, i.e. a background that has not been subtracted.
2. There is another isobar that needs to be put in the fit.
The isobar model has limited accuracy.

The detector resolution is not convoluted with the theoretical shape.

A S

The theoretical intensity is not adequately linear across a single bin, so there is a second order error
induced when the intensity is only calculated at the center of the bin.

We have attempted to eliminate item 1, by the careful checking of the data. We do not see any obvious
clustering of the y? across the Dalitz plot, so there doesn’t not seem to be any localized background.

Item 2 is unlikely, because we have tried all well known resonances and the incremental improvement in
the fit is small, indicating that adding more resonances is not going to help the fit.

Item 3 is a definite possibility. The isobar model does not take into account final state interactions.
There are limitations to the accuracy of the Breit-Wigners used, especially in the width characterization.

Item 4 should only apply to the narrow K*(892) and its interferences, but because this isobar is strong,
it could account for a large part of the additional y2. We have noted that some of the detector resolution
is compensated for by the widening of the K*(892). However, this is not equivalent to detector resolution
convolution, because widening the physical width changes the interference with other resonances, while
simple Gaussian blurring does not. It is not a big effect, since the fitted width is only 8 MeV larger than
the physical width.

Item 5 can be addressed by smaller binning. We have repeated the fit using a smaller binning, with
bins of size (0.03 MeV?/c*)? instead of (0.06 MeV?/c*)? which were used in all the other fits. The result is
x2/N = (2645 —472)/(1924 — 88) = 1.18, which is indeed better than the coarse binned fit. The fine binning
is computationally expensive, so we could not use this for all the fits and scans. If we naively interpolate to
zero bin size, we still are left with a y2/N ~ 1.14.
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In our opinion, the poorness of the fit is due primarily to the limitation of the isobar model and the
parameterization of broad resonances. We note that other Crystal Barrel analyses have similarly high y2/N
with similar statistics to this analysis of 57 Kevents, with Abele[2] having a final fit of /N = 1.32 with 37
Kevents, Aker[7] having x?/N = 1.27 with 55 Kevents, Amsler[10] having x?/N = 1.15 with 22.5 Kevents.

8.1.3 Toy Monte Carlo and branching ratios

To test the reproducibility of the fit, we took the theoretical Dalitz plot of standard fit #81, smeared each
bin using a Poisson distribution, and refit the smeared theoretical data. The y? before minimization was
418 for 417 degrees of freedom, which is exactly what it should be since that was what was generated. This
proves that the y? is correctly calculated and that it can be used as a goodness of fit estimate. However,
the x? could be further minimized considerably. Holding the efficiency function fixed, the fit found y?/N =
373/417 = 0.89, or a change of 45 units of x2.

Since we know what ingredients went into the fit, we can see how well the fit extracts those values.
In table 8.1, we show the generated (input) Dalitz plot contributions and the fitted (output) Dalitz plot
contributions.

It is clear that it is difficult to accurately measure the branching ratios when there are so many interfering
amplitudes. We estimate the error for the total branching ratios (summed over initial states), is about 25%.
The errors for the branching ratios of individual initial states is realistically about 50%.

In order to get a better constraint on the branching ratios, we have tried an additional symmetry,
described in section 8.2.4.

8.2 The K7 wave

8.2.1 The K wave: The strange vector K *(892)

The strange vector K*(892) is the most important resonance in this analysis. In a fit with all resonances
except the K*(892) gives a humorous y2/N ~ 29; that the K*(892) exists is obvious by inspection of the
Dalitz plot.

The pp annihilation branching ratio is determined to be (see table 8.2)

BR(pp—K K (892)) = (4.440.3) x 1073 (8.1)

when the interference at the band crossing is assumed to integrate to zero. We compare this to Conforto[31],
again assuming the interference between I=0 and I=1 integrates to zero, which found BR(pﬁ—Jx’F* (892)) =
(3.540.3) x 1073, This is somewhat smaller, but may be due to the following reasons. The bubble chamber
analysis assumed no P-wave annihilation, but we see that ~ 30% of our branching ratio comes from P-wave.
This will change the interference pattern significantly. Also, the K*(892) was parameterized via I = 0 and
I = 1 in the previous analysis, while it was parameterized via horizontal and vertical bands in our analysis.
There is a clear strong interference effect at the crossing of the bands, which may explain the difference in
branching ratios if the integrated interference is not zero.

From the best fit (#144) with the masses and widths of all resonances freely varying in the fit (except
the broad K3 and K{), we find (quoting statistical errors only)

m(K*(892)%)=890.0 £ 0.8  T(K*(892)%)=56 + 2

m(K*(892)°)=894.0+ 0.6  I(K*(892)°)=60 + 2. (8.2)

The Particle Data Group[36] reports the mass and width of the K*(892) as m(K*(892)%) = 891.66 + 0.26
MeV/c?, m(K*(892)°) = 896.10 £ 0.28 MeV/c? and T'(K*(892) = 50.6 & 0.5 MeV/c? (charge independent).

Our measurements of masses are 1.7 and 2.1 MeV/c? lower, respectively, in the masses. The mass
difference is not surprising, because the binning in the histogram is rather coarse, (0.06 GeV?/c*), which
corresponds to a mass range of m ~ 33 MeV/c? at the K*(892) mass. Because the theoretical intensity is
calculated only at the center of a bin, there is a significant undersampling of the theoretical shape over a
single bin. But rather than assign a £33/2 MeV/c? error to the result, we see that the systematic error of
the coarse binning is only about 2 MeV/c?. The testifies to the influence of the K* on the entire Dalitz
plot far beyond the narrow peak region. We assign a systematic error of 2 MeV/c? in mass to all other mass
measurements.
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% of Dalitz plot Change
s+l . Isobar Before Fit  After Fit | Relative Absolute
TS K*(892)F KT 4.2 4.0 5% -0.2
K*(892)°K° 6.9 5.8 -16% 1.1
K (1430)*K¥ 0.2 1.4 | +500% +1.2
K3 (1430)°K° 6.3 5.0 21% -1.3
ao(980) 1.4 0.9 -36% 0.5
ao(1450)7 0.9 11| +22% +0.2
a(1320)7 22.8 22.2 -3% -0.6
pT 9.5 7.1 -25% -1.4
K3(1430)*K¥ 1.6 1.7 + 6% +0.1
K3(1430)°K° 7.2 6.9 -4% 0.3
35, K*(892)F KT 14.8 15.9 +7% +1.1
K*(892)°K° 11.8 12.3 +4% +0.5
a(1320)7 2.2 1.9 -14% 0.3
p 2.6 2.8 +8% +0.2
K3(1430)*K¥ 1.6 1.7 +6% +0.1
K3(1430)°K° 0.4 0.7 ] +75% +0.3
Tp K*(892)FK¥ 1.4 20| +43% +0.6
3P K*(892)°K° 9.1 108 | +13% +1.7
K;(1430)*KF 17.3 19.6 -3% -2.3
K3 (1430)°K° 6.9 4.3 -38% -2.6
ao(980) 5.7 4.8 -16% -0.9
ao(1450)7 0.2 0.1 - 50% -0.1
a(1320)7 0.5 L1 +120% +0.6
pr 17.8 215 | +21% +3.7
K3(1430)*K¥ 1.6 1.2 -25% -0.4
K3(1430)°K° 1.4 25 | +79% +1.1
Sum  K*(892)FKF¥ 20.4 21.9 +4% +1.5
K*(892)°K° 27.8 28.9 +4% +1.1
K (1430)*KF 17.5 21.0 +20% +3.5
K3 (1430)°K° 13.2 9.3 -30% -3.9
ag(980) 7.1 5.7 -20% -1.4
ao(1450)7 1.1 1.2 + 9% +0.1
a(1320)7 25.5 25.2 -1% 0.3
pr 29.9 314 +5% +1.5
K3(1430)*K¥ 4.8 4.6 -4% -0.2
K3(1430)°K° 9.0 10.1 | +12% +1.1

Table 8.1: The Toy MC, before and after fitting
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The measured width is about 8 MeV higher than the Particle Data Group’s value, and this is simply
a result of the fact that the theoretical intensity is not convoluted with the detector resolution. Doing so
requires an inordinate amount of computational time, and we can see that the error is only 8MeV for the
narrowest resonances, so the effect is even smaller for all the other much wider resonances. The 8MeV net
difference implies a detector resolution of /582 — 502 ~ 30 MeV, which is about 3% of the K* mass. We
thus subtract (in quadrature) 30 MeV from all fitted widths to remove the detector resolution, and assign 8
MeV of systematic error to all measured widths.

We attempted adding a second pole to the strange vector wave, the K*(1410) with a mass of 1414 MeV /c?
and a width of 232 MeV/c?. The x? dropped by 37 with 12 extra free parameters, meaning that this is a
V37— 12 = 50 effect. Because this particle is well established by the Particle Data Group, this result is
not surprising. However, the additional calculational overhead has meant that we refrained from using it in
other fits.

8.2.2 The Kr wave: The strange tensor K;(1430)

To our knowledge, the K;(1430) has not been used before in any pp— K K7 (at rest) analysis. This is due,
presumably, because the mass of 1430 MeV /c? is higher than the edge of the Dalitz plot, 1240 MeV/c? and
its width of 100 MeV/c? seems narrow. However, the tails of a Breit-Wigner are very long and do not drop
rapidly after going beyond one standard width. Of course to be significant, the resonance needs to be very
strong so that the tails have any significant intensity.

The LASS spectrometer at SLAC[18] studied K« scattering at energies from threshold to 4 GeV. They
noted two very strong resonances, the K*(892) and the K35(1430), as well as the next three higher excited
(L = 3,4,5) states of the K*. The K~#% invariant mass distribution is shown in figure 8.1a. The height
of the K*(892) and K3(1430) peaks are in a ratio of 1:0.63, while the ratio of widths is 50.8:116.5. This
means that the ratio of events due to the tensor to events due to the vector is about 1.44; in other words,
the tensor intensity is greater than the vector; since the vector is the most visible component of the Dalitz
plot, the tensor must have a significant contribution, even though the mean lies outside of phase space.

The actual contribution of the tensor in the pp— K K« Dalitz plot is smaller than the vector, of course,
because it is outside of space space and along the edge of phase space, the angular momentum barrier causes
production of pp— K K;(1430) to be suppressed. This is why the K3(1430) is not immediately obvious by
eye in the Dalitz plot as vertical and horizontal bands. However, there are visible effects that are due to
interference effects of the K;(1430) with other resonances in the Dalitz plot, for example the K K threshold
enhancement in the upper-right part of the Dalitz plot, which is discussed below.

However, we can remove the phase space restriction and angular barrier from the partial-wave analysis
and simply plot the Breit-Wigners of the K*(892) and K;(1430) using the production amplitudes. We
can then compare this plot with the LASS data which is essentially not limited by phase space or angular
momentum. The plot of

. . . - . . 2
|M(m)|2 — E ‘621( (892)BWK (892)(m) 4 ﬁiK2(1430)BwK2(1430)(m) (83)
i=15p,351,(1P; and 3P;)

is shown in figure 8.1b, where f3; is the fitted production amplitude in the é-th initial state (taken from fit
#130), BW(m) is the relativistic Breit-Wigner used in the PWA, and m is the invariant mass of the K«

system. The dashed line is drawn with all the BZ-K;(MSO) set to their +10 upper limits, while the solid line is
drawn with all the 62»1(2(1430) set to their —1o lower limits. The ratio of peak heights [K*(892) : K3(1430)]

is 0.83 & 0.12, which is in reasonable agreement with the LASS data, which found a ratio of 0.63 & 0.03.
Note that our fit is only sensitive to the region within phase space (m(Kw) < 1242 MeV/c?), which is the
unhatched region in the figure. The peak height ratio agreement is amazing since it is extrapolated from
just the small portion within phase space.

The x%/N drops from 1.91 to 1.34 when the K3(1430) is introduced (compare fit #80 and #81 in
table 7.5). In fact, the tensor K3(1430) is more important than the scalar K(1430), as seen in the table.
This, in addition to excellent agreement with the LASS K scattering data, proves that the K3(1430) is
vital in a description of the K K7 system at rest.
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Figure 8.1: (a) the K= invariant mass distribution seen in the LASS experiment (taken from [18], figure
3), for events with |#/| < 1.0 GeV/c?). The shaded region contains events with n7+ mass greater than 1.7
GeV/c? (the difference between the shaded and unshaded regions is unimportant for the purposes of this
comparison). (b) the fitted K« invariant mass distribution as seen in this analysis, when phase space and
angular barrier functions are not included. The two curves are the 1o limits of the fitted values. The
hatched region is outside of the K K7 at-rest phase space.
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8.2.3 The Kr wave: The scalar K;(1430)

The K(1430) resonance (with the additional background term) is not as significant as the K*(892) or the
K3(1430). This can be expected from the results of the LASS experiment[18] which saw much more evidence
for the later two resonances than this scalar. However, the fit is still significantly improved by including this

resonance, by dropping the y?/N from 1.53 (fit # 156) to 1.34 (fit# 81) in table 7.5.

8.2.4 Ratio of charged to neutral strange resonances

As can be seen by scanning table 8.1, the percentage attributed to charged or neutral (K =) resonances seems
to vary in a random pattern. In some cases the intensity of the charged resonance exceeds that of the neutral
resonance, and in other cases, the reverse is true. This variation changes from fit to fit.

We have hypothesized that the there may be an additional constraint we can impose in the fit. We have
imposed a fixed ratio on the production amplitudes of the neutral K'w waves to the charged K« waves. This
ratio was then allowed to vary. This removes 8 degrees of freedom (now all the (K7)* and (K7)° waves are
in a fixed ratio), and added one (the ratio). The phase of each production amplitude is still a free parameter
in the fit.

The result of the fit # 202 (see table 8.2 for the full results) is an intensity ratio

Bl(E )]

[(Km)*]

The Y2 increases by 17 units after the removal of 7 parameters, so the significance of this is v/17 — 7 ~ 3.

Because the branching ratios from each initial state vary considerably if this constraint is not imposed, we
use this fit to give the values of the branching ratios, in table 8.2.

Conforto[31] found a charge asymmetry of (500 & 50) : (300 £ 30) = 1.67 & 0.24 between K*°(892)K°
and K*i(892)K3F. Our result is consistent with this, even though we have introduced P-wave, the tensor

K3(1430) and the ag(1450).

2
=1.3940.14. (8.4)

8.3 The KK wave

There are five candidate resonances in the KK wave, which are given in the heading of table 7.6. To
determine which of these particles is required requires testing all combinations. The table gives nearly all
combinations of 0,1,2,3,4 or 5 resonances; because the a2(1320) is clearly needed, some combinations without
the a3(1320) are omitted for clarity. The fits are sorted in order of increasing x2. In all fits, the masses
and widths of the KK resonances were allowed to vary freely, in addition to the masses and widths of the
K*(892)* and K*(892)°. The remaining resonances: K7(1430) and K3(1430) are too broad to allow to vary.

At the bottom of table 7.6 are the values from the Particle Data Group[36]. The g widths for the a¢(980)
are not applicable, because they are model dependent. The mass and width of the p’s are for their decays
into non-K K channels. In the figure 7.9, the same data is displayed graphically, where the reduced x? is
displayed, as defined in (7.31).

In figure 7.9, one can clearly see that there is a knee in the x? plot at fit #8/148, which requires simply
two resonances, the a3(1320) and a p(1630). This is our minimal fit, which is shown in figure 7.11. This fit
is acceptable, with no clustering of x? over the Dalitz plot (shown in figure 7.11), but further improvements
can be made.

We first attempt to add one extra resonance, shown in fits #5, #6 and #7. There is not a significant
different between fit #5 (which added the p(1450)) and #6 (which added the a¢(1450)), but the improvement
over fit #8 is significant. Adding both ag(1450) and p(1450) simultaneously again improves the x? in fit #2,
favoring them over the ag(980) as the fourth particle. However, adding the ag(980) to the other four does
not significantly change the x? in fit #1. It is our opinion that while the a(980) has been seen in decays to
nm, the decay into K K could be much smaller than previously believed.

In defense of the ag(980) and its wild variations in mass and g couplings as seen in the table, the shape in
this analysis is dictated primarily by the opening of phase space, and not the Flatté formula. The coupling
Jx T is almost entirely independent of the data, so the values of -1 are not surprising. The coupling value
essential gets absorbed into the production amplitude, so the sign of -1 reflects simply an arbitrary change
of phase of the amplitude.

The a3(1650) resonance was attempted, but gave absolutely no improvement in the fit.
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8.3.1 Is there an second isovector? Is there any isovector?

One of the main goals of this analysis is to find the isovector member of the ¢g scalar nonet. There are now
three candidates for this position, the ag(980), the ag(1300) and the ag(1450). Because the ag(980) has other
weird properties, many believe it is not the isovector member. The OBELIX favors the ag(1300) while the
Crystal Barrel favors the ag(1450).

The first question is, is this isovector statistically significant? We attempt to answer this question in
this section. The second question is why do we get a different result from OBELIX and from the previous
Crystal Barrel analysis, the second question is, what are the pole parameters? We attempt to answer the
first question in this section, and the second question in section 8.3.2.

Our fits offer the surprising conclusion that there may not be any isovector contribution at all to the
K K Dalitz plot. The minimal fit requires only a a2(1320) and a single vector p(1670) in the KK wave to
get a reasonable reduced Y?/N = 1.27. Adding one particle to this favors another vector p over a scalar aq,
with a change in §x¥? = —51 for 8 extra free parameters. The significance of this is /63 — 8 ~ 6.60.

The (masses,widths) of these two p’s are (1452418,2044-24) and (1669413,1704+22) MeV /c?, respectively,
consistent with the Particle Data Group’s values of (1465 £ 25,310+ 60) and (1700 & 20,240 £ 60) MeV /¢?,
respectively. The change in x? and confirmation by the PDG of the masses speaks for inclusion of two vector
resonances in the K K wave. We emphasize the statement that the K K wave favors two vector p poles rather
than one vector p pole and one scalar ay pole.

We then proceeded to add a scalar resonance (an ag) and the fit found an improvement of §y? = —25
with 6 extra parameters. Thus the y? drops by an additional 19 units over statistics alone, which is roughly
a V19 = 4.40 effect. The range of 3 to 5 ¢’s is traditionally a gray area of acceptance, and this result is
thus gray. The parameters for the mass are relatively stable (ranging from 1472 to 1488 MeV/c? over fits
1-8 which returned a statistical error of about 10 MeV/c?) but the width is not stable, varying from 100 to
250 MeV /c? with only a maximum change in x? of 10, as can be seen in figure 8.3. In any case, here are
the pole position parameters, the average of fits 1/144, 2/145, 4,/141 and 6/147 in table 7.6 followed by the
corrections discussed in section 8.1.

m(ap(1450)) = 1481+ 17 MeV /¢ I'(ap(1450)) = 100 to 250 MeV /> (8.5)

The much heralded a¢(980) is the weakest resonance in the entire Dalitz plot, with no statistical sig-
nificance at all based on the change of y?. The reduced x?/N (fit #144) is 1.216 with the ao(980) and
1.222 without. The raw y? drops by 11 with the addition of 7 extra parameters, thus only é§y? = 4 can
be attributed to the significance of the ag(980). This change of 4 is about a 2 ¢ effect, assuming perfect
statistics.

In the previous Crystal Barrel result, a fit with the double-pole p alone (not ag(1450)) was not reported.
The p poles were added to the fit after the ag(1450), thus it is not clear if the net improvement in the fit
was due mostly due to the p poles helping the ag(1450) or replacing the ag(1450). In the OBELIX result,
only a single pole p was used with the ayg. However, we have shown that a two pole p is favored over a single
pole p and ayg.

We summarize in saying that the fit does not require any a(980), but is consistent with an ao(1450)
although it is not inconsistent either.

8.3.2 Where is the second isovector, ay(1450) ?

We now ask why this analysis, with a factor of 5-6 more statistics than either previous analysis, finds less
statistic significance for the ag(1450) than they did. The answer is that the previous analyses did not use
the K3 (1430) in the fits. In this section, we will show that the inclusion of this tensor resonance affects the
results of the ag(1450).

8.3.3 The Crystal Barrel Analysis of K; K*z¥

In Abele[4], the Crystal Barrel collaboration found evidence for a second isovector with m = 1480 + 30
MeV/c? and T = 265 + 15 MeV/c?. The analysis claimed that the mass was not very sensitive to the x2,
that the mass could be varied between 1450 and 1510 MeV/c? with a maximum change in x? of 20.
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Figure 8.2: OBELIX: Likelihood scan over mass (1200—1600 MeV) and width (0—300 MeV) of second
isovector, reproduced from OBELIX[23] (units are in GeV).

8.3.4 The OBELIX Analysis

The conclusion of the OBELIX collaboration in [23] is that there is a new isovector with m = 1290 + 10
MeV/c? and I = 80 &+ 5 MeV/h, which they call the ag(1300). They note that this is not consistent with
the Crystal Barrel result.

In order to disentangle this problem, the OBELIX analysis scanned the mass from 1200 to 1600 MeV /c?
and the width from 40 to 320 MeV/c? of the isovector (see figure 8.2). They found two solutions. Solution 1
has m; = 1290+ 10 MeV, I'y =90+ 10 MeV, LL; = 10910, and solution 2 has ms = 1480440, I' = 200+ 60
MeV, LL, = 10845. They point out that solution one has a better Log-Likelihood and the shape of the
likelihood curve is better behaved at solution 1. In their plot of the Log-Likelihood scan, there is a valley of
about -100 LL between the two solutions.

We note that the shape of the second solution is not a good parabolic log-likelihood surface, but features
a sharp discontinuity at 1480 MeV /c?. We fear that this is not a physical maximum in the likelihood but a
gestalt change in choice of solutions. We believe that this cliff in likelihood is an artifact of the direction of
the scanning of mass (from small mass to large mass, rather than from large mass to small mass). This is
demonstrated in figure 8.4 and 8.6.

8.3.5 Comparisons to K;K*7F and OBELIX

We have repeated the same mass and width scan for four different hypotheses. The first hypothesis includes
P-wave annihilation and the K3(1430) in the fit. This scan is shown in figure 8.3. This hypothesis results in
our best fit. The second hypothesis includes P-wave annihilation, but no K3(1430), which is the hypothesis
used in the OBELIX analysis. This scan is shown in figure 8.4. The third hypothesis is the complement
of the latter, with no P-wave annihilation but with K3(1430). This hypothesis was done for completeness,
and is shown in figure 8.5. The fourth and final hypothesis contains no P-wave and no K3(1430), shown in
figure 8.6. This is the hypothesis of the previous Crystal Barrel analysis.

The masses of all other resonances (which include a3(1320), p(1630), K*(890), K;(1430) and K¢ (1430))
were kept fixed. The ag(980) was not used in the fit with the K;(1430) and P-wave annihilation. The
efficiency function was fixed to the best fit to just Monte Carlo data and not varied as in other fits for faster
fitting. Because it was fixed, the absolute y?’s of these scans are somewhat higher and can not be compared
to the fits in tables 7.5 and 7.6. Also, relative differences of less than ~ 50 units of x? are not likely not to
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Figure 8.3: A scan over the mass and width of a second isovector, assuming P-wave annihilation and K3 (1430)
contributions. (a) —x? from this analysis (b) percentage of Dalitz plot due to isovector. Horizontal axes
units are MeV/c?%.

be statistically significant, as we see for the case of no P-wave and no K3(1430) at the end of this section.

In our scan including the K3(1430) and P-wave annihilation, we see one solution at m = 1490 + 10
MeV/c? and I' = 240 £ 50 MeV/h. (We note that this is not our final solution of the mass and width,
because the masses and widths of the other K K resonances were not allowed to vary. However, the pole
position in this scanned solution is similar to that of our best fit). There is a ridge at m = 1300 + 10
at T = 90 MeV/c?, but the ridge disappears into the global maximum. If we examine the percentage of
the isovector contribution to the Dalitz plot, we see that there is a two ridge structure, with one around
m = 1290 MeV/c? and one around m = 1500 MeV/c?.

In our scan including the K;5(1430) and but with no P-wave annihilation (figure 8.5), we see a very broad
minimum in the x?, roughly centered at m = 1450 MeV/c? and T' = 190 MeV /c?. This solution is consistent
with the best fit, albeit the y? is worse by +270.

In our scan which mimics the OBELIX analysis, using P-wave but no K;(1430), we get a very clear
minimum of the y? at m = 1285+ 15 MeV/c? and I' = 90 & 20 MeV /c? (see figure 8.5). This is in perfect
agreement with the OBELIX analysis. However, we do not see the secondary solution at m = 1480 that
they report. We postulate in subsection 8.3.6 that the secondary solution in OBELIX is an artifact of the
fit procedure, and not a physical minima.

Finally, in our scan which mimics the previous Crystal Barrel analysis, using no P-wave annihilation
and not any K3(1430), we get a first solution at m = 1300 £ 10 MeV/c? and I' = 90 & 20 MeV/c? at
x? = 2458. There is second solution at m = 1450 MeV/c? and I' = 240 MeV/c? with x? = 2495. The
difference in these two solutions is 37, which is not very significant. In fact, we have repeated the fits at
these two solution positions, except with a freely varying efficiency function. The results are x? = 1954 and
X2 = 1863, respectively; the second solution is now better than the first by §x2? = 91.

8.3.6 Two solutions, One y? Minimum

A local minimum in the y? may be simply a manifestation of a discontinuity in the y? surface, causing a
“fake” local minimum. There may be two very different solutions to the fit, but which have similar y? values.
If the fit gets “caught” in one solution, it may not find the other solution because the y? barrier between the
two solutions is too high, even though the other solution may be a better solution. In a scan of a parameter,
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Figure 8.4: A scan over the mass and width of a second isovector, assuming P-wave annihilation but no
K3(1430) contributions. (a) —x? from this analysis (b) percentage of Dalitz plot due to isovector. Horizontal
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Figure 8.5: A scan over the mass and width of a second isovector, assuming K3 (1430) but no P-wave anni-
hilation contribution. (a) —x? from this analysis (b) percentage of Dalitz plot due to isovector. Horizontal
axes units are MeV/c?.

the fit might need to jump from one solution to the other as the parameter is changed. However, if the
parameter is varied slowly from a to b, this jump may not happen until the parameter goes far enough to
make the barrier small. At this point, the change in x? may be very dramatic. If the scan of the parameter
is reversed back towards a, the new minimum may be continue to be a better solution than the previous
solution. Thus it is important to be aware of sharp discontinuities in the y? surface and reverse the direction
of the scan of the parameter if such a discontinuity is seen, to see if the discontinuity will go away.

In fact, we see just such a discontinuity as a scan of the mass of the isovector passes through m ~ 1480
MeV /c?. This discontinuity can be seen in figures 8.4 and 8.6, where the tensor K;(1430) has been omitted
from the fit. In all these cases, a dramatic drop in y? occurs when the mass steps from 1480 to 1490, but
there is no drop in y? when then mass steps from 1490 to 1480.

This discontinuity seems to shown in the OBELIX scan of mass too, in figure 8.2 at m ~ 1480 MeV/c2.
We believe that the OBELIX scan was done sequentially with increasing mass, i.e. in steps of ém = +10
MeV/c?, and that they encountered the same discontinuity in the fit. If that is what they observed, then
the second solution that they propose is just an artifact of the fit procedure, and there is only one solution
at m = 1290 MeV/c?.

Thus to summarize, we observe an unphysical discontinuity at m ~ 1480 MeV /c? in fits with and without
P-wave annihilation, OBELIX shows a x? surface with a discontinuity at the same place, and the Crystal
Barrel previously declared a resonance at the same place as the discontinuity. These observations suggest
that the solution at m ~ 1480 MeV/c? is due to the same systematic effect, which is unphysical. However,
there is something interesting going on at m = 1480 which causes the gestalt shift in the fit.

We note, perhaps as a curiosity, that the discontinuity only occurs if the K3(1430) is omitted from the
fit; it is not seen in figures 8.3 and 8.5, where the K3(1430) is included in the fit.

8.3.7 35, versus 'S,

We get about 42% annihilation from Sy, 27% from 3S; and 31% from ' P; and 3P;. The ratio of 1Sy to 35,
is 1.56, in good agreement with 1.5 seen in [4]. The relative production of K*(892)K between the two initial
states, 357 to 1Sp is 1.9 4 1.0, in agreement with 2.4 & 0.5 from Bettini[24], 2.6 £ 0.5 from Conforto[31] and
3.0 £ 0.6 from Abele[4]. The relative production of as(1320)7 from 35; to 1Sy is 0.05 & 0.02, compared to
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Figure 8.6: A scan over the mass and width of a second isovector, assuming no P-wave annihilation nor
K3(1430) contributions. (a) —x? from this analysis (b) percentage of Dalitz plot due to isovector. Horizontal
axes units are MeV/c?. (¢,d) Discontinuity in x?, depending on scan direction, along I' = 190, 240 MeV /c?
respectively.
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0.14+ 0.06 (Bettini), 0.12 4+ 0.05 (Conforto) and 0.24 + 0.09 (Abele). This lower ratio is partially explained
by transfer of intensity to the P-wave component, which was not used in the fits of these comparison papers.
If we take the ratio of everything but 1Sy to 1Sp, we get 0.12 4 0.03.

8.3.8 a,(1320)

We find
BR(pp—a2(1320), a2(1320)—>1{f() = (1.73+ 0.10g¢ 5t * 0.5OSys) x 1073 (8.6)

which is higher than Bettini[24] which found (1.24 £ 0.19) x 1073, higher than Conforto[31] which found
(1.34£0.4)x 1073 1 and slightly higher than [4] which found (1.494£0.19)x 10=3. The statistical error given in
(8.6) is simply the statistical error from fit # 202 (6%). The standard deviation among different reasonable
fit hypotheses, that is Ax? < 430 from the reference fit, is 17%. When we change the parameterization of
the Breit-Wigner to include additional kinematic factors (see section 7.7.1), we see the branching ratio drop
by 21%. We add these last two systematic errors in quadrature to arrive at the total systematic error, which
dominates the total error.

In a Crystal Barrel coupled-channel analysis of 7°7%7°%, #%7%5, and #%nn [12], the value BR(pp—a2(1320)°#°,
a2(1320)°—#"n) = (2.054£0.40) x 10~3 was determined. If we divide by (8.6) and by 3 because only 7° was
seen in [12], we find the ratio
_ BR(as—KK)
"= BR(az—mn)

which agrees well with the Particle Data Group, r1(a2(1320)) = 0.34 & 0.06 [36]. A similar exercise can be
done using the pp—m°7%n result [11], looking only at singlet S-wave annihilation. We found in this analysis
BR(pp(*So)—a2(1320)°7°, a2(1320)°—="n) = (1.9 £ 0.3) x 1073, From table 8.2 we find the value for
BR(pp(* So)—az2(1320)7, a2(1320)—K K) (with a 50% systematic uncertainty). We find the ratio (noting a
hidden factor of 3 in the denominator to remove the charge dependence of [11])

=0.2940.10 (8.7)

BR(pp(' So)—as7, a—KK)
ro =

=0.2640.13 8.8
BR(pp(1So)—asm, az—mn) (8.8)

which also agrees well with the PDG.

8.3.9 The Branching ratio of a¢(980)— KK

The K;(1430), being a tensor resonance, has a complicated dynamical shape. In the 1Sy initial state, it has
a characteristic “W?” shape in its angular projection of the Dalitz plot. It is the tail of each “W” from the
charge and neutral K3(1430) that overlap along the KK threshold, forming an even sharper peak because
of constructive interference. This interesting structure is seen in figures 7.4 and 7.6. This edge enhancement
is seen in 'Sy and ' P initial states.

This threshold enhancement fits the data perfectly, obviating the need for the a¢(980) which requires
a more complicated coupled-channel (Flatté) description in order to get the shape correct. In fact, the y?
only increases by +2.87 when the ag(980) is removed, when it should increase by about +4 because four
free parameters are removed. A scan of y? versus the ag(980) contribution to the Dalitz plot is given in
figure 8.7. Note that the change in x? is very small over the range 0 to 10% of the Dalitz plot. Figure 7.12
shows the fit result also, but on a fine 60x60 grid. The edge enhancement is very well described without the
ag(980).

The ag(980) is prominently seen in its decay to . Amsler[14] sees the characteristic cusp shape predicted
by the Flatté formula with very high statistics in 7°7%;. However, the decay into K K is not as prominent. In
fact, nearly every measurement of the K K decay channel could have been contaminated in the same way by
the K3(1430), because nearly all of them are measuring the 3-body system K K. A search of the literature
could not find any evidence for ag(980)— K K without a 7 spectator or without a possible contribution from
I=0 fo(980)—=KK.

The K;(1430) phenomenon may explain one of the big puzzles associated with the ag(980). Cahn and
Landshoff[27] note the puzzling situation that the relative branching ratio of ag(980) into K K versus into nr
varies by an order of magnitude, depending on whether the ag(980) was produced from 7(1440) or f1(1285).

1The value on page 495 was corrected to be independent of charge
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Figure 8.7: x? versus the percentage contribution of ag(980) to the Dalitz plot. The dashed line is Ay? = +1
above the minimum.

If the ao(980) branching ratios are to believed when produced in f;1(1285), then they claim that the large
KK threshold enhancement in 7(1440)—K K7 “cannot be ascribed to the [ ag(980) ]*” Our explanation
agrees with this assessment, that the “ag(980)” seen in the 1(1440) decays is not due to the ag(980) at all,
but due to the tails of the K3(1430). This is the same effect seen here in this analysis in pp—K K. Because
the 1(1440) has higher mass than the f;(1285), there will be more K;(1430) in the 1(1440) decay than in
the f1(1285).

In figure 8.7, we see that the ao(980) contribution to the Dalitz plot can take on the range of 0.5 to
10%, with 4% preferred. Since 0% contribution is statistically allowed, we take the 10% contribution as the
upper limit at 85% confidence level. At this point, the fit reports 2.0% from 'Sy and 7.9% from 'P;. The
branching ratio is then

BR(pp—a0(980)7, ag(980) =K K) = 0.3735 x 1072 (8.9)
Using the branching ratio BR(pp—ao(980)7, ag(980)—mn) = (2.6 £ 0.5) x 1073 [11], we find

BR(ao(980)—K K)

= (.12%015 8.10
BR(ao(980)—7n) —o12 (8.10)

Teige[45] calculates the K K coupling based on a fit to the Flatté line shape of the p7 channel measured
by the E852 collaboration, and finds that the branching ratio BR(a(980)—K K) = 0.1440.02. If we assume
that the nm and KK modes are the dominant decay modes of the ag(980), we get BR(ag(980)—KK) =
0.111’8&(1), in agreement with Teige.

We also attempted to see if the KK threshold enhancement could be faked by a suitable combination of
the rest of the other resonances. Fit #126 without the ao(980) and without K} (1430) is unacceptable, with
an increase of negative log-likelihood of 635.

In fits where the mass and two width parameters of the ag(980) were freed, the results did not settle on
values compatible with previous analyses or with each other (see table 7.6). This is not surprising, since
we have shown that the K3(1430) can entirely replace the KK threshold enhancement. The fit is not very
sensitive to the g, 7 coupling, so the enormous variation in the fit result is not surprising.

2The official names of the particles have changed since 1986. The a((980) was previously the §, the ¢ is now the 1(1440) and
the D(1285) is now the f1(1285).
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Channel 1S, 35; 1P, and 3P Total BR

pp—X % DP BR | % DP BR | % DP BR | pp—X—KK~

[10=%] [10~4] [10=%] [10~3]

K*(890)K 50 10.5£1.0 107 20.0+ 1.2 6.3 11.94+2.7 424+0.3
7.4 14.2 8.4

K§(1430)K 2.9 5.5+0.8 - - 135 25.6 £5.0 3.1£0.5
3.9 18.5

K3 (1430)K 2.9 5.9+0.8 0.3 0.5£0.4 2.0 4.0+1.7 1.04+£0.2
4.5 0.4 3.0

ap(980)m 3.9 3.1+£0.9 - - 9.3 6.24+2.2 0.9+£0.2

ap(1450)w 1.0 0.8+£0.3 - - 2.6 1.7+1.1 0.25+0.11

a(1320)w 19.1 154+£0.9 1.5 0.8+0.2 1.6 1.1+0.5 1.73+£0.10

p(1450,1700)7 6.8 3.6£0.7 4.5 3.6£0.7 8.1 54+24 1.34+0.3

Coh. Total 42 27 31 -

Incoh. Total 58 32 73 -

Table 8.2: The fit results of fit # 202. The percentages of the Dalitz plot are given and the branching ratios

. . . —0
from pp are given. When two percentages are given, the upper value is for K** K¥ and the lower for K*°K |
in a ratio of 1:1.39 (see section 8.2.4). The total branching ratio is corrected by charge multiplicity factors
(see text). The errors given are statistical only; the systematic error is estimated to be 50%.

8.4 Branching Ratios from pp

To calculate the branching ratio, three values are needed. First, the total branching ratio was calculated in
(6.7), being
BR(KsK*at) = (2.68+0.14) x 1072,

Second, since we are interested in the branching ratios into the strong eigenstates, regardless of charge, i.e.
“KEORE0720” we require the BR scaling factors given in table 2.3, which account for unobserved final
states and the CG decomposition of the weak states, K and K1, into the strong states, K° and K. Third,
we require the percentage of the Dalitz plot returned by the fit due to each channel. This is simply a defined
quantity, the integral of the particular wave intensity divided by the number of events of the whole Dalitz
plot. Because this ignores interferences, the sum of all contributions will be not equal to 100%.

The calculated branching ratios are summarized in table 8.2. For the channels with two charge variations
ie. K**K¥ and K*°K° both percentages of the Dalitz plot are given, with the charged value above the
neutral value. These values come from fit #202, which provided an additional hypothetical constraint on
the fit, as described in section 8.2.4. From the discussion on the toy Monte Carlo fits (see table 8.1), the
systematic errors are very large, estimated to be about 50%.

This large fluctuation is caused by the way amplitudes are added. The contribution of one wave can
dramatically drop if another interfering wave’s contribution increases only slightly. Let us consider a single
bin with 2 resonances coherently contributing to 121 events. Let A be the background amplitude, A = 1,
and B be the signal amplitude, B = 10, so that the total intensity is

|A+B|2 = |1+ 10|2 =121.

The number of events attributed to the background is |A|? = 1, and the number attributed to the signal is
|B|? = 100. Now let us attribute 2 events to the background, so [A|? = v/2. If the two channels were added
incoherently, this additional event added to the background would take one event from the signal. But since
they add coherently, we must decreased the signal amplitude to B = 11 — /2, which give |B|? =91.9, or a
loss of 9.1 events. Thus a gain of 1 event in the background gets magnified to loss of 9 events in the signal.
This situation becomes even more unstable when adding 11 amplitudes (in the case of 1Sy for example).
That is why the toy MC shows such large variations in branching ratio measurements, and why we assign
50% systematic error to all branching ratio measurements from particular initial states.
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Figure 8.8: Determination of the branching ratio of f5(1500) in the reaction pp— Ky K w°. The light shaded
region was determined in [2], while the dark region was determined in the present analysis.

The total branching ratio values given in table 8.2 should be not be taken too seriously, because of
massive amounts of interference. For example, the sum of all the P wave components is 73% of the Dalitz
plot, but the total P wave contribution is only 31%. This means that the interference terms are greater than
the direct terms! A more reasonable number would be the coupling constants, which relate directly to the
interesting physics, but these have not been calculated.

8.4.1 Determination of f

~—~

1500)— KK

In a previous Crystal Barrel analysis, the components of fo(1500) and ag(1450) were measured in pp— K Kr7°.
Because of the similar masses and the same spin, the results were correlated. This is shown in figure 8.8.
By intersecting the present result for ag(1450), the branching ratio for fy is constrained. We do not believe
there is convincing evidence for the existence of the ag(1450), but if we include the resonance, we get a
branching ratio of (0.25 4 0.13) x 1073, Thus we take the region from zero to the upper limit of this value
as the possible range for the branching ratio. From the figure, we see that the intersection region gives

BR(pp— fo

With BR(pp— f0(1500)7°, fo(1500)—7x°x°) = (8.1 4 2.8) x 10~* from Ref. [13], we calculate

1500)7°, f,

—~
—~

1500)—=KK) = (5.0 to 8.4) x 10™* (8.11)

. BR(fo(1500)—=KK) p(fo(1500)—=7")
"~ 3 BR(fo(1500)—7"7%) p(fo(1500)—=KK)

=0.27 to 0.45 (8.12)

SU(3) flavor symmetry predicts a coupling ratio r = 1/3 for a (uu + dd) state and r = oo for a s3 state.
This highly favors a (u@ + dd) interpretation over a s3 interpretation, the same conclusion of Abele[4].
Because the 01* nonet already appears to have the (u@ + dd) state occupied by the fo(1370), the fo(1500)
is supernumerary, making it a likely glueball or other non-¢g state.

8.4.2 Absence of °P,

The fit does not apparently want any annihilation from the 3 P, initial state. When it is added to the reference
fit (# 81), the negative log-likelihood only drops by 10 units. This is not significant after the addition of 13
extra parameters. It takes on (4 £2)% of the total Dalitz plot, where the ! P; and 3P, contribution is 21.9%,
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for a total of about 26%. In fit #142, which imposes charge symmetry for K, the contribution from 3P, is
(24 2)%, consistent with zero, and the contribution from ! P is about 33%.

This is in marked contrasted to the OBELIX analysis[23], which found a that ® P accounted for (5 +1)%
of the Dalitz plot while ! P; accounted for only (8 £ 1)%.

If the 1 P1 initial state is removed from the fit and the 3P5 is kept (fit #143), then the negative log-
likelihood rises by 172 compared to fit # 142 which used both P-waves. Thus the fit clearly demands P,
and does not demand any 3 Ps.

8.5 Comparison to earlier Crystal Barrel Fit

The Ky K*7¥ Dalitz plot should be very similar to this Dalitz plot. In [4], only S-wave annihilation was
used and the K3(1430) was not used. This hypothesis was used in fit #87, with very poor results. The
x? increased by 622 with 980 — 62 degrees of freedom. The y? plot, showing areas of bad fit, is given in
figure 7.13. Adding only P-wave or only K3(1430) to the fit improves things (Fits #80 and #84), but the
x? is still poor, with increases in +194 and +304 respectively. The data clearly demands both at least ' P;

or 3Py initial state annihilation and the K3(1430) resonance.
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Chapter 9

Conclusion

We summarize the results of the analysis of the K¢ K*xF Dalitz plot.

1. The KgK*z* Dalitz plot requires the following resonances to minimally fit the data: K*(892),
K3(1430), K;(1430), a2(1320), and p(1650), originating from 'Sy, 357, 1P, and 3P initial states.
There is some additional evidence for two p resonances, p(1450) and p(1700), which would replace the
p(1650). There is minimal evidence for the ag(1450). There is some evidence for the K*(1410). There
is no evidence for the ag(980) nor for the a2(1620).

2. The K3(1430)K wave is an important part of pp annihilation at rest, and it creates the KK edge
enhancement.

3. The decays of the fy(1500) are not consistent with an s5 interpretation, and thus it is not the ss
member of the 0% ¢7 nonet.

4. The ag(980) branching ratio into K K is consistent with zero, but is also consistent with that determined
by the E852 collaboration based on the line shape of the nm decay channel.

We are not able to accurately determine the branching ratios of many of the resonances from different
initial states, because there are not enough constraints in the fits. To determine the branching ratios more
accurately, a coupled channel analysis using other reactions not included in this thesis (e.g. pp—KsKg7°)
must be done. This will be done by the author and other collaborators in the near future.
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Chapter 10

Appendix Kinematic Fitting

10.0.1 Introduction

A new kinematic fitter was written for the hypothesis, pp— K*7F K5, because the standard Crystal Barrel
software (CBKFIT) does not support this hypothesis. Because it worked very well and is easier to use
than CBKFIT, we used it also on this analysis. The software is object-oriented, making it easy to add
new constraints. Currently, the constraints are three-momentum conservation and mass conservation at the
decay vertices. Any event with 6 or less final state particles can be fitted. (This restraint is imposed by
CLHEP, but could be easier expanded if necessary).

There are many new C++ classes.

1. KinF'it - This is the master class container of the hypotheses. It contains a list of hypotheses.

2. KinFitHypothesis - This contains the hypothesis and is a container for the permutations. The fit
generates a list of good permutations for each hypothesis for each event. This list is sorted in order of
X’

3. KinFitPermutation - This contains the permutation of particles. After the fit is done, only valid
permutations with valid y? are kept.

4. KinFitParticle- A subclass of Particle, contain information about the pulls and also some mechanism
for locking the particles when making combinations. These are made in KinFitHypothesis for use in
KinFitPermutation. The final answer is in terms of these.

10.0.2 KinFitHypothesis

The Hypothesis class generates the permutations. The problem is to assign the n measured tracks/PEDs to
the n final state particles in the predefined hypothesis.

The user initializes the hypothesis with a KinFitParticle, which is a description of the initial state and
the immediate daughter particles. Each daughter particle can have further daughters, forming a hierarchy.
For instance, the initial state is a pp pseudo-particle, with K* 7% and Ks as the daughters. The Kg is
defined with 7t 7~ as its two daughters.

First the given measured tracks/PEDs are assigned to 3 lists: charged “+”, charged “-” and neutral. The
final state particles in the hypothesis are symbolically linked to the corresponding lists. The next higher
resonances are created using existing resonances; the new resonances are then added to the database to
be used for the next iteration of resonance building. Resonances can require certain things about their
daughters. For instance, a Kg can require that the two daughter pions came from the same vertex.

When all resonances are built (ending with the pp root particle), each instance in the root particle list
is copied to a KinFitPermutation. Each permutation is then fitted, and those permutations that fail the fit
are deleted. At the end, the remaining permutations are sorted in increasing y2.

10.0.3 KinFitPermutation, description of fitting algorithm

The user submits a selected hypothesis, and the software returns a list of possible permutations that mini-
mally satisfy it. If the list is zero, then no permutation worked. The minimum condition of satisfaction is
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that the total xy*/N < 5.0. The list is ordered, so the user typically only examines the first element of the
list. The user can then extract the new fitted values of 4-momenta and the pulls from the permutation.
There are three momentum constraints (it = 0) and m mass constraints, which are explicitly

fimomentum _ ZPZJ{Z =z,y, 2} (10.1)
ji=1
mass (m(theory)i — m(exp))
= k=1.. 10.2
fk m(theory) { m} ( 0 )
This gives a total of
c=3+m

constraints. The nominal phase space fit contains only one resonance (one mass constraint), the initial state
(pP), so has 3+ 1 = 4 constraints as expected.
The measured values of momenta are written as a vector

1= (Dg:PyPs:Pas Py Das - DY)
And the 3n by 3n block-diagonal symmetric error matrix is written as,
S1

S
G, =

where the individual tracks have error matrices,
Oge Ogy Ogz
Si=| oys Oyy 0Oy

Ozz Ozy Oz

We then calculate the derivative matrix,

9f1 8f1

o Onzn

B = :

fe dfc

o Mzn

In this case,

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
s_| @ (72 (7
(F3)" (F3)* (73)"
(Fr)" (F)” (Fp)”

where N
7 _ LB —p
7 m(theory);

where Ej,pj,m; is the energy/momentum/mass of the j* resonances, and ﬁj is the velocity of the i'”
track/PED.

We calculate the covariance matrix, in the constraint basis,

gB _ (Bgn_lBT)_l
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and then the improvements to the measured values,
on =Gy B Gsf
where are iteratively subtracted from the measured values
ni=1= 61
The fit desires to make f = 0, so on each calculation,
d* = £1Gsf
is calculated, and the iterations stop if any of the following conditions is met:
1. The value of d? is sufficiently close to zero, which is a successful fit.
2. The value of d? is higher than an allowed maximum, and the fit fails.
3. The number of iterations is too high, so the fit fails.
4. An internal error happens, such as inversion of a singular matrix, where the fit of course fails.
At the end of the fit, the x? of the change in the measurements (e = n — np) is calculated,
x? = (Be)TGy(Be)

where the degrees of freedom of the fit are simply the number of constraints, since there are no free
parameters,

Ngof =3 +m
The reduced x? value is required to be
2
X
< 5.0
Nof

or else the permutation is deleted from the hypothesis.

10.0.4 Final Errors and pulls

In this notation, n = estimates of best values, y = original data values, x = parameters of fit. The normal
kinematic fit has no free parameters, so x is not used.
The final errors are calculated using this formula

Gt =Gy =G BT GeBG, + G BTG A(ATGpA)T AT G BG T

Note again, that if there are no free parameters, then A = 0 as well as x = 0. If a special fit is added,
for example the neutral decay position of the Kg—a°n? then this will need to be used.

A pull is a measure of the displacement of the measured values to the fitted values. They are constructed
so that a valid distribution of pulls will form a normal distribution with width 1 and mean 0. A pull of the

observable A 1s defined as
_ Ar— A

Ve = oA )

where i denotes value before fitting and f denotes value after fitting. The o(A;) comes from gn—l, while
the o();) are estimates supplied to the software. Note that the denominator really contains a subtraction
and not an addition as might naively be thought. This is because the denominator describes just the
statistical uncertainty of the measurement, which can be thought of the difference between the total measured
uncertainty and the systematically fitted uncertainty. This also implies that the fitted errors must be always
smaller (usually much smaller) than the original errors.

The pulls are a very sensitive measure of the goodness of the fit. If the mean of the pull distribution is
not zero, then the data is biased for some reason. This bias could be background, or it could be a detector
bias. For example the z-position of the neutral vertex shifts the distribution of the pull of 0pgp. If the
width is not one, then usually the initial errors are not as good as they could have been. It is usual practice
to globally scale the measured initial errors by a factor of order unity in order to force the pull distributions
to have a width of one.
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10.0.5 Conversion of Rectangular to Helix Parameters

Because the internal calculations are done in rectangular coordinate, the measured parameters of the tracks
must be converted from helical coordinates. The conversion of the error matrices is a little more work. To
calculate the pulls in the original basis, the internal values need to be converted back too.

P. = 1/a (10.3)
P = P (costp,sine, tan A)
P. = (/P24 P? (10.4)
a = 1/P, (10.5)
Y = ATAN2(P,, Py) (10.6)
tanA = P,/P, (10.7)
g—z = P?}(—costh, —siny, tan \) (10.8)
oP
Sty (0,0,Py1) (10.9)
oP :
W - Py (—sin, cos,0) (10.10)
O 1
55 = paCPehu0) (10.11)
dtanX 1 9
—F = prPPaoRPLP (10.12)
oy 1
55 = prChe a0 (10.13)

10.0.6 PED parameters to Rectangular

Because the internal calculations are done in rectangular coordinate, the measured parameters of the PEDs
must be converted from spherical coordinates. The conversion of the error matrices is a little more work. To
calculate the pulls in the original basis, the internal values need to be converted back too.

P = (\/E)Q(cosqb sin @, sin ¢ sin @, cos @) (10.14)
Py = P2+ P (10.15)
P = /P2+P24P? (10.16)
¢ = ATAN2(P,, P;) (10.17)
6 = arccos(P,/P) (10.18)
VE = VP

g_i = (VE)?(—sin¢ sin, cos ¢ sin 6, 0) (10.19)
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Chapter 11

Appendix Steering Cards

WRIT
FZIN
FZ0U
CHAM
XTAL
GLOB
BANK

’XT’
’XT’
’TRAK’
’TRAK’
’TRAK’
’GLOB’

’RAWS’ ’GPWC’ ’PATT’ ’CIRC’ ’HELX’
’DECF’ ’DECL’ ’ALCE’ ’CLST’ ’PEDS’ ’PDRG’
’MTCH’

Table 11.1: First pass reconstruction steering cards for CBOFF, Fortran Unit 99
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WRIT 4
FZIN °XT°
FZ0U °XT°
CHAM °’NONE’
XTAL °NONE’
GLOB °’NONE’
BANK °’GLOB’

Table 11.2: Second pass steering cards for energy and momentum selection for CBOFF, Fortran Unit 99

WRIT 4

FZIN °XT°

CHAM ’*TRAK’ °’RTRK’ ’RAWS’ ’GVTX’ ’PATT’ ’CIRC’ ’HELX’ °’VERT’
XTAL °TRAK’ °’RTRK’ ’DECF’ °’DECL’ ’ALCE’ °’CLST’ ’PEDS’ ’PDRG’
GLOB ’TRAK’ ’RTRK’ ’MTCH’

VERT
VFIT
VHER

O N W

Table 11.3: Third pass steering cards for vertex fitting, with CBOFF unit 99 at top and Locater unit 81 at
bottom

WRIT 4
FZIN °’XT°
CHAM °’NONE’
XTAL °NONE’
GLOB °’NONE’

Table 11.4: Fourth pass steering cards for kinematic fitting for CBOFF unit 99
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Chapter 12

Appendix Data

A recordable Compact Disc is enclosed. The data format is the standard ISO-9660 format, which is readable
on every popular computer of 1998. Hopefully this standard will be around for the next hundred years.
The lifetime of recordable CDs is estimated to be at least 100 years based on accelerated aging tests. The
CDROM contains the following data. Consult the README. TXT file for the latest information.

1. The thesis in postscript format

2. The thesis IXTEX and . eps source files.
Source code for AWP.

Compiled version for Solaris 2.5.

Example steering files.

o ot ke W

Histograms, in 30x30 binning and 60x60 binning.
All Data

)
) KsK*7~ Data
(c) KsK~at Data
(d) All Monte Carlo Data
)
)

a

(
(b

¢

(e) KsK*x~ Monte Carlo
(f) KsK~ =t Monte Carlo

7. All Data, event by event, with the following format (ASCII text). Each event is written as 25 numeric
fields, each separated by one character of white space (0x20) and followed by the newline character
(0x0A) at the end. Integer fields are formed from the digits ’0’ (0x30) to ’9’ (0x39) and an optional
minus sign -’ (0x2d). Real fields are formed from the digits 0’ (0x30) to ’9’ (0x39), a period *.” (0x2e),
signs '+’ (0x2b) or -’ (x02d) and an optional ’e’ (0x65) for floating point notation. Examples of floating
point are

1.1e+06

9.16515
-1.3e-12
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Field Real/Integer Description

0 I Run Number

1 I Event Number

2 R x? of Kinematic Fit to Kg K*z*
3 R m?(Ks ’/T:t)

4 R m? (7T K*)

5 R m*(K*Kg)

6 R z position of VO

7 R y position of V0

8 R z position of V0

9 R z position of V1

10 R y position of V1

11 R z position of V1

12 R pg of kaon at V0

13 R py of kaon at V0

14 R p; of kaon at V0

15 R pr of pion at VO

16 R py of pion at V0

17 R p; of pion at V0

18 R pg of pion at V1 (4 charge)
19 R py of pion at V1 (4 charge)
20 R p. of pion at V1 (4 charge)
21 R pg of pion at V1 (- charge)
22 R py of pion at V1 (- charge)
23 R p. of pion at V1 (- charge)
24 I Charge of kaon
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