Technical Report on pp — wwr® at rest

1 Data Selection

1.1 Pre-selection

The data used in this analysis were selected from a total sample of ~9.4M
4-prong triggered events: 2.1M from data-taking in June 1991, 1.0M from
August 1991 and 6.28M from April 1996. Table 1 summarises the preselection
of the data; the four-prong trigger requires four hits in at least one of the
two mulitwire chambers (or Si vertex detector) and also hits in at least one
of the first three layers of the drift chamber and at least one hit in one of the
last four layers.

Using Crystal Barrel offline analysis code ~2.4M events with four well
reconstructed tracks and balanced charges (or golden tracks) were selected.
The global tracking software was used to match energy deposits in the crys-
tals due to charged particles with their corresponding tracks in the drift
chamber and multiwire chambers.

Next, photons were defined as any unmatched (i.e. no corresponding track
due to a charged particle) energy deposit in the crystals with an energy of at
least 10 MeV. Any event with an energy shower which had a central crystal
of type-13 were rejected - thus rejecting events where energy could have been
lost down the beam pipe. Events with < 25 photons were selected leaving a
data set of ~1.3M events after preselection.

‘ Selection ‘ Events (M) ‘
4-prongs triggered 9.38
4 golden tracks (g =0) | 2.54
Number of v 0-24 1.28

Table 1: Pre-selection

A Monte Carlo sample of 1.034M events of the type pp —wwn® (where
both w decay to 77~ 7°) was generated using CBgeant.



1.2 Kinematic fits

The surviving events were submitted to a 7C kinematic fit to 2727~ 37°%;
11,679 events survived a 0.1% confidence level cut. 11,610 Monte Carlo
events passed this cut. Figures 3 and 4 show the resulting confidence level
distributions for data and Monte Carlo.

The 7w~ 7° invariant mass distribution after the fit to 27127~ 37° is
shown in figure 5. Clear signals due to the w and n mesons can be seen.

Next a 9C kinematic fit to wwn® (w decaying to 7t~ 7°) was performed
on these data and a cut made at the 5% confidence level. This left 1882
data and 6894 Monte Carlo events. The confidence level distributions after
this cut at the 5% level are shown in figures 6 and 7. Figure 8 shows the
7t 7° invariant mass distribution; after the fit to wwm® the 7 signal has
disappeared.

1.3 Combinatorics

The kinematic fit to wwn® has 180 different possible combinations of particles
giving wwn®. It is possible that in some cases the confidence level of an
incorrect combination will be higher than that of the correct combination.
Monte Carlo data were used to estimate the level of combinatorics in the
sample. The Monte Carlo study gave a 25% level of wrong combinations
chosen by the fit. Here there are some discrepencies between data and Monte
Carlo - in general a Monte Carlo event was found to be more likely than a
real event to have more than one combination with a confidence level above
the cut. Hence it is likely that the level of combinatorics is lower in the data.

Ways of reducing the combinatorics were studied using Monte Carlo
events. For those events which had two or more combinations, if the ra-
tio of confidence level for the best combination to that of the second best
combination was greater than 0.6, then it was more likely that the wrong
combination had been chosen. It was also found that events with more
combinations above the confidence level cut had more wrong combinations.
Using this information two cuts were introduced. The first was that the total
number of combinations of the event be < 3. The second was that the ratio
of the confidence level of the best combination to that of the second best
combination be < 0.6.

It is found that the combinatorical background in the sample after these
cuts is <16%.



1.4 Background

A possible source of background to wwm® is the wrt7~27w° channel, where
the 7+, 7~ and one of the 7° are misidentified as coming from the decay of
an w. To investigate this, all possible combinations of 717~ 7° were formed
and the best omega (the one with invariant mass closest to the mass of the
w given by the Particle Data Group [10]) was selected. Then the invariant
mass distribution of the second best combination was plotted. Figure 9
shows this distribution. A dip can be seen at the w mass. This is because
any combinations at this mass will be selected as the best one. Comparing
with the distribution from the Monte Carlo (figure 10), it can be seen that
the distributions are in general very similar, but in the data there are some
events outside the w peak. The events in these tails make up 4% of the
sample. They are most probably background from wn™7~27°. Hence a cut
was introduced to eliminate these events: that the invariant mass of the
second best omega combination be > 752 MeV and < 812 MeV.

1.5 Charged pion identification

One last cut was introduced due to an error in the CB software. The order
of particles in the kinematic fit bank is not always that of the hypothesis
card: occasionally the 71 and 7~ from an w are interchanged. A cut was
introduced to ensure the identities of these particles. This gives a final data
set of 1346 events and 4677 Monte Carlo events. Table 2 gives a summary
of the data selection.

| Cut | Data | M. Carlo |
Kinematic fit to 27 127=37° 0.1% 11679 | 11610
Kinematic fit to wwm® 5% 1882 | 6894
No. of combinations < 3 1740 | 5733
Ratio of 2nd best/best < 0.6 1563 | 5160
752 MeV < S(second best w) < 812 MeV | 1503 | 5109
Charge of 7T /7~ well defined 1346 | 4677

Table 2: Summary of Data Selection



2 Branching ratio pp —wwn®

Because of worries about the accuracy of the Monte Carlo in determining
the reconstruction efficiency, the branching ratio of pp —wnn® was used to
normalise our data and find the branching ratio of pp —wwn®.

A Crystal Barrel analysis of 7 [1] found the branching ratio of pp —wnn® to
be (0.68 +0.01 4 0.05)%. Figure 5 illustrates the mass spectrum of 77~ n°
combinations. We estimate 930 4 50 nwn® events and 2000 + 50 ww®.

Correcting for the branching ratios: BR[w—nT7m~7°]=0.888 &+ 0.007 and
BR[n—nTn~7°]=0.274 + 0.026, the branching ratio for pp —wwn® (for all
possible decay modes) was found to be (0.45 4 0.07)x1073.

3 Monte Carlo acceptance

Figure 11 shows the Dalitz plot of the Monte Carlo data, the acceptance
appears to be flat across the whole of phase space, except for an obvious loss
in edge bins. There, the fitting procedure allows for the available bin size
within the boundary of the Dalitz plot.

4 Discussion of AX

The first confirmed sighting of f2(1565) was made by the ASTERIX collab-
oration in data on pp —7tr 7°[2, 3]. A clear signal was observed in the
7t~ invariant mass without any corresponding signal in 7% 7° or 7~ 7°; this
suggested an isoscalar resonance. By fitting with the standard Breit Wigner
form of the amplitude, they found a resonance mass of 1565 Mel and a
width of 170 MeV. An analysis of the decay angular distribution strongly
suggested spin 2. This resonance, which they called the AX, was only ob-
served in annihilation from initial pp P-states.

Subsequently the same resonance was observed with almost identical mass
and width in Crystal Barrel data on pp —37° by Anisovich et al. [4]. Their
analysis was confirmed by a subsequent similar analysis of Crystal Barrel
data with higher statistics [5]. Meantime, it was observed by the Obelix
experiment in mp =7 w7t [6].

The next step was a combined analysis of Crystal Barrel data on 37°,
nnm® and nr°m® by Abele et al. [7]; it revealed a definite cusp in the J = 2
w7 amplitude at the ww threshold. The strong coupling to ww allowed the
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AX to be identified with a resonance observed earlier by GAMS [8] and VES
[9] in decays to ww, just above the ww threshold; they denoted that resonance
as f»(1640) and it is still listed as such by the Particle Data Group [10].

The present analysis will show that all these observations may be fitted
consistently with a single resonance, using a Flatté form for the amplitude
including the s-dependence of the coupling to pp and ww. It includes the VES
ww data [9] as a constraint on the width. These data have a better mass res-
olution than GAMS data, so are chosen in preference. The parameterisation
for the AX derived in this thesis may now be used in future analyses.

5 Amplitude Analysis

The amplitude analysis of the data described in earlier chapters will now be
described. Figures 12, 13 show the mass projections for wn® and ww. The
points with error bars are the data and the histogram shows phase space. In
the ww projection, there is an obvious enhancement around 1600 MeV.

Figure 14 shows the Dalitz plot for the data. There is a clear peaking of
events towards the top right hand edge. This suggests the presence of either
(or a combination of) f2(1565)— ww, f,(1500)— ww, or b (1235)w. One
can attempt to distinguish between these three possibilities using angular
correlations for production and decay of the two w.

Therefore in the amplitude analysis the primary processes considered
were:

150 — f0(1500)7r°

s £o(1750)7

— on’

5 5,(1235) w

— [f2(1565)71'o]g:2
P = [fo(1565)1%;
3P1 — [f2(1565)71'o]e:1

The orbital angular momentum of the final state in the production process
is denoted by £. The state denoted by ¢ is a slowly varying amplitude
with quantum numbers 0% decaying to ww; it is parameterised as a constant
amplitude. Later, 0, 17" and 2= quantum numbers will also be discussed
(section 5.6.2); they are less likely, since they require decays with L = 1, and
there is little available phase space so close to threshold.
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5.1 The fitting function

Because of the low statistics, a log likelihood fit was used. Let w be the fitted
cross section for the kinematics of a particular event. Then the log likelihood
function (5) is defined as

S:—lnL:N(ln;wi)—(;ln w;) (1)

where N is the number of data events and M the number of Monte Carlo
events. A minimum value of S indicates the best fit. With this definition
of the likelihood function, a change of 0.5 in S corresponds to one standard
deviation.

5.2 Form of the amplitudes

In the first instance, all resonances were treated as Breit-Wigner amplitudes
with constant widths. The Breit-Wigner parameterisation used is given in
equation 2:
mI’

— (2)
s —m? +ml’

Here BW (s,m,T') is the amplitude, m is the mass and T" is the width. For
all resonances other than the AX, we use values given by the Particle Data
Group [10].

Annihilation at rest may procede from the initial 'S, state with £ = 2
in the production process, or from 3P, and 3P, with £ = 1. These processes
are inhibited by centrifugal barriers. For these, the standard Blatt-Weisskopf
(Hippel-Quigg) forms are used. For £ = 2, the barrier takes the form

BW(s,m,T") =

P2
CB(P.R.2) = 5o s (3)

CB(P,R,1) =, %;/3 : (4)

where P is the momentum of the resonance in the overall centre of mass; F
is related to the radius R (in fm) by

0.1164

and for /=1

F =
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Initially the radius of interaction was taken as 1 fm. A Vandermeulen form
factor [16] for the production process was also included:

Y (5) = exp(=0.6(y/ M2 — (Mo + /). (6)

This form factor accounts for the well known observation that final states
with large momentum are suppressed; it is displayed in figure 15. The total
amplitude for a particular process can be written as:

A=gxCB(P,R,{) xY(s) x BW(s,m,I') x T(n,,,n,), (7)

where g is a complex coupling constant to be determined by the fit. T'(n,, ,n,,)
is a tensor containing the angular information for the particular process. It
gives the vital information identifiying the spins and parities of contributing

channels. It will be described in the next section.

5.3 ni.ng

The matrix element of the w decay to 7t7~7° depends explicitly upon the
vector normal to the plane of this decay. Let p; and p5 be the momentum
vectors of 71 and 7~ in the rest frame of the w. Then the matrix element
for the decay is given [11] by the vector product

T = p1 A po. (8)

The spin information is thus given by the normal to the decay plane of the
w: L
= DAL (9
Ip1 A p3
Figure 16 shows how this distribution would look for a 0% resonance and
figure 17 shows how it would look for a 2% resonance. For 0% it has a cos?¢
form, where ¢ is the angle between 7} and 7n3. For 2%, the distribution
appears flatter. Figure 18 shows the n;.ny distribution for the data. The
distribution is flat at low ny.ny as for 2* but then begins to rise, as for
0F. It appears to be a combination of both. Hence there are both 2 and
0" contributions in the data.
The expressions for T describing resonance production from 3P, and
3P, initial states have a complicated form involving correlations of the de-
cay planes of both w’s and their momenta (see appendix 1 for a discussion
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of these expressions). The fit is sensitive to these expressions but it is not
possible to display this dependence graphically in any simple way. However
the fit is able to determine the contributions from *P, and P, accurately.
This will become evident in the tables which follow.

5.4 Initial fit

In fitting the data, it had to be taken into account that the process 1S, —
(0%)7® involves no orbital angular momentum and therefore has no depen-
dence on the angle § between the decay w and the direction of the resonance.
Likewise, the process pp —b1(1235)w involves no angular dependence on 6 for
S wave decays of b1 (1235); the D wave decay amplitude is also included using
the Particle Data Group [10] value for the D/S ratio, but is small. Because
of this lack of angular dependence, fy(1500)7° and by(1235)w give similar
angular distributions. If both are included in the fit, they both become very
large, but with a cancelling destructive interference between them. This is a
well known numerical instability. Table 3 shows the contributions and inter-
ference terms from a fit including both fo(1500) and b;(1235); the diagonal
terms are the percentage intensities and the other terms are the real and
imaginary parts of the interference; the real part is in the lower left corner
and the imaginary part in the upper right corner.

fo(1500) | 218.66 | -15.58
b1(1235) | -212.09 | 109.02

Table 3: Contributions (%) and interference between fq(1500) and b, (1235)

Likewise, because of the restricted mass range for ww, fy(1750) is very
similar to o. Again they give large contributions to the fit with a cancelling
destructive interference between them. Table 4 shows the contributions and
interference terms from a fit including both f,(1750) and o.

fo(1750) | 129.69 | -101.05
o -324.64 | 396.01

Table 4: Contributions (%) and interference between fo(1750) and o



These large destructive interferences appear unphysical, and some sim-
plification to the fit is required. Table 5 gives a summary of some of the fits
which have been tried. It can be seen immediately that the data definitely
demand P-state annihilation and hence a 2% contribution. No tolerable fit
could be achieved without the inclusion of fo(1565). The 0 contribution
proved more difficult to determine, because of the large and unphysical in-
terferences between the different components. The Dalitz plot for the data
has horizontal and vertical bands which suggest b;(1235), and in fact the best
fit was achieved by including b, (1235) and the o together. In conclusion, we
can fit with either f;(1500) or b;(1235) but not both together; the b, (1235)
is preferred.

F0(1500) | 7o(1750) | & b1 (1235) | TSg —/2(1565) | “Py72(1565) | “P1>/2(1565) | S |

11.60 79.10 - +586.8
61.53 18.57 - - 16.92 - - +140.2
23.51 16.62 - - 2.69 24.39 16.91 -54.3
60.22 - - - 1.94 22.20 15.25 -27.3
11.39 - 21.13 - 2.76 24.75 17.25 -55.9
- 48.29 - 3.14 28.31 19.98 -50.5
120.13 136.83 - - - +285.4
67.10 69.64 13.85 - - +230.8
- 76.01 63.49 3.51 27.81 16.92 -84.8
14.01 - 26.75 2.84 32.68 20.07 -38.1
63.61 - 4.15 15.90 16.02 -24.6

Table 5: Contributions (%) and S of some initial fits

5.4.1  f4(1500)

The evidence for fy(1500) in the data is weak; when introduced as the only
0" resonance, it does not give a good fit nor does it give a better fit than the
b1(1235) and o when it is in combination with f,(1750) or o.

A large contribution from fy(1500) seems unlikely, since there is evidence
from other data that the branching ratio of f,(1500)— ww is small. Firstly,
data on J/U — ~v(47) [12] require that fo(1500) decays dominantly to oo
rather than pp; at the quark level, coupling to pp is required to be three
times that to ww, implying that fy(1500)— ww will be small. Also, in the
Crystal Barrel analyses of pp —37° [3,4,6], there is no indication of any
cusp in the amplitude of fy(1500) at the ww threshold. Thirdly, analysis
of Crystal Barrel data on 57 final states at rest [13] provides evidence for
fo(1500) — oo, but none for decays to pp. ;From this information, it is
estimated that the branching ratio of f,(1500)— ww is < 4% of that to 7.



The branching ratio of pp — fy(1500)7° with fy(1500) decaying to mm was
found to be ~ 2.45 x 1072 from the analysis of Crystal Barrel data on 37°.
Hence the f;(1500)— ww amplitude must be small in the wwn® data and it
is therefore dropped from the analysis.

5.4.2  fo(1750)

In the case of f,(1750) when combined with b, (1235) , a worse fit is obtained
then fitting with it alone and, as stated before, when introduced with the
o huge destructive interference occurs. Therefore f,(1750) is omitted.

5.4.3 o and b;(1235)

Neither the o or b;(1235) can account for the 07 contribution by themselves
nor in combination with the fo(1500) or the fy(1750). When introduced
together, a much more reasonable fit is obtained. The interferences are rela-
tively large but do not seem unphysical. S is much improved.

5.4.4  f,(1565)

As stated before, fo(1565) is necessary in the fit. Annihilation from the P-
state to f2(1565) improves S by a large amount (AS = 370). Annihilation
from 'Sy also improves the fit significantly (although its contribution is
small), AS = 55. It is interesting to note that for all fits the contributions
from 3P, and 3P, remain stable at around 25% for 3P, and 15% for 3P,
no matter what additional 0% contribution is included; this is because the
angular information determines accurately the contribution from 2P, and
3P;. The 'Sy contribution also remains relatively stable at around 3-4%.
Figure 19 shows the fit achieved when including f5(1565), b1(1235) and o.
The fit is tolerable but it peaks too low in ww mass. We shall refer to this fit
from now on as the reference fit. Table 6 shows the contributions from 0* in
the fit and their interferences (the diagonal elements are the contributions in
percent and the off diagonal terms are the real and imaginary parts of the
interferences).

5.5 Slices

As a check on the components in the fit, the data have been divided into four
slices of ww invariant mass. The mass range of each slice is chosen to contain
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'So 3.51 | -0.18 | 0.01
b1(1235) | -0.53 | 63.49 | -46.76
o 0.81 |-41.08 | 76.01

Table 6: The contributions (%) from b;(1235) and ¢ and interference terms

approximately the same number of events. Each slice was then fitted with
four components: om, 'Sy — AX, 3P, - AX and 3P, — AX. The objective
was to look more closely at the contribution from the f5(1565). The b;(1235)
contribution was not included, as there is not sufficient range of s to isolate
it from o. Table 7 gives the range of these slices and the number of events
contained in each one.

| Lower bound (GeV?/c*) | Upper bound (GeV?/c') | No. of events |

0.0 2.568 334
2.568 2.665 338
2.665 2.790 338
2.790 4.000 336

Table 7: Number of events in each slice of s(ww)

Table 8 gives the contributions from f,(1565) and o in each of the slices.
In the first mass slice, the 1Sy contribution of f5(1565) is high but in the
fourth slice this contribution drops significantly. This is expected, since the
angular momentum barrier should inhibit 'Sy production in this mass re-
gion. The 3P, and ?P, contributions are lower in the first slice but then
consistent across the other slices. The projections for these slices can be seen
in figures 20, 21, 22 and 23.

5.6 Improving the fit
5.6.1 Mass and width of f,(1565)

The projections for the reference fit (figure 19) show that the fit peaks at too
low a mass in the ww projection. This projection can be greatly improved
with a corresponding improvement in S if either the mass or the width of
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| s> (GeV?/ch) | o | 180 = f2(1565) | 3P2— f2(1565) | P1— f2(1565) | S |

0.000 - 2.568 | 52.87 | 11.33 23.62 10.46 -620.0
2.568 - 2.665 | 48.84 | 3.55 29.30 19.32 -559.0
2.665 - 2.790 | 44.84 | 6.21 27.01 21.75 -504.5
2.790 - 4.000 | 44.49 | 3.39 31.71 20.76 -311.3

Table 8: Contributions (%) to the fit for the different slices of s

f2(1565) is increased. Tables 9 and 10 detail the effect of varying the width
and mass of f,(1565).

It can be seen that the best improvement is acheived by increasing the
width. S increases significantly (AS=33.6) if the width is increased to 202
MeV; any further increase is insignificant. Figure 24 shows the corresponding
projections; the ww projection is greatly improved.

[T MeV | o | 5:1(1235) | 1o — f2(1565) | 3P,— f2(1565) | 3P1— f,(1565) | S

102 76.28 | 63.88 3.46 27.80 16.96 -84.8

127 72.17 | 62.04 3.76 29.36 18.25 -100.0
152 68.48 | 60.69 4.06 30.38 19.21 -109.3
177 65.24 | 59.68 4.32 31.09 19.92 -115.0
202 62.41 | 58.87 4.57 31.59 20.45 -118.4
227 60.02 | 57.94 4.77 31.98 20.82 -120.4
252 58.00 | 57.58 4.94 32.24 21.13 -121.5

Table 9: Varying the width of f5(1565)

Increasing the mass also improves S, but the fit is not really as good
as that achieved by increasing the width. The projections for a mass of
1605 MeV are shown in figure 25. The Dalitz plot looks better, but the
ww projection, although improved from the reference fit, is not too well fitted.

5.6.2 Other possibilities

The results found from this initial analysis of pp —wwn® seem reasonable.
A definite 2% contribution is required by the data; a resonance around 1565
MeV with a width of 202 MeV is preferred. This resonance contributes about
50% of the total. The 0% sector is less well determined, but this does not have

12



[ Mass MeV | o | 51(1235) | 1Sy — f2(1565)

SPy— f2(1565) | >P1— f2(1565) | S

1575 76.55 | 64.89 3.51 28.36 17.10 -90.0
1585 75.95 | 65.65 3.70 29.05 17.40 -97.0
1595 74.40 | 66.37 4.02 29.64 17.85 -103.7
1605 72.09 | 67.59 4.50 29.94 18.42 -108.3
1615 69.05 | 69.52 5.16 29.89 18.99 -109.4

Table 10: Varying the mass of f5(1565)

an effect on contributions from the AX. But before moving on to investigate
the properties of the AX in more detail, it is necessary to check for the
presence of more unlikely resonances first. It is possible for 07,17+ and 2~
resonances to decay to ww with L = 1 in the decay. The 17 is exotic and
hence evidence for its presence would have to be very strong; it is inhibited
by centrifugal barriers for production and decay to ww. The 0=t and 2=+
are also inhibited by an L =1 centrifugal barrier for decay.

Firstly it was found that none of these resonances can fit the data without
the presence of f5(1565), so the next thing to check was whether or not any of
these resonances could significantly improve the fit already obtained. Table
11 shows the contributions from each channel and changes in likelihood for
the inclusion of these resonances (with masses of 1650 MeV and widths of
250 MeV), added to the reference fit.

1Sy = f2(1565) | 3Py— fo(1565) | 3P1—f2(1565) | 0=F | 2=F | 1§y —1=F | 3P =11 | AS
4.59 31.19 17.39 - - 0.07 3.09 4.7
4.75 27.13 16.79 - 7.68 | - - 8.9
4.77 29.33 19.45 3.21 | - - - 4.2

Table 11: Percentage contributions for fits including 0-+, 1" and 2~

The evidence for the presence of 1-" and 0~ is not convincing; a change
in S of 4 is not significant. For 2% the change in S is 9, which is a little
more significant. A scan of the mass reveals that it peaks at around 1900
MeV with a width of 230 MeV. This small change in S is not sufficient to
suggest the presence of a new resonance, hence it seems likely that the fit is
using the 2~ amplitude to resolve minor problems at high ww mass. Hence
these possibilities can be discounted.
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5.7 Investigation of f5(1565)

Up to now we have used a Breit Wigner amplitude with constant width for
the AX. But we know from CERN-Miinich data [15] that 'z is in fact small,
much smaller than I',,, and I';,;. Hence it is appropriate to use a Flatté form
for the amplitude which includes the s dependence of the partial widths and
of the mass.

The amplitude we use is:

oy = IBL@)Y(p) exp(—aq’)
1565 M2 - S — m(S) — iMFtOt,
Lot = Dop + gip1 + g2po. (11)

(10)

In the numerator of equn. (10), Y (p) is the Vandermeulen form factor [16]
for the production process pp — fo(1565)m, in terms of the centre of mass
momentum p with which the resonance is produced. The factor By(p) is
the standard Blatt-Weisskopf centrifugal barrier factor for production with
orbital angular momentum ¢; for the !S; initial state, # = 2 and for ®P initial
states, £ = 1. The factor g is a complex coupling constant for 'Sy production,
and for P-state production may be taken to be real, since only f5(1565)
contributes. The exponential is a form factor for decay of the resonance to w
of momentum ¢, with o = 1.5 GeV~2. This value of « is taken from general
experience in fitting other data and corresponds to a radius of interaction of
0.6 fm.

In equn. (11), the 27 width is taken to be constant. It is necessary to
take care over the s-dependence of the widths for decays to pp and ww. The
factors p;o of equn. (11) are phase space factors for pp (channel 1) and
ww (channel 2). For the ww channel p = 2qexp(—2aq?)/+/s, where q is the
momentum of the w in the rest frame of the resonance and « is given above.
For the pp channel, the phase space factor is evaluated numerically using the
model of Bugg, Sarantsev and Zou [14, equn.(40)]:

(Vi-2me)? ds, (V3i—vaD)? ds, 8|p| p1| |pa|
punls) = | = =2 SR P PRI (o) Ta(s2)
4m2 T J4m2 T \/8 81 82

x exp(—alp[’) (12)

where p; and ps are the momenta of the pions from the decay of each reso-
nance in its rest frame and p stands for the momenta of the p in the centre
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of mass frame. Factors of the form |T}(s)|? are the squared amplitudes of the
p mesons and are:

MFl(s)

TEF=ar =+ ()2

(13)

The phase space factors are illustrated in Fig. 26. The pp phase space
falls above s = 3.6 GeV? because of the form factor. Over the mass range
of interest, up to 1.8 GeV, the form factor has only a small effect. The ww
phase space rises very rapidly from threshold, but also over the mass range
of interest the form factor has little effect.

The value of g; in equn. (11) expresses the width for the pp channel in
the hypothetical limit p — 1 and g9 describes the ww width in the same limit.
The quark model predicts g; = 3g2, corresponding to the three charge states
of pp and one for ww. The phase space illustrated in Fig. 26(a) has been
parametrised, for convenience in fitting data, by the following expression:

B (—3.909 + 10.571s — 1.8152) /48 .47
" 1+ exp(11.353 x (1.063 — ) + s2(4.572 — 0.8265)

Pop(8) (14)

In equn. (11), m(s) is a dispersive correction to the mass, evaluated from
the subtracted dispersion relation:

ds’' MFtot(s')
(s — s)(s' — M?)’

m(s) = (s - M?) [ (15)
Here, T';, is the total width appearing in the denominator of equn. (11).
This dispersive correction makes the amplitude fully analytic. This has been
checked by evaluating the standard dispersion relation for the real part of
the amplitude in terms of an integral over its imaginary part; this relation
is accurately satisfied over the whole range of s relevant here. The form of
m(s) is illustrated in figure 27.

5.8 Fits

Using this amplitude to fit the wwn® data gives a definite improvement, both
in S and visually, when compared to the reference fit (AS = 37). It solves in
a natural way the problem of fitting the lower part of the ww mass projection.
But there are many unknown quantities - the values to be used for g;, go,
and I',.
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It turns out that the fit to wwn® data is quite insensitive to the values
of the mass, g1, go and I';;. The wwn® data prefer a slightly higher mass
around 1600 MeV for the fo(1565) with this form of the amplitude. Varying
the width has very little effect; in fact, taking go from 200 MeV to 800 MeV
changes S by only 0.9. The fit prefers a value around 430 MeV. Because of
this insensitivity to the width, we find it desirable to use the VES data [9]
to provide an upper limit on the width. For I';;, the CERN-Miinich [15]
limit of 30 MeV was used in initial fits. The contributions of f(1565) from
150,2P, and 3P; remained relatively unchanged in all fits at around 4-5%,
30-31% and 19-20% respectively. Figure 28 shows the projections and Dalitz
plots for a fit with M = 1610 MeV, g; = 430 MeV and ', = 30 MeV. To
make better determinations of these unknown quantities it is necessary to use
information about the AX from previous work. For this reason a combined
fit has been made with Crystal Barrel data on 37°. We first review those
earlier fits.

5.9 Earlier fits to 37" data

In Crystal Barrel data on pp —37°, V.V. Anisovich et al. [4] found evidence
for a 2% resonance above the f(1270) mass. It was needed in order to fit the
edges of the Dalitz plot near cos(#) = +1. They found a mass of 1.566 MeV
and a width of 166 MeV.

In a later analysis by Abele et al. using higher statistics [7], it was found
that x? went up by 1000 if this 3P, resonance was omitted. The inclusion of
the AX generated a second resonant loop in the Argand diagram of the 77 D-
wave. At 1420 MeV, interferences with f2(1270) and f,(1500) were found to
play a crucial role in fitting a conspicuous dip in the data. The resonance was
found to have a definite cusp in its amplitude at the ww threshold. For this
reason, they included a partial width to ww. The inclusion of T, improved
x? by 60, a significant amount. By including a form factor exp(—ap?),
the ww mass spectrum observed by the GAM S group could be reproduced,
suggesting only one resonance decaying to both 77 and ww. This is the same
resonance as is seen in the wwm? data of the present analysis.

However these two analyses only included annihilation to f5(1565) from
the initial pp S-state. The inclusion of fo(1565) from 3P, and 3P led to the
fit becoming unstable. When the AX mass was left free, it drifted down
to around 1480 MeV. The contribution from AX in P-state annihilation
was found to be 8.4% from *P, and 12.5% from 3P;; considering how small
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[ is (< 30 MeV from CERN-Miinich data [15]), these contributions seem
somewhat unlikely. It seemed that including P-state annihilation to AX was
allowing minor defects to the background to be fixed; hence it was omitted
from the published fit.

6 Outline of the combined fit

The wwn® data provide knowledge of the relative magnitudes of the contri-
butions from 'Sy, 3P, and 3P, of f,(1565). These magnitudes are stable and
independent of the other resonances included in the fit. It is now possible
to use this information to limit the contribution from P-state annihilation to
the AX in the 37° data and hence to find out more about this resonance.

The combined fit is made using the programme of Abele et al. to fit the
31" data. The components fitting this channel are

1Sy — orm (16)
- fo(1500)7° (17)
- £0(1300)7° (18)
- fo(980)7° (19)
—  f>(1270)7° (20)
- f2(1565)7° (21)
Pla — fo(1270)7° (22)
Py —  fa(1565)7°. (23)

It is not possible to fit wwn® and 37° data simultaneously using a Breit
Wigner amplitude of constant width; the masses and widths are found to
be inconsistent. This is due to the fact that the Breit Wigner amplitude
does not model the s dependence of the amplitude correctly - in particular
at the ww threshold. However it is easy to obtain a consistent solution using
the Flatté form described above. We can now use these two data sets to
determine the mass of f5(1565), and can place some limit on I',.

In the first instance we set g; = 3¢9, as this is what is predicted for a
qq state. It has been suggested [2, 3] that the AX is not a normal ¢g state
and so we will investigate different relationships between ¢g; and go. Also
initially we set the radius of the centrifugal barrier to 1 fm.

There are two essential features which emerge from the combined fit.
Firstly, the 37° data determine well the mass and full width of the AX;
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the wwn® data depend only weakly on them. In earlier work, the dispersive
correction m(s) was not included. Introducing it greatly stabilises the deter-
mination of the mass. In earlier work, the imaginary part of the amplitude
could be modified without corresponding changes to the real part. Now the
amplitude is fully analytic, and real and imaginary parts of the amplitude
are related rigorously. Suppose the mass changes in the fit. The value of
m(s) includes a subtraction at the resonance mass. The dispersion integral
is evaluated at every iteration in the fit. Consequently, a change in the mass
moves m(s) bodily up or down at all values of s. The fit resists such changes,
and the fit is stabilised.

Secondly, the contributions from 'Sy, 3P,, 3P, to the wwn® data remain
relatively unchanged for large changes in mass and/or width for the AX.

Tables 12 and 13 show the percentage contributions in this combined fit
of the AX from 'Sy, 3P, and 3P, to wwm® and 37°. The errors quoted are
statistical and for wwm® correspond to a change of 0.5 in S or 1o; for 37°
they correspond to a change in x? of 3, as a concession to the possibility of
systematic errors in parametrising components in the fit. The contributions
for wwm? are almost unchanged from the values obtained in all other fits. For
3m° the total contribution of the AX (2.4%) is small. The contribution from
P-state annihilation is restricted to small values, which have very little effect
on the fit to 37°. Those data are sensitive only to 1S, annihilation, since the
AX interferes there with other strong components. The small contribution
from 'Sy helps to explain why the AX was not seen in S-state annihilation
in the Asterix data on 777~ 7°[2]. An additional factor there is that pr final
states make a large contribution; these are absent in 37° data.

Initial state | contribution (%)
1So 424+0.2

3P, 19.54+£2.8

3P 30.9+3.3

Table 12: Percentage contributions of the AX for wwn® data

Figure 29 shows the resulting projections for wwm?®, S=-122.6. The value
of the mass found for the AX is 1598 & 11 MeV and the value for g (and
hence the width for the resonance in the ww channel) is 435 +30 MeV. Once
again the errors quoted are statistical. Figure 30 shows the resulting Argand
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Initial state | contribution (%)
'So 0.50 £0.1

3P, 0.73+£0.07

3P, 1.22 +£0.12

Table 13: Percentage contributions of the AX for 37° data

diagram for 37° data. I',, is found to be 2.4 MeV; this is a direct result of
the small branching fraction of fy(1565)—7°7r°, as we now show.

The total contribution of f5(1565) to 7°7® is (0.50£0.1)% from the initial
1Sy state. Using this number and the known branching ratio for pp —3m°
of (6.2 £0.1) x 1073 [7], the branching ratio of f,(1565)— 77 may be
found. Allowing for the 3 possible charge states (7 *,mom°) a value
of (0.93 4 0.24) x 10~* is obtained.

T

7 Systematic uncertainties

The fit to wwn® data is over the ww mass range 1564-1741 MeV. The fit
to 370 data is sensitive to S-state annihilation and extends to 77 masses
significantly below the ww threshold. What uncertainties arise from the
centrifugal barriers and form factors?

Figure 31 illustrates centrifugal barriers as a function of centre of mass
momentum P for { = 1 (P-state annihilation) and ¢ = 2 (S-state annihi-
lation), using radii of interaction of 1 £ 0.4 fm. Although the wwn® data
determine well the S and P-state contributions at high ww masses, there is
clearly significant uncertainty in extrapolating the relative S and P state con-
tributions below the ww threshold. Table 12 shows that P, annihilation is
a factor 7 stronger than 1S, after integration over the wwn® data. However,
for 37° data this factor falls to ~ 2.4. The difference arises from the strong
s-dependence of the centrifugal barrier factor for 1.5, annihilation. For an
uncertainty of £0.4 fm in the radius of interaction, the P-state contribution
of the AX to 37° data varies by a factor of 0.86-1.14. As regards the mass
and width fitted to the AX, this has little effect, because the 379 fit is insen-
sitive to a P-state component as small as this. There is, however, a strong
effect on the fitted 77 width, which is discussed below.

Figure 32(a) shows the contribution in the wwn® data of f5(1565) from
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1So, (b) shows how the contribution would look if the centrifugal barriers were
omitted, (¢) and (d) show the contribution (with and without the barriers)
from P-state annihilation. One sees clearly that the £ = 2 centrifugal barrier
suppresses (a) strongly at the higher masses. Comparing (c¢) and (d), the
effect of the £ = 1 barrier in P-state annihilation is evident.

Production of the AX it inhibited on its upper side, both in 37° data and
wwm?. This introduces uncertainty into the determination of the total width,
which may increase without any large penalty in S. This is where VES data
play a role, determining the upper side of the AX in an environment free of
centrifugal barrier effects. These data restrict tightly the width to a small
value. Imposing this constraint has little effect on the y? of the fit to 37°
data, affecting it by < 12.

7.1 The mnm width

The branching fraction for 1Sy, — f2(1565)m, fo — 7°n° is quite well de-
termined by the 37° data. The branching fraction of 3P — fy(1565),
f2(1565) — ww is well determined by wwn® data. However, the relative
amounts of P and S-state annihilation depends strongly on the centrifugal
barrier. This makes the determination of the relative 77 and ww widths
uncertain.

The branching fraction of 1Sy — f2(1565)7, f2(1565) — ww is determined
with an error of ~ 10%. However, extrapolating the ¢ = 2 centrifugal barrier
factor from the ww mass range to that covered by 37° data is subject to an
uncertainty of a factor of 3. Consequently, only a rough determination of the
mm width is possible, with this factor setting a scale. Changing the value of
g1/ g2 also has a small effect on the value of the mass and on I'y,; obviously
the value of the ratio will alter the values found for ¢g;. The combined sys-
tematic error on the mass is found to be 9 MeVand on I'y; it is a factor 3.
Nonetheless, what emerges decisively is that the 27 width is very small.

7.2 The unfolded line-shape of the AX

There is one further consideration, which does not lead to any uncertainty.
In pp annihilation, the cross section for production of the AX is inhibited by
a phase space factor p/M, where p is the centre of mass momentum of the
AX and M is its mass. It is necessary to unfold this factor in exhibiting the
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line-shape of the AX, as it would appear in an environment not limited by
the phase space for pp annihilation.

In order to study the sensitivity to these various factors, a small pro-
gramme was constructed to plot out the line-shape of the AX as it appears
(i) in isolation, (b) in P-state annihilation, (c¢) in S-state annihilation. Fig-
ure 33(a) shows the shape of the resonance in the 27, ww and pp channels
of pp — annihilation from 'S). The 27 result is what is fitted to 37° data
(scaled by a factor 5 for purposes of display). It peaks at 1.55 GeV with
an asymmetric shape, falling to half-height at 1.59 GeV on the upper side,
because of the rapidly opening ww and pp channels. The ww result is likewise
what is fitted to wwn® data. It peaks at 1.59 GeV, but is rapidly attenu-
ated above that by the centrifugal barrier. The pp channel peaks at the ww
threshold; it falls on the lower side because of the falling phase space and on
the upper side because of the centrifugal barrier.

Figure 33(b) shows the corresponding estimate for an f,(1565) in isola-
tion, without the effects of the limited phase space and the centrifugal barrier.
The results are subject to considerable error of scale in unfolding the effect of
the centrifugal barrier. Nevertheless it is interesting to note the cusp in the
pp channel which is clearly visible and is due to unitarity and the opening
of the ww channel. The pp and ww channels peak at ~ 1.66 and 1.63 GeV
respectively.

By integrating branching fractions over the resonance, mean widths may
be determined to each decay channel. Values are in the ratios

Trr: Duw : Ty = 0.067007 1 1.23 1 3. (24)

There is a factor 3 uncertainty in T, /Fpp due to uncertainties about the cen-
trifugal barrier. The relative width to pp and ww is a matter of assumption,
based on the expected ratio of coupling constants g = 3gs.

There are two interesting things to note from equn. [24]. The first is that
it is clear that the width to 27 is very small, explaining why f2(1565) has
not been seen in 7 — 77, e.g. in the CERN-Miinich experiment [15]. The
second is that the ratio of the widths of pp to ww is slightly above the value
of 3 assumed from the quark model for g;/g2. An explanation for this is that
the finite width of the two p suppresses the pp signal slightly in the mass
range available in pp — annihilation to the f»(1565).
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8 Interpretation

The I = 0 members of the ¢g 2% ground-state nonet are filled by f»(1270)
and f4(1525). The strong production rate of the f>(1565) makes it unlikely
to be an s§ state. It is not a good glueball candidate, since it has not been
observed significantly in glue-rich channels. The most obvious possibility is
that it is the radial excitation of f5(1270). In recent work on annihilation
in flight, further fy resonances have been identified at 1945 + 30 MeV and
at 2210 + 45 MeV [17]. The first of these resonances agrees with earlier
observations of an f, by GAMS [9] and VES [9] groups at 1920 MeV. A
straight line trajectory through these resonances as a function of s predicts
a first radial excitation at 1630 MeV. This is close to the value found here.
The ww threshold may attract the resonance to a slightly lower mass. An
I = 1 partner has been identified in Crystal Barrel data on pp — nn° at
1940 MeV /c [18]. Tt has a mass of 1660 + 40 MeV and a width of 280 £ 70
MeV.

An alternative identification of the AX is that it is a ¢gqq state. However,
such a state is not expected below 1800 MeV and is predicted to be very
broad. A third possibility is that it is a molecule of ww; however, the binding
of a 07 ww molecule should be a factor 6 stronger [7], and there is no evidence
for such a state.

8.1 Conclusion

It has been possible in this analysis, by using the two Crystal Barrel data sets
of wwm® and 37°, to determine important information about fy(1565). The
wwr® data demand a dominant contribution from f,(1565); the branching
fractions from 'Sy, 3P, 3P, are well determined. The contribution from P-
state dominates strongly, partly because S-state production is suppressed by
the centrifugal barrier for production.

The 37° data also demand a small contribution from f,(1565), both in
S-state and P-state annihilation. Using the very well determined and stable
branching fractions of the f5(1565) from the wwn® data, it has been possible
to solve the problems found in previous analyses when introducing production
of fo(1565) from P-state in the 37° data.

Using the Flatté form described earlier, the value of the mass determined
by the fit is 1598 + 11(stat) & 9(syst) MeV and the value of the full width
at half maximum of the summed cross section for 77, ww and pp channels is
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220 + 15 MeV. Systematic errors are due to uncertainty in the values of the
radius of the centrifugal barrier and of the relationship between ¢; and gs.

By unfolding the effects of the centrifugal barrier, it has been shown that
the 27 width is very small, of the order of 2% of the average of the dominant
pp width. T's; was found to be 2.4 MeV with an uncertainty of a factor 3.
This small value is due to the small branching fraction for fo(1565)— mm
seen in the 37° data. Table 14 shows the final values of the parameters used
for fo(1565).

The use of incomplete parameterisations for the AX in previous work may
account for the difference in masses and widths which have been found. In
turn this explains the mis-identification of the AX as two distinct resonances,
f2(1565) and f5(1640). The work in this thesis confirms that there is only
one resonance with a mass around 1600 MeV .

Parameter | Value

Mass 1598(MeV)
g1 1305 (MeV)
9o 435 (MeV)

| P 2.4 (MeV)

Table 14: Final values of parameters used for f,(1565)
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9 Appendix 1: Formulae for resonance pro-
duction

9.1 Quantisation axes

In the analysis of pp —wwn® two possible production mechanisms for reso-
nant states are considered. The first is pp — X7° with X — ww (figure 1)
and the second is pp — Xw with X — wn? (figure 2).

X

p
<

Y o

™

Figure 1: Production of resonance decaying to ww

X

Mo

p
>

w

Figure 2: Production of resonance decaying to wm®

The initial pp — system is unpolarised, therefore any lab axes can be
chosen for quantisation. For processes of the type pp — X7 it is convenient
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to choose the 7°X axes where the state vectors for X can be written easily.
These state vectors are invariant under a Lorentz boost to the rest frame of
X - 50 a boost is performed.

The spin information of the resonant state X is contained in the angular
information and correlation of the decays of the w’s. The expressions for
these decays are more easily evaluated in the ww axes. So a rotation to these
axes is performed and quantum mechanical rotation matrices are used to
transform the state vectors from the 7°X axes to the ww axes.

In theory, for processes of the type pp — Xw the same axes should be
used but because the only initial state we consider is J = 0 it is possible
to rotate to any other axes with a rotation matrix of 1. Hence to simplify
the expressions a rotation to the wX axes is applied plus a boost to the rest
frame of X. The fact that the initial spin is zero also allows the axes for the
two cases (i.e. decay to either w) to be separated. For this process instead of
using rotation matrices to rotate to the wm® axis a Wick rotation was used.

9.2 The matrix element for w—nT7 7°

The decay of the w meson to 7t7~7° can be considered to be a two body
process, w— Rm where R is a resonance decaying to a pion pair and the
other pion is a spectator. There are three possibilities for which two pions
make up R, R —»7nt7~, 7t7° or 7~ 7°. However R —7nn~ is forbidden by
C-parity conservation and can be discounted.

The w meson has J¥ = 1~ and the pions each have J¥ = 0%, J,P and
isospin conservation require the w to decay to R with J = 1 and a spectator
pion which has ¢ = 1.

¢ =1 decays are described (in the overall centre of mass) by momentum
vectors p e.g.|Sg = 1, Sk, = 1 > is described by pcosf = p,; the cosf factor
appears from the angular dependence of the orbital angular momentum and
the factor p comes from the factor p® for the phase space of the decay.

Hence R —m 7° is described by p*- p® (where p*,p~ and plare the
momenta vectors of the 77, 7= and 7° respectively). R —7°7r~ is also
described by p*-p° due to the change of sign of the wave function under
interchange of the particles. R —7 7 is described by p—- p°. The spectator
pion is described by its momentum vector.

As the w is a vector particle the vectors describing R and the spectator
must be combined in such a way as to give a resultant vector. The simplest
way to do this is to take their cross product.
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For the case R —7*7° with 7~ as the spectator the w is described by
p'- p%)xp~. Using the fact that due to momentum conservation p*+ p~+
p’= 0 it is possible to substitute for p~, giving:

(" —p%) x —(p* +p°) =2(p° x p7) (25)

Equivalently for the case R —7 m° the result is —2(p"xp™).
Hence the matrix element for the w decay may be described by:

%up‘) X p*) — (° X p) (26)

where the factor v/6 comes from Clebsch-Gordan coefficients for the decays
of the w and R. Once again using momentum conservation this simplifies to:

Zipt ) (1)
In fact it is possible to form the matrix element using the cross product of any
of the three pions (using momentum conservation); however p* and p~ were
chosen because angular information on charged particles in the Crystal Barrel
detector is better determined than for neutral particles).

Absorbing the factor % into the overall normalisation constant the matrix

element for w—nT7~7° becomes:

Wy p;pz_ - pjp; Ny
wy | =1 pipz — ook | =1| ny (28)
W, i, — Py v n,

where n = p* x p~.
As it is a vector particle, the w behaves (under SU2) like the Legendre
polynomial with L = 1. The latter is described by:

PlB,¢) a —sinfe™® (29)
Pl6,9) a V2cosb (30)
PL(6,9) a sinfe”" (31)

therefore the matrix elements for an omega with m =1 (wy), m = 0 (wy)
and m = —1 (w_) are:
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wy = —(wy +iwy) (32)
Wy = \/5(4}2 (33)

wop = (wy —iwy). (34)

Using this result, it is possible to derive expressions for the matrix elements
for production of the different resonances possible in terms of n. These
expressions have been derived before for the case when the w decays to 7°vy
giving an &y final state and are detailed in CB-note 293 [19]. The only
difference between the case w—m°y and the case w — 7T7~7° is that for
the former there is a summation over the four polarisation states of the 2+’s
from the w decays. Therefore the reader is advised to look there for further
details.
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Figure 3: Confidence level distribution for 27 27~37° hypothesis cut at 0.1%
(data)
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Figure 6: Confidence level distribution for wwn® hypothesis cut at 5% (data)
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Figure 7: Confidence level distribution for wwm® hypothesis cut at 5% (Monte
Carlo)
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Figure 9: M(n 7~ 7°) distribution of the second best omega (data)
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Figure 33: (a) The intensity distribution for f5(1565) — 7 (full curve), ww
(dashed) and pp (dotted) for production in pp annihilation from 'Sy; the
ratio has been scaled up by a factor 5 to make it clearly visible; (b) as (a) for
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