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Abstract iii

Abstract

A partial wave analysis was done on the reaction pp→ π+π−ηwith data from the Cryrstal

Barrel experiment at CERN. The data was taken at an p-beam momentum of 900 MeV/c.

The events from the raw data were selected by using various methods for background

rejection. It was found that the highest contributing angular momentum is Lmax = 4.

The outcome of the partial wave analysis shows evidence for an exotic wave associated

with the π1(1400) meson. It has the quantum numbers JPC = 1−+. The mass and the

decay width of the π1(1400) were found to be mπ1(1400) = 1285.03 ± 0.16 MeV/c2 and

Γπ1(1400) = 136.03 ± 0.32 MeV.
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Quote v

We can easily forgive a child who is afraid of the dark; the real tragedy of life

is when men are afraid of the light.

Plato



Quote vi

-



Contents vii

Contents

Abstract iii

Quote v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Hadrons and hadron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Mesons and exotic states . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 P̄ANDA-Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Crystal Barrel Experiment 10

2.1 LEAR and the production of antiprotons . . . . . . . . . . . . . . . . . . . . 10

2.2 Crystal Barrel Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Silicon Vertex Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 The Jet Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Trigger system and data recording . . . . . . . . . . . . . . . . . . . 15

3 Event reconstruction and data selection 18

3.1 Identification of photons in the calorimeter . . . . . . . . . . . . . . . . . . 19

3.1.1 Electromagnetic and hadronic splitoffs . . . . . . . . . . . . . . . . 20

3.2 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Background rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Kinematic fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Event based background rejection . . . . . . . . . . . . . . . . . . . 29



Contents viii

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Monte carlo studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Detector efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The partial wave analysis 41

4.1 Helicity formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Definition of helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Rotation of angular momentum states . . . . . . . . . . . . . . . . . 42

4.2 The isobar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Initial states and the pp-annihilation in flight . . . . . . . . . . . . . 44

4.3 Log-likelihood-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Determination of the significance of contributing waves and the

AICc value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Results of the partial wave analysis 49

5.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Fit values and significances . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Discussion of the best fit results . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Contributions of the resonances . . . . . . . . . . . . . . . . . . . . 58

6 Summary 59

A Dalitz plot I

B Bibliography IV

C Acknowledgements VI

Erklärung VII



List of Figures ix

List of Figures

1.1 Meson example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 PANDA-detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The accelerator complex at CERN . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Schematic depiction of the Crystal Barrel detector (CBD). . . . . . . . . . . 12

2.3 Silicon vertex detector (SVX). . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Schematic depiction of the JDC. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Arrangement of CsI(TI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 CsI crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 A schematic sketch of the trigger system as it was used in the Crystal Barrel

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The γγ-spectrum after the preselection . . . . . . . . . . . . . . . . . . . . . 22

3.2 The z-vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Histogramm of the y-z-vertex-plane . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Z-vertex distribution (all events within the z-vertex) . . . . . . . . . . . . . 24

3.5 Invariant-γγ sprectrum of η before the preselection . . . . . . . . . . . . . 24

3.6 Pull distributions and CL distribution for π+π−π0 . . . . . . . . . . . . . . 30

3.7 Pull distributions and CL distribution for π+π−η . . . . . . . . . . . . . . . 31

3.8 Invariant γγ-mass spectrum after kinematic fit . . . . . . . . . . . . . . . . 32

3.9 Fit of invariant γγ-mass spectrum in the range of the η-resonance . . . . . 32

3.10 Q-factor for one event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 η-resonance after event based background rejection . . . . . . . . . . . . . 35

3.12 Dalitz plot with Q-weighted events . . . . . . . . . . . . . . . . . . . . . . . 36

3.13 Dalitz plot with 1 −Q-weighted events . . . . . . . . . . . . . . . . . . . . 36

3.14 Invariant π+π−-mass spectrum after the event based background rejection. 37

3.15 Invariant π+η-mass spectrum after the event based background rejection. 37

3.16 Visualizing of the detector efficiency . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Kinematic process of the pp-annihilation in the isobar model . . . . . . . . 44

5.1 Dalitz plot for the weighted signal events . . . . . . . . . . . . . . . . . . . 54

5.2 Dalitz plot of the fitted Monte Carlo events after the PWA . . . . . . . . . . 55

5.3 Invariant-mass spectra of the data events and the fitted Monte Carlo events 55



List of Figures x

5.4 Production and decay angle-distributions . . . . . . . . . . . . . . . . . . . 56

5.5 Production angle-distributions in the π+π−η-helicity system . . . . . . . . 57

A.1 Example Dalitz plot of πη . . . . . . . . . . . . . . . . . . . . . . . . . . . . II



List of Tables xi

List of Tables

1.1 The fundamental interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of important properties of quarks. . . . . . . . . . . . . . . . . . 3

1.3 All hadron quantum numbers. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Current values for the parameters of the π1(1400). . . . . . . . . . . . . . . 7

3.1 Various energy thresholds to suppress background. . . . . . . . . . . . . . 19

3.2 Statistics that are obtained after the preselection. . . . . . . . . . . . . . . . 22

3.3 The parameters of the fit function of the η-resonance . . . . . . . . . . . . . 30

3.4 Statistics obtained after the kinematic fit. . . . . . . . . . . . . . . . . . . . 31

3.5 Statistics obtained after the kinematic fit for Monte Carlo events for the

decay π+π−η→ π+π−(γγ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Statistics obtained after the kinematic fit for Monte Carlo events of various

reaction channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Possible initial states of the pp-system . . . . . . . . . . . . . . . . . . . . . 45

5.1 Set of resonances that might contribute . . . . . . . . . . . . . . . . . . . . 50

5.2 Tested hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 The fit-values for all hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Significances of the improvements between the hypotheses . . . . . . . . . 53

5.5 Resonance masses and decay widths obtained from the fit with free param-

eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Branching ratios of the resonances . . . . . . . . . . . . . . . . . . . . . . . 58



1 Introduction 1

1 Introduction

The field of high energy physics is a discipline that tries to uncover the mysteries of matter.

The very constituents of matter are elementary particles that belong to two different

groups of particles - the leptons and the quarks. The particles that belong to the group

of leptons are the electrons (e−), the myons (µ−), the tauons (τ−) and their corresponding

neutrino particles. Many of them were found in particle physics experiments and some

particles are created in many natural processes as well, like in cosmic radiation. The

second group - the quarks - will be discussed later on in this chapter. The counterpart

of matter is antimatter which is composed of antiparticles. Our present universe is

completely made of matter, however, antimatter is still created and can also be produced

with particle accelerators. Antimatter is stable but annihilates when it gets into contact

with matter. The annihilation process releases a huge amount of energy.

The Standard Model of elementary particle physics is a theory that unifies the weak, strong

and electromagnetic interactions. The force carriers of these interactions are the gauge

bosons - the W and Z bosons for the weak interaction, gluons for the strong interaction

and photons for the electromagnetic interaction. Some of their properties are listed in

Table 1.1

Table 1.1: The fundamental interactions considered in the standard model with their cor-

responding charge and exchange particles.

Interaction Charge Exchange particle Mass (GeV/c2) JP

strong colour 8 gluons (g) 0 1−

weak weak charge W±,Z0 81, 91 1

electromagnetic electrical charge photon 0 1−

The exchange particle of gravitation hasn’t been found yet. The exchange particles

of the strong interaction - the gluons - do interact with one another, because of their

charge called colour. Gluons always carry two charge units - one colour charge and one

anticolour charge. Taking into account that there are three colours (see section 1.1) and

three anticolours and b) 9 gluons should exist, which can be grouped in a colour octet

and a colour singlet state. The colour singlet state has not been observed so that only

8 gluons are considered as existing. The strong interaction takes place between quarks



1 Introduction 2

and has only an effect on short ranges (≈ 10−15 m). It holds the protons and neutrons

of a nucleus together and therefore makes up the very precondition for the existence of

atoms. All particles that participate in the strong interaction are called hadrons. The weak

interaction takes place between all fermions. Its exchange particles are the W± and Z0

bosons. Due to their heaviness the weak interaction has a short range. Its field strength

is significantly less than that of the other two interactions and it is responsible for the

β-decay.

1.1 Quarks

Quarks are strongly interacting particles that do interact by the weak and electromagnetic

interactions. Since quarks only exist in bound states, free quarks cann’t been observed di-

rectly. Evidences for quarks can be found in hadron spectroscopy, which will be explained

in more detail later on, in lepton scattering and jet production.

Quarks are classified according to their quark numbers and f lavours and are grouped in

generations. There are six types of distinct flavours which are the up u, down d, charm c,

strange s, top t and bottom b. They are written in pairs as it is given in 1.1.

Quark :

u

d

 ,
c

s

 ,
t

b

 Antiquark :

u

d

 ,
c

s

 ,
t

b

 . (1.1)

Each quark has its corresponding antiquark which are written at the right side in 1.1.

Quarks have a non-integer charge in units of e. The u, c and t quarks and their antiquarks

u, c and t have a charge of +2
3 and −2

3 , respectively. The quarks d, s, b and their antiquarks

d, s and b have a charge of − 1
3 and + 1

3 , respectively. All quarks carry spin 1
2 and belong

therefore to the group of fermionic particles. The charge of quarks for the strong inter-

action is called colour which can adopt three possible values - red, green and blue. They

are from now on referred to as r, g and b. Since free quarks haven’t been observed yet,

it is assumed that only colourless bound states can exist. Such states are for example a

combination of three quarks each carrying one of the existing colour charges r, g or b. A

quark-antiquark combination in which one carrys any colour and one the corresponding

anticolour is possible as well. That is the composition of mesons of which an example is

shown in figure 1.1. This rule is called colour confinement. Another important rule is the

quark number conservation which says that in any electromagnetic and strong reaction

the difference between the number of quarks and antiquarks with flavour f is constant.

The exact formula for this rule is given in equation 1.2 where N f is the total number, N( f )

the number of quarks with flavour f present and N( f ) the number of quarks with flavour

f present. In weak interactions only the sum of all quarks have to be conserved with the
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Figure 1.1: Example of a meson with green and antigreen as colour charge.

formula given in 1.3 where Nq is the total number of quarks, N(q) the number of quarks

present and N(q) the number of antiquarks present.

N f = N( f ) −N( f ) (1.2)

Nq = N(q) −N(q) (1.3)

Table 1.2 summarizes the most important properties of quarks. It is worth noting that the t

quark compared with the other quarks has a very high mass of ≈ 171 GeV/c2 compareable

with that of a gold atom.

Table 1.2: Summary of important properties of quarks.

Generation Symbol Flavour Charge Mass (GeV/c2)

1 u Up + 2
3 ≈ 0.015 − 0.033

d Down −
1
3 ≈ 0.035 − 0.060

2 c Charm + 2
3 ≈ 0.1

s Strange −
1
3 ≈ 0.5

3 t Top + 2
3 ≈ 171

b Bottom −
1
3 ≈ 4.5

1.2 Quantum Chromodynamics

The theory of Quantum Chromodynamics, from now on referred to as QCD, is a gauge

theory that describes the strong interaction. QCD says that the strong force is mediated by

massless spin-1 bosons. Those bosons are called gluons which are in QCD the particles that

correspond to photons in the theory of Quantum Electrodynamics (QED) which describes

the electromagnetic force. One fundamental characteristic of the strong interaction is

the asymptotic freedom. Asymptotic freedom is an effect in which the bonds between

particles decrease by increasing the energy and analogously by decreasing the distance.

This basically means that the force increases with increasing distance. That follows from
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the QCD coupling constant αs which is given to a good approximation in equation 1.4, as

well. In equation 1.4 N f denotes the number of quark flavours and Λ is a parameter with

a value of Λ = 0.2 ± 0.1 GeV/c.

αs =
6π

(33 − 2N f )ln( µΛ )

with µ2 = |~q 2
−

E2
q

c2 |

(1.4)

1.3 Hadrons and hadron spectroscopy

Hadrons are the bound states of quarks and hence are no elementary particles as they

are compositions of even smaller particles. They are affected by the force field of the

strong interaction. Hadrons themselves are subdivided into two groups - mesons and

baryons. Baryons are made of three quarks or three antiquarks and mesons are made of a

quark-antiquark pair. Furthermore baryons have half-integral spin whereas mesons have

integral spin values. Hence the classification into baryons and mesons is made amongst

others by their spin values and quark numbers.

The measurement of the properties of hadrons is called hadron spectroscopy. Those

properties for example are their lifetimes, their masses, the values of their quantum

numbers which are listed in Table 1.3, and so forth. It evolved as a consequence of studies

on scattering experiments, in which resonances of particles could be found. It let to the

assumption of the existence of quarks. Hadrons decay within a mean lifetime of τ = h
2πΓ .

Γ is called the decay width and is usally given in the unit MeV or GeV. Hadrons exist

in families of charge multiplets. Particles that belong to the same charge multiplet have

approximately equal masses but differ in their charge. An example of such a charge

multiplett is the triplet of pions (π+, π0, π−).

On the basis of the observations, it was thought that excited states of hadrons are similiar

to the ones known from atomic and nuclear spectroscopy. As a consequence it was

assumed that hadrons have to be a composition of even smaller elements. These smaller

elements are called quarks. Hadrons have besides the usual quantum numbers of spin

and parity addtionally quantum numbers that are listed in table 1.3.

The relationship between the quantum numbers of hadrons is described by the Gell-

Mann-Nishijima formula which is given in equation 1.5.
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Q = I3 +
1
2

(B + S + C + b) (1.5)

Table 1.3: All hadron quantum numbers.

Electrical charge Q

Baryon number b

Isospin I and its I3 component

Strangeness S

Charm C

Bottom B

P-parity

C-parity

Spin

1.3.1 Mesons and exotic states

Mesons are particles, that were found in the first high energy particle collision experi-

ments. They have as a rule a lifetime of approximately ≈ 10−8s to ≈ 10−24s. At the end

of their lifetime they can decay into lighter hadrons or leptons. Mesons can also decay

into photons. Conventional mesons are composed of one quark-antiquark pair (qq) and

are subdivided for example into pseudoscalar mesons and vector mesons. Pseudoscalar

mesons have a spin value of J = 0 and the spins of its quarks and antiquark are antiparallel

to one another. Their parity is negative and is given by equation 1.6 with L the orbital

angular momentum of the meson. Apart from this mesons have another form of parity

which is called the C-parity and the G-parity. The operation of the C-parity which is

called charge conjugation has the effect of reversing all additive quantum numbers like

the electrical charge e, baryonnumber b, leptonnumber l, strangeness S, and so forth.

C-Parity basically says whether the wave-function of the meson remains the same after

changing the quark with its antiquark and vice versa. It is given by equation 1.7. The

operation of G-parity which is a generalization of C-parity is defined by a charge conju-

gation with an additional rotation around the I2-axis by an angle of π. The operation is

given by equation 1.9 whereas G-Parity is given by equation 1.8.

P = (−1)L+1 (1.6)

C = (−1)L+S (1.7)
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G = (−1)L+S+I (1.8)

Gop = CeiπI2 (1.9)

The theory of Quantum Chromodynamics that was introduced earlier in this chapter

suggests on the basis of the MIT-Bag-model in addition to the existence of baryons and

mesons the existence of multiquark states, quark-gluon-states and glueballs. Those states

are called exotic states and can be grouped as follows:

• Multiquark states are a composition of multiple quark-antiquark-pairs (qkqk). Mul-

tiquark states can be classified according to k. Common classes are baryonia with

k=3 and diquonia with k=2.

• Hybrids are a composition of one quark-antiquark-pair and additional gluonic

degrees of freedom (qqgk with k = 1, 2, ...) instead of virtual gluons in conventional

mesons.

• Glueballs are states composed solely of gluons. They exist in states of at least two

gluons (gg) or more (ggg ...). According to QCD the gluons themselves are bound

together by the exchange of virtual gluons.

π-meson

Pions are composed of quark-antiquark pairs, and thus belong to the group of mesons.

The pion was discovered after the proton and neutron, being the third discovered hadron.

There are three kinds of pions - the π+, π− and π0. The latter one is not charged, whereas

the π+ and π− have a positive and negative charge, respectively. The various pions are

composed of quarks as follows:

|π+
〉 = |ud̄〉 (1.10)

|π−〉 = |ūd〉 (1.11)

|π0
〉 = |

uū − dd̄
√

2
〉 (1.12)

Positively charged pions, for example, can be produced through the reaction p + p →

p + n + π+.
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η-meson

The η-meson was discovered in 1961 and has a mass of 547,85 MeV/c2. It is a combination

of up-, down- and strange quark-antiquark pairs as follows.

|η〉 = |
uū + dd̄ + ss̄
√

6
〉 (1.13)

The η-meson is not charged and has no corresponding antiparticle.

π1(1400)

The π1(1400) is an exotic meson, i.e. a non-qq meson with current parameters given in

Table 1.4. First hints for the existence of the π1(1400) ocurred at the GAMS collaboration

but were not sufficient to proof its existence. Later on the Crystal Barrel experiment, which

amongst other things was aimed at finding exotic states (see chapter 2), found evidences

for the existence of the π1(1400). The evidences were discovered in the following reaction

channels:

• pn annihilation at rest into π−π0η

• pp annihilation at rest into π0π0η

It was seen in both cases as an exotic state decaying intoπηwith quantum numbers IG = 1−

and JPC = 1−+. Since IG = 1− the resonance can’t be a glueball but is probably a hybrid

(qqg) or a four-quark state (qqqq). The mass that was determined in the former reaction

was m = 1400±20 MeV/c2 whereas in the latter it was determined at m = 1360±25 MeV/c2.

The value given in Table 1.4 is the weighted average of [PDG2013] that also accounts for

the values of other experiments in which it was seen.

Table 1.4: Current values for the parameters of the π1(1400).

π1(1400)

Mass (MeV/c2) 1354 ± 25

Decay width (MeV) 330 ± 35

Most of the information in this chapter can be extracted from [Mar2009], [Pov2009] and

[PDG2013].
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1.4 Motivation

The main goal of this thesis is to identify intermediate resonances and to determine their

properties like masses, widths and quantum numbers for the reaction pp → π+π−η →

π+π−(γγ). The data was taken with the Crystal Barrel experiment at CERN from an of the

antiproton-proton-annihilation in flight at an p momentum of 900 MeV/c. The Channel

pp → π+π−η → π+π−(γγ) bears the possibility of the existence of a resonance X with

an exotic quantum number combination for the reaction chain pp → Xη with X → πη.

That system can have a spin-parity-value of JPC = 1−+ and an isospin value of I = 1.

Observing these values would confirm the existence of an exotic state. Furthermore, this

thesis is the first to study on the π+π−η final state produced in pp-annihilation in flight. A

possible candidate for this exotic state could be the π1(1400) or the π1(1600) (see previous

subsection).

The event reconstruction and data selection is aimed at preparing the data for the partial

wave analysis. The partial wave analysis is necessary in order to identify the intermediate

states and to determine the properties of the reaction channel pp → π+π−η. Apart from

this, the thesis is a part of studies that are conducted for the PANDA-experiment and the

test of the partial wave analysis tool PAWIAN, as well.

1.4.1 P̄ANDA-Experiment

This section gives an overview of the PANDA-Experiment since it is a part of the moti-

vation behind this thesis. More detailed information on the PANDA-experiment can be

obtained in [Kra2012] and in [PAN2009]. The PANDA1-Experiment is part of the accel-

erator complex FAIR2 which is currently built at GSI3 in Darmstadt, Germany. FAIR will

be composed of multiple accelerators, storage rings etc. on which multiple experiments

will be conducted in the future. One of the core components of the accelerator complex

will be the storage ring HESR4 which will have the function of storing the antiprotons

(p). The stored p-s will have momenta in the range from 1.5 GeV/c up to 15 GeV/c us-

ing stochastic and electron cooling. The p-s themselves will be produced by a 30 GeV/c

proton-beam. Experiments can be done on two possible resolutions of the beam-momenta

with ∆p
p ≈ 10−4 and ∆p

p ≈ 2 · 10−5. Choosing the lower momentum resolution makes it

possible to conduct the experiment with a higher luminosity of 2 · 1032 cm−2s−1 while a

high resolution leads to a lower luminosity of 2 · 1031 cm−2s−1.

1AntiProton ANnihilations at DArmstadt
2Facility for Antiproton and Ion Research
3Gesellschaft für SchwerIonenforschung
4High Energy Storage Ring
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Figure 1.2: Depiction of the PANDA-detector.

Another core component is the detector which can be subdivided into two parts which

are the Target Spectrometer and the Forward Spectrometer (see figure 1.2). The target

can be a frozen hydrogen pellet target, a cluster-jet target or a solid target. One of the

main goals of the PANDA experiment will be the search for glueballs and hybrids, the

spectroscopy of charmonium5- and open-charm-states.

5cc-mesons
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2 Crystal Barrel Experiment

The data that is studied in this thesis was taken at the Crystal Barrel Experiment which

was an experiment in CERN1 the european center for nuclear research in Switzerland,

Geneva, and partly also in France. The Crystal Barrel experiment was operated in the

year between 1989 - 1996 and was an experiment aimed at researching the pp-annihilation

at rest and in flight. Its maximum beam momentum was 1940 MeV/c. The physics

program of the Crystal Barrel experiment consisted of three main topics which were the

following:

• Spectroscopy of light mesons

• Search for exotic states like glueballs, hybrids and baryonia

• Studies on the pp-annihilation mechanism

This chapter gives a glance of the important components of the experiment. Detailed

information on the Crystal Barrel experiment can be found in [CBL1992] and the figures

used in this chapter are available in [CB2013].

2.1 LEAR and the production of antiprotons

The antiprotons in the Crystal Barral Experiment were produced at the accelerator com-

plex at CERN. The production of the antiprotons was a process consisting of six phases.

In the first phase protons were accelerated in the LINAC which is a linear accelerator

and afterwards the protons got injected into the proton synchroton booster (PSB) and the

proton synchroton (PS). After all three accelerators have been passed the protons leave

the PS with an energy of 26 GeV. The production of the antiprotons is then done according

to the reaction that is given in Equation 2.1. The collision of two protons results in the

production of an extra proton and an extra antiproton.

p + p→ p + p + p + p (2.1)
1Conseil Europėen pour la Recherche Nuclėaire
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The second proton in reaction 2.1 is given by a tungsten target directing the proton from

the PS on the tungsten. The antiprotons, after being seperated from the protons, are

then injected into the antiproton accumulator (AA). The AA is an intermediate storage

ring that reduces the phace space of the antiprotons by means of stochastic cooling. The

antiprotons again pass the PS for deacceleration to a momentum between 600 MeV/c and

1949 MeV/c. The antiprotons are then injected into the LEAR2. LEAR uses electron and

stochastic cooling as well. Figure 2.1 depicts the complete accelerator complex as it was

when the Crystal Barrel experiment was conducted.

Figure 2.1: The accelerator complex at CERN. The LEAR storage ring is depicted in the

lower part of the figure.

2.2 Crystal Barrel Detector

The Crystal Barrel detector was a multi-component detector which was able to simul-

tanously detect neutral and charged particles and provided an acceptance of ≈ 98.7 % 4π

for neutral particles. The acceptance for charged particles is lower since jet drift chamber

and the silicon vertex detector covered a smaller angle. The detector had no specific PID

detectors like a Cerenkov detector or a Time of Flight detector. The identification of the

particles was still possible by the measuring of dE
dx . In order to achieve the goals of the

above mentioned physics program the detector had to fulfill important requirements.

Some of which were to have low background noise and high resolutions for important

measures like the energy and momentum. The detector itself had a target in its center

with the p-beam coming from the left in Figure 2.2. Furthermore, it consisted of the silicon

2Low Energy Antiproton Ring-storage
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vertex detector, the jet drift chamber, the barrel calorimeter, the aluminium coils, and the

magnet yokes. The most important of these components are to be described in more detail

in the following sections.

Figure 2.2: Schematic depiction of the Crystal Barrel detector (CBD).

2.2.1 Target

As can be seen in Figure 2.2 the target is located in the center of the detector where from

the left on that figure the antiproton beam is directed on the target. The targets that were

used in the experiment were mostly liquid hydrogen LH2, LD2 and hydrogen gas H2. The

LH2 target was the target that was used for pp-annihilation in flight. The rates for an

annihilation to occur starts at about 1.4 % at a beam momentum of 600 MeV/c and goes

down to 0.8 % at the maximum beam momentum of 1940 MeV/c.
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2.2.2 Silicon Vertex Detector

Figure 2.3: Silicon vertex detector (SVX).

The silicon vertex detector (SVX) sur-

rounds the target and is surrounded

by the jet drift chamber. The purpose

of the SVX is to detect the amount of

charged particles that are created by the

pp-annihilation. It is quick by still hav-

ing a high acceptance value. In addition

to this the SVX has a high spatial res-

olution since the distance between the

plates is only 50 µm thick which makes

it possible to localize the annihilation

vertex. The SVX consisted of 15 SiO2-

plates that were arranged like a cylinder

as can be seen in Figure 2.3. The cylin-

der has a length of 75 mm and a radius

of 40 mm. The SVX was in use from 1995. Prior to it a proportional wire chamber was

used.

2.2.3 The Jet Drift Chamber

The Jet Drift Chamber measures the trajectory of the charged particles. A magnetic field

that is adapted in the direction of the beam axis causes a curvature. The magnetic field

has a strength of 1.5 T. The trajectories are detected by the interaction of the charged

particles with the gas. The gases that were used in the JDC were carbon dioxide and

isobutane. With the curvature of the trajectory it is possible to determine the momentum

of charged particles. The Jet Drift Chamber surrounds the silicon vertex detector and is

surrounded itself by the calorimeter as can be seen in figure 2.2. The JDC has a cylindrical

shape and consists of wires. The wires subdivide the JDC into 30 sectors as can be seen

in Figure 2.4. In that figure an enlargement of the sectors is depicted which are lined by

the wires. It shows that the wires are not arranged as straight lines but are displaced by

0.2 mm from one another. This is due to the ambiguity that is caused by a particle that

goes through the JDC by passing only one sector. In that case it wouldn’t be possible to

determine whether the particle crosses the wires from the left or from the right if the wires

were arranged as straight lines. The wires have a distance of 8 mm to one another.

The coordinates are then allocted to their actual trajectories and the trajectories on the

other hand are fitted in with a helix. The helix has five free parameters of which the

following three are relevant for this thesis:
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Figure 2.4: Schematic depiction of the JDC.

• The curvature of the Helix α

• The angle between the x-axis and the rΦ-projection Ψ0

• The angle of inclination λ

The four-momentum can be obtained with these three parameters, the absolute value of

the momentum p = pt
√

1 + tan2λ and the transversal momentum pt =
qB
α

P =



√
m2 + p2

pt cos Ψ0

pt sin Ψ0

pt tanλ

 (2.2)

where m is the mass and q the charge of the particle and B the magnetic field. The JDC is

also used to seperate between pions and kaons by measuring dE
dx .

2.2.4 Calorimeter

A calorimeter is used to detect photons thus making it the most important component of

the detector. The calorimeter of the Crystal Barrel detector is denoted by CB. It is laid out

as a barrel consisting of 1380 CsI(Tl) crystals. It was positioned such that the target was

exactly in the center of the barrel. A schematic depiction of it is given in Figure 2.5. The

CB surrounds the JDC completely which can be seen in figure 2.2 where CB is coloured

yellow. In order to retain the symmetry of the CB, exactly 13 types of crystals are required.

The crystals are arranged in such a way that the crystals in azimutal direction cover 6◦

(type 1) each and those in polar direction cover 12◦ (type 2) each. The calorimeter covers

a spatial angle of ≈ 98.7% · 4π for uncharged particles. The coverage for charged particles

isn’t that high and lays at ≈ 95.2% · 4π. The resolution of the energy of the CB is given by

formulae 2.3 where E is given in GeV.
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σE

E
=

2 − 3%

(E)
1
4

(2.3)

Figure 2.5: The arrangement of the CsI(TI) crystals forming the crystal barrel.

The spatial resolution has a value of 20 mrad in both - Φ and Θ - direction. The complete

CB construction with all crystals had a weight of 4 t.

CsI(Tl) crystals

The cystals that are used for the calorimeter are thallium-dotated (Tl) caesium-iodid

crystals (CsI). They have a length of 30 cm which makes it possible to deponate photons

up to 2 GeV. Furthermore it has a 100 µm thick titan cover which serves as a protection

giving the crystal more stability and protecting the readout electronics from electrical

influences coming from the environment etc. The rear parts of the crystals have the

readout electronics attached (2, 3, 4 and 7 in Figure 2.6). The readouts used photodiodes

for the detection of photons since photodiodes are not influenced by the magnetic field.

Before the photons can be detected by the photomultiplier they have to pass the wave-

length-shifter (6) in Figure 2.6.

These wavelength shifters shift the wavelength of light that are emitted by the crystals in

a wavelength area that is readable by the photodiodes.

2.2.5 Trigger system and data recording

The function of the trigger system was to record only events that were of interest. The

reason for the necessity of a trigger system in detectors in general is the huge amount

of data that is produced during the experiments which can’t all be stored but have to
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Figure 2.6: Schematic depiction of a CsI(Tl)-crystal of the calorimeter with the following

components: 1) Titan cover, 2) and 3) circuit board, 4) optical fibre, 5) protective

cap, 6) wave length shifter, 7) photodiode

be filtered. The trigger system of the Crystal Barrel experiment consisted of multiple

levels as can be seen in Figure 2.7. In each level the number of events was reduced by

one order of dimension. Level 0 and 1 were sole hardware trigger. Level 0 assured that

every event registered originated from an pp-annilation by counting every incoming p. A

second counter behind the target registered every outgoing p which was the signal that

no pp-annihilation took place. The filter criterion of the level 1 trigger was the multiplicity

value for the detected charged and uncharged particles which was compared with the

expected value. Level 3, which is the last level of the trigger system, is a software based

trigger. It calculates the four-vectors and reconstructs π0- and η-mesons. The time to pass

the whole trigger system could take ≈ 1 ms. The level 3 trigger was not used in the data

used in this thesis. Level 0 makes 0.1 µs, level 1 makes 10 µs and level 2 makes up to 1000

µs of this time.
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Figure 2.7: A schematic sketch of the trigger system as it was used in the Crystal Barrel

experiment.
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3 Event reconstruction and data selection

The purpose of the event reconstruction and selection is to prepare the raw data for a

thorough analysis and especially the partial-wave-analysis. The particles have to be iden-

tified and structured because the required four-vectors of the mesons were not measured

directly. Instead of directly detected resonances the data includes only the deay products

like the photons detected by the calorimeter. The whole process from event reconstruction

to the data selection makes use of multiple software packages. The most important are

the following software packages:

• LOCATER, used to reconstruct the tracks of charged particles.

• BCTRAK, responsible for the analysis of the measurements of the calorimeter.

• GTRACK, merges the results of the software packages LOCATER and BCTRACK

for every event to a single record.

• GEANT, used to simulate Monte Carlo events by propagating each particle through

a defined detector in the detector, respectively.

• CBGEANT, is based on GEANT and is customized to the crystal barrel detector.

• CBOFF++, is the interface between the software packages written in FORTRAN

and the analysis software written in C++.

• Brain, is a neural network for the detection of electromagnetic splitoffs.

• ROOT, is a comprehensive library of C++ classes for the analysis of vast data

volumes.

The main part of this chapter focuses on the description how to separate background

events from signal events. Various methods and techniques will be used amongst of

which will be the event based rejection method.
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3.1 Identification of photons in the calorimeter

The photons, created through the various particle decays, penetrate the crystals of the

detector and excite them mainly by pair production and by bremsstrahlung but also by

the photoeffect. As a consequence the so called electromagnetic showers occur. These

electromagnetic showers are converted into light within the crystals and the light is

converted into electric signals and then are processed by the readout electronics. Photons

with high energies can cause electromagnetic showers that are able to reach neighbouring

crystals. To still be able to determine the place of origin and the exact energy that was

deposited, the crystals are grouped to clusters. These clusters are then searched for energy

maxima. The deposited energy of the photons are then determined through the use of

calibration constants whereas the flight direction is determined by the spatial location of

the cluster. In order to suppress the background caused by the readout electronics on

the crystals it is necessary to set energy thresholds. Those energy thresholds are listed in

table 3.1. These values are based to some extend on values from prior works for example

in [Beu1995]. The events of the data that is analyzed in this thesis are 2-Prong1 events.

The value for the minimum energy of a crystal is set at 1 MeV and can be extracted from

Table 3.1. Crystals below that energy are not considered. The standard of a coherent

cluster is 10 MeV. Therefore the minimum energy of a crysal in a cluster must be 4 MeV

to be considered as the starting point in the reconstruction. The central crystal of a

local energy maximum must be 20 MeV to be considered as a energy deposition of an

independent particle. Such an energy maximum is called a PED (Particle Energy Deposit).

The threshold for a crystal within a cluster has to be 4 MeV otherwise it is not considered

as part of a cluster. An energy maximum is considered a PED if it has an deposited energy

higher than 20 MeV.

Table 3.1: Various energy thresholds to suppress background.

Threshold 2-Prong(MeV) Purpose

EXTAL 1 Suppression of the background

from the readout electronics

ECLU 20 The total energy of a cluster in

order to be detected as one

ECLS 4 A cystal within a cluster needs to

have this energy at least

EPED 20 The energy that a PED has to have

at least

1The name n-prong denotes with n the number of charged particles.
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3.1.1 Electromagnetic and hadronic splitoffs

Because the spread of electromagnetic showers are caused by statistical processes it is

possible that more than one energy maximum may occur through one photon. The

shower fluctuations can even expand so far that multiple clusters occur. This is called a

electromagnetic splitoff. This can lead to the reconstruction of wrong photon candidates.

To suppress electromagnetic splitoffs it is not recommended to use the method of energy

thresholds, because it would also suppress low energy photons. Instead artificial neural

networks are used to distinguish between splitoffs and real photons. The recognition is

done by the neural network software BRAIN. Another form of splitoffs are the hadronic

splitoffs. The difference to electromagnetic splitoffs is that hadronic splitoffs are caused

by hadrons. To detect hadronic splitoffs, artificial neutral networks are used as well by

using the software JHONNY WALKER.

3.2 Data selection

The raw data that will be examined in this thesis was recorded in September 1996 at

the Crystal Barrel experiment at CERN in Geneva, Switzerland. The raw data contains

charged and uncharged particles with a total event momentum of 900 MeV/c and consists

of about ≈ 14.9 million events. As a preliminary work it is necessary to remove as much

background as possible from the raw data.

3.3 Preselection

The preselection of the raw data is of great importance to the whole analysis process. The

goal of the preselection is to reduce as much unuseful data and background as possible

in order to decrease the data volume that later has to be analyzed in more detail and thus

will need much more computing power. In the preselection phase data is subjected to a

couple of conditions that determine whether an event can pass or not. These conditions

are applied in a multi-stage approach. These stages are the following:

• Total charge

Charge conservation law requires the total charge for pp events to be zero.

• Charged particles

The amount of charged particles must be two, which means that exactly one positive

and one negative charged particle have to be considered.
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• Number of photons

The number of photons must be two in the final state

• Energy and momentum

Conservation of the total momenta and energy must be given with ∆~p = |pevent −

pbeam| < 200 MeV/c and ∆E = |Eevent − Epp| < 400 MeV

• Z-vertex cut

The z-vertex must be within the target.

Applying all selection stages gives the statistics listed in table 3.2. The goal to decrease

the background volume from the data significantly is achieved. The total data decreased

by about 95 % compared with the number of events of ≈ 14.9 million given before the

preselection. The fact that it is possible that also relevant data will be cut out makes a

study on Monte Carlo generated events with the final state π+π−η necessary. Studies

on Monte Carlo generated events are dealt with in section 3.6. The first selection stage,

where only final states with 2 charged particles are allowed to pass, decreases the number

of events by≈ 30 %. This is probably due to the fact that the creation of uncharged pions

and Kaons cover a great share on all events leading to uncharged final states like π0π0

which are filtered out in the first preselection stage. The second stage leads to a decrease

of an additional 10 % of the data which is compared with the first stage not a great leap.

A conclusion that can be made from this is that most of the produced events that lead

to a final state with two charged particles are composed of a negatively and a positively

charged particle. The third stage that pass only events leading to a final state with 2

photons candidates has the the greatest decrease in data volume. An additional share of

≈ 50 % is cut out by the third stage. Figure 3.1 shows the invariant-γγ mass spectrum

after the whole preselection process. The spectrum has two resonances with the first

resonance as the dominant one. The first resonance corresponds to neutral pions and it

can be concluded that pions have the greates share on the data. The last two cuts (events

inside energy window, events inside momentum window) result in an insignificantly

small amount of cut-out-events. The energy window cut and momentum window lead

to a decrease of an additional ≈ 4 % leaving the preselection at 670122 events which make

up ≈ 5 % of the originally given events.

Z-vertex cut

The last cut of the preselection considers the z-vertex. In Table 3.2 it is listed that the

events are decreased by an additional ≈ 0.10% as a result of the z-vertex cut. Figures 3.2

and 3.3 give a glance at these events which are not within the z-vertex and how they are

distributed over the plane. Most of these events lie at between ≈ 10 - 15 cm with a peak at



3 Event reconstruction and data selection 22

z ≈ 12 cm in figure 3.2. A better insight on how the cut-out events are distributed over the

y-z-plane can be gained from figure 3.3. It reveals that events which were cut out from the

area from z ≈ −8 cm downwards are quite equally distributed over the y-z-vertex-plane

with a relatively little increasing number of events going up from z ≈ −20 cm to z ≈ −8 cm.

On the area where the peak of the cut out events is situated the distribution of the events

over the y-z-vertex-plane is non-uniform. The number of events increases relatively much

in the y-z-area of ≈ 10 cm< z < ≈ 15 cm and ≈ −2 cm< y < ≈ 2 cm. This high amount

of events in that region is probably caused by annihilations in the veto-counter. Figure

3.4 shows all events that are located within the z-vertex. The z-vertex seems to have a

deviation of ≈ 0.55 cm left from the center. This is important and has to be considered

in the reconstruction process since a deviation leads to a deviation of the annihilation

vertex, as well.

Table 3.2: Statistics that are obtained after the preselection.

Events Number of events Share (%)

Total 14875517 100

2 charged events 10037362 ≈ 67.68

Positive and negative charge 8791253 ≈ 59.10

2-Gamma-events 1258241 ≈ 8.46

Events inside energy window 1029024 ≈ 6.92

Events inside momentum window 670122 ≈ 4.50

Z-vertex cut 654595 ≈ 4.40
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Figure 3.1: The γγ-spectrum of all events after the preselection. It is still made up by a

high share of background.

At the end of this section, before proceeding to the kinematic fit and the background

rejection section in general, a deeper look at the η resonance is recommended. Figure 3.5

shows the invariant γγ-spectrum after the preselection zoomed in between the range 250
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Figure 3.2: The z-vertex. The events depicted are those that are cut out by the z-vertex-cut.
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Figure 3.3: Histogramm of the y-z-vertex-plane. It gives an insight on the distribution of

the cut-out-events on the y-z-vertex-plane. The events depicted are those that

are cut out by the z-vertex-cut.
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Figure 3.4: Z-vertex distribution. The histogram shows all events that are located within

the z-vertex.

MeV up to 750 MeV. A resonance is expected to have the shape of a voigtian2 due to the

resolution of the detector. The conclusion from this is that the η-resonance given in figure

3.5 still contains lots of background events. It can be anticipated that in the range of ≈ 500

MeV/c2 downwards and that the tail from ≈ 600 MeV/c2 upwards is sole background.

Furthermore it can be anticipated that the η-signal is still contaminated with background

events, too. The upcoming section aims to further decrease or even completely separate

out background events from signal events.
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Figure 3.5: The invariant-γγ sprectrum in the range between 250 MeV/c2 - 750 MeV/c2.

The peak is probably an η-resonance.

2A voigtian is a convolution of a Gauß-lineshape and a non-relativistic Breit-Wigner-function.
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3.4 Background rejection

The background rejection process plays an essential role in the whole analysis. The

preselection that was described in the previous section cut out ≈ 96% of the data leaving

≈ 654595 events. The invariant γγ-spectrum that is depicted in figure 3.1 allows to make

the assumption that the majority of the given events are still made up of background

events. The goal of this section is to cut out the bulk of it in order be able to proceed to

the partial-wave-analysis. Various methods exist in the field of background rejection of

which three have been applied and will be presented in this section. The first one will

be the kinematic fit that will have probably the greatest effect since it can be expected

that most events that are classified as background are non-π+π−γγ or non-π+π−η-final-

state events. Those will be cut out mostly by the kinematic fit. After that this section

will present some Monte-Carlo studies in order to determine still existent non-π+π−γγ

and non-π+π−η-final-state events. The last that will be presented in this section is an

event based background rejection method. At that moment only few will make up the

remaining data. The applied event based rejection will cut out most of this last remaining

background.

3.4.1 Kinematic fit

Theoretical background

The kinematic fit plays an essential role in the analysis of the data. The information on

the theory of the kinematic fit can be found in [Pyc2012] and [Kur1995]. The fit makes

use of kinematic constraints to improve the data quality. The detector measures various

variables for every particle that is detected. These variables are for instance the energy or

the azimuth angle of the particle. The method of the kinematic fit makes use of the fact

that these variables are bound to constraints like the energy and momentum conservation

law and which gives one hypothesis. In total four constraints can be obtained. Other

important constraints are the definition of certain decay chains of reaction channels and

their intermediate states, respectively. The final stateπ+π−γγ, for instance, can be required

to have the intermediate state π+π−η with η → γγ. In order to determine whether the

hypothesis is fulfilled it is necessary to calculate the invariant mass of the final state

system. This can be done with equation 3.1 where mn denotes the invariant mass of the

particle-system, Ei the energy of particle i, ~pi the three-omentum vector of particle i and

n the number of constraints.
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m2
n =

 n∑
i=1

Ei

c2
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2

−

 n∑
i=1

~pi

c


2

(3.1)

procedure for determining the corrections δyi for the measured variables yi is to find the

variable zi = yi + δyi that fulfills the n constraints

f j(z) = 0 (3.2)

where j is the j-th constraint. The determination of the best value can be done with various

fit methods. The method that is used by CBKFIT is the χ2-method. In the χ2-method

the optimum is achieved if the χ2-function given in equation 3.3 reaches its minimum.

The variable Cy in equation 3.3 denotes the covariance matrix of the specific event which

becomes the error σi if the measurements are uncorrelated. Then equation 3.3 reduces to

equation 3.4

χ2 =
∑

i

∑
j

δyi(C−1
y )i, jδy j (3.3)

χ2 =
∑

i

(
δyi

σ

)2

(3.4)

Equation 3.4 basically says that the χ2-value is the quadratic sum of the correction mul-

tiplicated by their weight given by the reciprocal of the error. The method that is used

to obtain the minimum of the χ2-function is the method of the lagrange multipliers. The

differential equation is given in equation 3.5 where the boundary conditions are contained

in the multipiers α j and k denotes the number of measurements.

∂χ2

∂δyi
+

∑
j

α j
∂ fi
∂δyi

= 0 i = 1, ..., k (3.5)

After solving the differential equation system and obtaining the χ2-value it can be pro-

ceeded to determine the confidence-level-distribution CL(χ2) which is given in equation

3.6. The CL is a value that can be interpreted as the quality of the fit. Basically, it is the

probability that the given event can be described by the set hypothesis. The variable n

in equation 3.6 denotes the number of degrees of freedom. A good fit results in a flat

CL-distribution.
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CL(χ2) =

∫
∞

χ2

Z
n

2−1 exp−
z
2

2
n
2 Γ( n

2 )
dz (3.6)

Another value that gives a measure for the quality of the fit is the pull, which is the

normalized deviation of a measured value to the measurement error. An ideal pull

distribution is a Gaussian with width σ = 1 and mean µ = 0.

Applying the kinematic fit

Prior to the kinematic fit the exact errors of the measured values have to be determined.

Furthermore the scaling factors for the measurement errors are determined, as well. For

the photons the values considered in the kinematic fit are the following:

• The polar angle Θ

• The azimutal angle Φ

• The squareroot of the energy
√

E

The tracks of the charged pions however are being set by the parameters that were

described in chapter 2. These were the following:

• The curvature of the helix α

• The angle between the x-axis and the rΦ-projection Ψ0

• The angle of inclination tanλ

In order to determine the right errors it is necessary to optimize the pull distributions

iteratively by comparing the current pull distribution with the ideal Gaussian-distribution

that has a width of 1. The process is repeated until the χ2 between both distributions

reaches its minimum. As a first step the pull distributions for the hypothesisπ+π−π0 have

been optimized since the statistics for the this channel is higher. This makes the channel

π+π−π0 more easily to handle. Furthermore it is assumed that the optimization of these

pulls lead to better pulls of the π+π−η hypothesis, as well. The pull distributions of the

π+π−π0-hypothesis are depicted in figure 3.6. Figure 3.7 shows the pull distributions for

the π+π−η hypothesis at a beam momentum of 900 MeV/c and its confidence level. The

confidence level distribution gives information about how good the determined errors

match. An increase in the slope of the confidence level indicates that the errors are set too

small. As can be seen from the figure the confindence level distribution is quite leveled
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for CL>0.1. The pull distributions mostly can be described by a gaussian-distribution,

however the
√

E-pull for the uncharged particles has a deviation of 2.66 · 10−1 from the

center. That deviation isn’t caused by wrongly determined error values and therefore

can’t be altered by changing the error values. This deviation might result from the fact

that the
√

E-pull does not exactly follow a Gaussian. It was indicated that the target

had a deviation of z0 = −0.65 cm in the beamtime of 1996. The z-vertex-distribution

which is depicted in figure 3.4 shows a deviation of ≈ 0.55 cm from the center. While

this deviation is considered in the determination of the constants, it still might have been

caused by another error in the configuration of the detector. After the determination of

the kinematic constants the events can undergo the kinematic fit.

The goal of this section is to apply the kinematic fit on the data. The data that is left after

the preselection will be kinematically fitted with the software package CBKFIT. Three

hypotheses have been tested:

1. hypothesis

π+π−γγ

2. hypothesis

π+π−η

3. hypothesis

π+π−π0

In order to get a first evaluation of the kinematic fit a look at the pull histograms can be use-

ful. The figure in 3.7 depicts five pull-histograms and the CL-distribution of theπ+π−η-fit.

The figures 3.7 a)-c) depict the pulls of uncharged particles for Θ, Φ and
√

E. The pulls in

figures 3.7 a) and b) fulfill the values that an ideal pull should have with σφ ≈ 1.08±3·10−3,

µφ ≈ 1.69·10−4
±3.71·10−3 and σΘ ≈ 1.12±3.15·10−3, µΘ ≈ −4.89·10−2

±3.89·10−3. The pull

of the kinematic variable
√

E in figure 3.7 c), however, shows a serious deviation from the

ideal value of µwith σ√E ≈ 1.05±3.15 ·10−3 and µ√E ≈ 2.66 ·10−1
±3.80 ·10−3. The last two

histograms in figure 3.7 depict the pulls for charged particles for the kinematic variables

α and Ψ0. The Ψ0-pull shows a deviation as in the
√

E-pull of uncharged particles. This

might be interconnected. The α-pull for charged particles has nearly ideal values with

σα ≈ 1.09 ± 3.25 · 10−3 and µα ≈ −2.35 · 10−1
± 3.22 · 10−3. Deviations can be seen in the

√
E and Ψ0 pull distributions for the π+π−π0-fit in figure 3.6, as well. The tanλ-pulls for

both the π+π−η and the π+π−π0 are not depicted since they also have nearly ideal values.

The deviations of the pulls might be due to an incorrect alignment or calibration of the

detector or en error in the reconstruction leading to a systematic error in the analysis. The

fact that all other pulls are nearly ideal and that the data in general has a high qualtity

assures that the distortions caused by that error will be marginal.
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Before considering the CL-distribution of the π+π−η-fit a look at the CL-distribution of

the π+π−π0-fit should be taken because it turned out that optimizing the π+π−π0-fit

leads to a greater impovement in the π+π−η-fit than optimizing the π+π−η-fit itself. The

CL-distribution for the π+π−π0-fit is not evenly distributed. The CL-distribution of the

π+π−η-fit in figure 3.7 d) is evenly distributed from a CL-value of ≈ 0.1 upwards. As a

conclusion the cut on the CL will be done at 0.1. All events that with CL< 0.1 will be cut

out. This will lead to a further decrease of background.

After applying the kinematic fit the number of events decreases significantly. The statis-

tics are listed in table 3.4. The first kinematic fit - on π+π−γγ - leads to a decrease of ≈ 29

% in the number of events with 414650 events. The second fit on the π+π−η-state leads to

a decrease of ≈ 93 % in the number of events with 44395 events left. The vast leap from

the first fit to the second comes from the huge amount of pions and the fact that π+π−η

and π+π−π0 have the same final state π+π−γγ. The particles that originate from π+π−π0

get only cut out after the fit of π+π−η. The result of the π+π−γγ hypothesis can be seen

in the invariant γγ-mass spectrum in figure 3.8. The first observation that can be made

from figure 3.8 is that it differs greatly from figure 3.1 in respect to the background. The

background between the resonances seems to have gone completely. The resonances of

the π and the η resonance have become clear with the expected shape. A third structure

that was already visible in figure 3.1 got uncovered. It is located at between ≈ 700 MeV/c2

up to ≈ 850 MeV/c2 and is probably originating from a co-decay of the reaction ω→ π0γ

or ρ→ π0γ where a low energetic γ gets lost.

Although the spectrum seems to be free of any background it is worth to zoom in between

a shorter range. Since the η, as already told, has a prominent role in this work figure 3.9

depicts the range around the η resonance. The solid line in that figure belongs to the

background lineshape that was fitted to the spectrum. The parameters of the fit are given

in table 3.3. The value of the parameter µ ≈ 550 MeV/c2 corresponds to the value of the

η-mass with mη ≈ 547.85 MeV/c2. Having examined the resonance the focus should be

directed on the bottom areas left and right from the resonance. These areas left and right

are still filled with background events which indicates that the resonance itself is still

impaired with background events.

3.4.2 Event based background rejection

In addition to the kinematic fit there are other methods to further separate background

events from signal events. The method that will be used to further decrease the back-
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Table 3.3: The parameters of the fit function of the η-resonance given in figure 3.9. The

obtained µ-parameter of the fit, which corresponds to the η-mass, differs by

only 0.02 MeV/c2.

Fit parameters of the peak Measured result PDG-value for the η mass

µ in MeV/c2
≈ 547.87 ± 0.07 ≈ 547.85
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Figure 3.6: The figures in a)-c) show the pull distributions for uncharged particles in the

π+π−π0-fit. The distributions in a) and b) have nearly an ideal Gauß-shape.

Like in the π+π−η-fit the Pull in c) has a deviation in µ as well. Figure d) shows

the confidence-level distribution. The last two histograms e) and f) depict the

α and Ψ0 pull distributions for charged particles.
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Figure 3.7: The figures in a)-c) show the pull distributions for uncharged particles in the

π+π−η-fit. The distributions in a) and b) have nearly an ideal Gauß-shape.

Pull c) has a deviation in µ. Figure d) shows the confidence-level distribution.

The last two histograms e) and f) depict the α and Ψ0 pull distributions for the

charged particles.

Table 3.4: Statistics obtained after the kinematic fit.

Events Number of events Share (%)

π+π−γγ 414650 ≈ 61.88

π+π−η 44395 ≈ 6.62



3 Event reconstruction and data selection 32

2) / MeV/cγγm(
0 200 400 600 800 1000 1200 1400

E
ve

n
ts

0

10000

20000

30000

40000

50000

60000

70000

Figure 3.8: The invariant γγ-mass spectrum after the kinematic fit for the π+π − γγ hy-

pothesis. Two resonances can be seen from left to right which correspond to π

and η.
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Figure 3.9: The invariant γγ-mass spectrum after the kinematic fit for the π+π − γγ hy-

pothesis in the range of 240 MeV/c2 up to 750 MeV/c2 after the kinematic fit.

The solid line is the graph of the fit function which has the parameters given

in table 3.3.
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ground is a multivariate subtraction method described in detail in [WIL2009]. The special

characteristic of this method is that it separates background events under the η signal

shown in figure 3.9. Such a separation is not possible with the kinematic fit introduced

in the previous section. That method assigns a probability to each event which is called

the Q-factor. The Q-factor gives the probability for an event originating from the signal.

As a first step, in order to determine the Q-factor, the distances between the nc nearest

events for every event have to be determined. The value for the nc nearest events is set

to 200 in this thesis. To do this a proper definition of the distance between two events

must be given. Furthermore a coordinate system for that metric has to be defined. The

definition for the distance between every given event is given in equation 3.7 where the

space is spanned by ~ξ and the metric is defined by δkl
σ2

k
with σk the normalization factor

and δkl = ξi
k − ξ

j
r.

d2
i, j =

∑
k,r

ξi
k − ξ

j
r

σk


2

(3.7)

The phasespace is spanned by the coordinate-system given in equation 3.8.

~ξ = (cosΘη,p, cosΘπ+π−,p,Φπ+π−,d, cosΘπ+η,p,Φπ+η,d) (3.8)

The method will be applied on the η-signal of the reaction channel pp → π+π−η. Using

the η-mass as the reference coordinate σcosΘ = 2 and σΦ = π the following distance is

obtained:

d2
i, j =

1
22

[
(cos Θη,p,i − cos Θη,p, j)2 + (cos Θπ+π−,p,i − cos Θπ+π−,p, j)2 + (3.9)

(cos Θπ+η,d,i − cos Θπ+η,d, j)2
]

+
(Φπ+π−,d,i −Φπ+π−,d, j)2

π2

+
(Φπ+η,d,i −Φπ+η,d, j)2

π2

The functional dependence of the signal and the background on the reference coordinate,

mη, is

S(mi, ~ξi) = F(mπ+π−η) · V(mi,mη,Γη, σ) ≈ A · V(mi,mη, σ,Γη) (3.10)

B(mi, ~ξi) = B(mi, ~ξπ+π−η) ≈ a ·mi + b ·m2
i + c (3.11)
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where mη = 547.853 MeV/c2, Γη = 1.30 MeV, σ is the resolution of the detector, ~α = (s, b1, b0)

obtained from the fit and

V(mπ+π−η,mη,Γη, σ) =

1
√

2πσ
Re

[
w(

1
2
√
σ

(mπ+π−η −mη) + i
Γη

2
√

2σ
)
] (3.12)

the Voigtian with the complex error function w. The Voigtan is a convolution of a Gaus-

sian and the non-relativistic Breit-Wigner function taking the resolution of the detector

into account. It should be noted that in [WIL2009] the background is assumed to be linear

of the form B(mi, ~ξi) = B(mi, ~ξπ+π−η) ≈ a · mi + b. In this analysis a polynomial of second

order proved to fit better on the background. The mass-spectrum is fitted with the sum

of 3.10 and 3.11 using the maximum-likelihood-method. The Q-Factor is then obtained by

Q =
S

S + B
(3.13)

As an example the Q-factor for one event of the η-siganl is depicted in figure 3.10 with an

mass offset of 400 MeV/c2.

Figure 3.10: As an example the Q-factor for one event for the η signal - all events (blue),

only signal events (green) and background events (red) with Q = S
S+B . The

x-axis has an offset and is given by (mγγ − 400 MeV/c2).
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3.5 Results

Applying the event based background rejection method on all events results in Figure

3.11. It depicts the signal events (blue) which have been weighted with the Q-factor, the

background events (red) weighted with 1 − Q and the unweighted events (black). The

graph of the background events has a nearly linear course as expected. Especially the

outer regions from 400 MeV/c2 to ≈ 500 MeV/c2 and from ≈ 600 MeV/c2 to 700 MeV/c2

which are expected to be made of solely background match exactly with the graph of the

1 −Q-weighted events.

The Figures 3.12 and 3.13 depict the Dalitz-plot for the Q-weighted signal events and

the Dalitz plot for the events with weight 1-Q, respectively (more information on Dalitz

plots in appendix A). The various resonances in the signal Dalitz plot will be discussed

later. The background Dalitz plot shows high background in regions of resonances in

the signal Dalitz plot. Comparing these regions of the background with the Q-weighted

signal dalitz plot some structures seem to be similiar.
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Figure 3.11: The invariant-γγ-mass spectrum after the kinematic fit for the π+π − γγ

hypothesis for the η-resonance for all events (black), only Q-weighted events

(blue) and 1 −Q-weighted events (red).

First assumptions about intermediate states can be made with the help of the invariant

mass spectra of the π+π−-system and the π+η which are depicted in figures 3.14 and 3.15

respectively. Two clearly visible resonances can be seen in figure 3.14. The first one lies in
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Figure 3.12: The signal Dalitz plot with the Q-weighted data events. Various resonances

can be seen like the ρ-resonance, the a0(980), f0(980), f2(1270) and a2(1320)

giving a starting point for the partial wave analysis in the next chapter.
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Figure 3.13: The background dalitz plot with the 1 − Q-weighted data events. Some

structures seem to be similiar to the Q-weighted dalitz plot.
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Figure 3.14: Invariant π+π−-mass spectrum after the event based background rejection.
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Figure 3.15: Invariant π+η-mass spectrum after the event based background rejection.
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the area between ≈ 650 MeV/c2 up to ≈ 800 MeV/c2 which can be said to be the ρ-meson

since it corresponds to its mass with mρ ≈ 770 MeV/c2. The second resonance is probably

a f2(1270) and ranges from ≈ 1100 MeV/c2 to ≈ 1350 MeV/c2. A more detailed look at that

spectrum reveals a step-like shape within the range from ≈ 450 MeV/c2 to ≈ 500 MeV/c2.

The mass spectrum that is depicted in figure 3.15 has one dominating resonance within

the range from ≈ 1200 MeV/c2 to ≈ 1500 MeV/c2 which corresponds to the a2(1320)-mass

with ma2(1320) ≈ 1318 MeV/c2. The smaller peak between the range ≈ 900 MeV/c2 up to

≈ 1000 MeV/c2 belongs to the a0(980) with a mass of ma0(980) ≈ 980 MeV/c2.

3.6 Monte carlo studies

Monte carlo studies can help to identify states that could mistakenly be taken as the

π+π−η-state. This can happen if one or more particles get lost. For example if one η in the

π+π−ηη-state gets lost in some way this will result in such a scenario. The relevant decay

channels are simulated with Monte Carlo generated events. The software that is used is

CBGEANT. Table 3.5 shows the statistics for the Monte Carlo events for the π+π−η-state

after the kinematic fit. ≈ 40% of the events are filtered out after the fit on π+π−γγ which

is ≈ 20% more than the amount cut out from the data events. This is an indication that

other reaction channels with the final state π+π−γγ have a considerable share on the data

events. The fit onπ+π−η decreases the amount of Monte Carlo events by only≈ 2% which

corresponds to the expectations since the Monte Carlo events were generated only for the

π+π−η-state.

Table 3.5: Statistics obtained after the kinematic fit for Monte Carlo events for the decay

π+π−η→ π+π−(γγ).

Events Number of generated events Share (%)

Total 10000000 ≈ 100

After preselection 6176665 ≈ 61.77

π+π−γγ 3076794 ≈ 30.77

π+π−η 2982402 ≈ 29.82

Monte Carlo events on various reaction channels were generated in order to find out how

much events that are misidentified asπ+π−η-events could possibly pass the kinemtatic fit.

The relevant channels that were simulated are listed in Table 3.6. The table shows the total

amount of events after the preselection of the considered channels. The total amount for

all channels 1000000. The results show that the events of the channels π+π−ηη, π+π−ηηπ0

and π+π−ηπ0π0 got completely cut out or at most 1 event passed. The channel π+π−π0

has only ≈ 2.5 · 10−5 of all events left which is negligible, too. Only channel π+π−π0π0

has a share events that passed the π+π−η-fit with 430 events. However, the ratio is still
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Table 3.6: Statistics obtained after the kinematic fit for Monte Carlo events of various

reaction channels.

Fit Total π+π−γγ Share π+π−η Share

π+π−ηη 1000000 41 ≈ 4.1 · 105 1 ≈ 0%

π+π−ηηπ0 1000000 0 0% 0 0%

π+π−ηπ0π0 1000000 0 0% 0 0%

π+π−π0 1000000 215496 ≈ 0.22 25 ≈ 2.5 · 10−5

π+π−ηπ0 1000000 669 ≈ 6.69 · 10−4 96 ≈ 9.6 · 10−5

π+π−π0π0 1000000 5394 ≈ 5.39 430 ≈ 4.3 · 10−4

relatively small which leads to the conclusion that a contamination of the data with events

from these channels are negligible. A cut on any of these channels would therefore cut

out more signal events than events originating from these states. This led to the decision

not to do a veto cut on these channels.

3.6.1 Detector efficiency

The detection efficency and reconstruction efficency vary over the measured momentum

and energy ranges. As a consequence each monte carlo generated event that will be used

in the partial wave analysis is muliplicated with its detection and reconstruction efficency

εi. In order to determine the reconstruction efficencies Monte Carlo events are generated

for the final state π+π−η. The number of generated Monte Carlo events is ≈ 1 · 107.

The events are then subjected to all background rejection methods and cuts that were

described previously in this chapter. Because of the varying efficency the Monte Carlo

events, which are generated phasespace distributed events, are thus not homogenously

distributed in the dalitz plot as can be seen in figure 3.16. The efficency seems to be

equally distributed over the momentum range but areas with higher efficencies then the

overall average exist.
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Figure 3.16: Dalitz plot visualizing the detector efficiency.
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4 The partial wave analysis

This chapter is aimed at deriving the formalism and explaining the theoretical background

of the partial wave analysis. As already told the dalitz plots show special structures, for

example resonances. In order to identify the contributing resonances in the π+π−η-data

it is necessary to do a partial wave analysis. The formalism that will be applied here

is the helicity formalism. After describing the helicity formalism the isobar model will

be introduced. The isobar model reduces a three-body problem down to a two-body

problem. The technical realisation of the partial wave analysis and the log-likelihood

method are presented in this section as well.

4.1 Helicity formalism

The partial wave analysis requires the determination of the various angular distributions.

One preferred method for the determination of the angular distributions is the helicity

formalism which allows an uniform handling of both mass and massless particles. The

helicity operator is invariant over rotations. However, it is not invariant over boosts

along p. This section covers amongst other things the rotation of angular momenta,

helicity states and the transition amplitudes. The helicity formalism is comprehensively

covered in [Ric84].

4.1.1 Definition of helicity

The helicity λ is defined as the projection of the spin onto the momentum of a particle.

Mathematically it is given as

λ = ±~S · p̂ (4.1)

where ~S is the spin vector and p̂ =
~p
|~p| . λ can also be written as a function of total angular

momentum J given in equation 4.2. This is possible since the angular momentum vector~l
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is vertical to the direction of the momentum vector ~p and hence the scalar product of the

two is~l · ~p = 0.

λ = ±~J · p̂ (4.2)

The λ is with the z-component of the spin given as

λ = ±sz · p̂ (4.3)

and since the sz-component of the spin has 2s+1 possible configurations with values

sz = −|s|,−|s − 1|, ....., |s − 1|, |s| the third component of the helicity λ, as well, has 2s+1

possible configurations. The values of λ can be λ = −|λ|,−|λ − 1|, ....., |λ − 1|, |λ|. The total

helicity of a two particle system in which both particles have the same mother particle is

given in equation 4.4.

λ = λ1 − λ2 (4.4)

Equation 4.4 follows from the fact that the momentum vectors of the two particles have

the same absolute value with opposite directions (equation 4.5).

~p1 = −~p2 (4.5)

4.1.2 Rotation of angular momentum states

A particle that has a total angular momentum of J and z-component m is seen in the

state
∣∣∣ jm〉

by an observer O where
∣∣∣ jm〉

is the eigenstate of the operators J2 and Jz. An

observer observing the particle at a position that is relative to O rotated by a rotation

r(α, β, γ) sees the particle in the state
∣∣∣ j′m′〉. The variables α, β, γ are the Euler angles

that describe elemental rotations of coordinate systems. The primes denote the different

inertial system with S the inertial system of the observer O and S′ the intertial system of

O′. The two states are connected over the rotation operator R(r) which is a function of the

Wigner-D-matrices D j
m′,m. The Wigner-D-function is defined in equation 4.6.

〈
jm

∣∣∣ R(α, β, γ)
∣∣∣ j′m′〉 = δ j j′D( j,m,m′, α, β, γ) (4.6)

The rotation operator R(r) can be found to be
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R(α, β, γ) = e−iαJze−iβJye−iγJz (4.7)

with Ji the total projection of the angular momentum on the i-axis. The fact that equation

4.6 is non-zero only for j = j′ and after substituting 4.7 it becomes

D( j,m,m′, α, β, γ) =
〈

jm
∣∣∣ e−iαJze−iβJye−iγJz

∣∣∣ jm′〉 (4.8)

and since e−iγJz
∣∣∣ jm〉

= e−imγ
∣∣∣ jm〉

and e−iαJz
∣∣∣ jm〉

= e−imα
∣∣∣ jm〉

equation 4.8 can further be

written as

D( j,m,m′, α, β, γ) = e−imα 〈
jm

∣∣∣ e−iβJy
∣∣∣ jm′〉 e−imγ =

e−imαd( j,m,m′, β)e−imγ
(4.9)

with

d( j,m,m′, β) =
〈

jm
∣∣∣ e−iβJy

∣∣∣ jm′〉 . (4.10)

Further information on Wigner-D-matrices can be found for example in [Schul2000].

4.2 The isobar model

In the isobar model the reaction pp→ π+π−η is considered to consist of processes in which

only two mesons are involved. As a consequence the reaction pp→ π+π−η can be seen as

a sequential two-body-decay which has two different reaction types:

1. pp→ Xη =⇒ X→ π+π−

2. pp→ X±π∓ =⇒ X± → π±η

In the first reaction type a mother particle decays into the resonance X and η. The

resonance X again decays into two daughter particles π+π− and the whole reaction ends

up in the state π+π−η. The figure 4.1 shows as an example the first of the processes listed

above with the pp-annihilation from which the isobar X and an η are created. The η is the

recoil particle. The angles Θ and Φ are the production angles of the resonance in the pp

rest frame, with the antiproton beam lying in the z-axis and with a positive direction.
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X

π+

π+

η

p p

Figure 4.1: Kinematic process of the pp-annihilation boost in the pp rest frame. The direc-

tion of the antiproton p is set to be in the positive direction of the z-axis.

As a next step the angle between the production plane and the decay plane in the pp-

annihilation rest frame has to be determined. That angle is called the Treiman-Yang

angle.

4.2.1 Initial states and the pp-annihilation in flight

It is possible to determine selection rules for the pp-reactions. The conservation laws of

angular momentum J, charge conjugation C and parity P will be used to derive those

rules.

The pp-reaction can adopt two possible total spin values which are Sp,p = 0 and Sp,p = 1.

This leads to initial states that can be distinguished by the multiplicity µ = 2Sp,p + 1

with µ1 = 0, which denotes a singlet state, and µ2 = 3, which denotes a triplet state.

The initial states can be obtained with the angular momentum Lp,p = 0, 1, 2, ..., the P-

parity and the C-Parity. The possible values for a triplet-state are given by the equations

??-??. Due to quantum number conservation the final states of the 2S+1L j initial state

can adopt only specific quantum numbers given in table 4.1. A conclusion from the

possible quantum number values in table 4.1 is that final states with quantum numbers

JPC = 0−−, 0+−, 1−+, 2+−, ... are not possible. However, it should be noted that the πη-final

state possibly leading to the π1(1400) can have a quantum number configuration of 1−+.

The pp-annihilation is a complex process in which the quarks have to considered for a

proper understanding as well. An encounter of a proton’s quark with an antiproton’s

antiquark leads to a rearrangement of the remaining quarks into mesons.
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Table 4.1: Possible initial states of the pp-system with spin singlet states and spin triplet

states mixed.

J Singlet JPC Triplet JPC Triplet JPC

λ = 0 λ = ±1 λ = ±1, 0

0 1S0 0−+ 3P0 0++

1 1P1 1+− 3P1 1++ 3S1, 3D1 1−−

2 1D2 2−+ 3D2 2−− 3P2, 3F2 2++

3 1F3 3+− 3F3 3++ 3D3, 3G3 3−−

4 1G4 4−+ 3G4 4−− 3F4, 3H4 4++

5 1H5 5+− 3H5 5++ 3G5, 3I5 5−−

6 1I6 6−+ 3I6 6−− 3H6, 3J6 6++

What can be said about the isospin states of the pp-system is that they are a composition

of |00〉 and |10〉 given in equation 4.11. The values i1 and i2 denote the mixing ratios of

both states with the constraint i20 + i21 = 1.

|〉 = i0 |00〉 + i1 |10〉 (4.11)

4.3 Log-likelihood-method

The amount of events decreases drastically after applying background reduction methods,

whereas the χ2-method, that was introduced in the section of the kinematic fit earlier,

requires a high amount of statistics. Instead an event based fitting method is the method

of choice. In this work it will be the log-likelihood-method which assigns a probabilty

based on the fitted model to each event. This probability gives a fit quality.

The likelihood function is obtained by multiplicating the probabilities. The probability

for one event pi to be detected is given by

pi = C · wiεi. (4.12)

The probability is a function of wi and εi. The variable εi is the detector and reconstruction

efficiency and wi the total amplitude squared. The constant C is given as 1 divided by the

integral over the whole phasespace (4.13).

C = (
∫

(wε)dΩ)−1 (4.13)

Hence the likelihood-function is given by
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L(~p) = N!
N∏

i=1

pi (4.14)

with N the total amount of events. If we substitute 4.12 into equation 4.14 we get

L(~p) = N!
N∏

i=1

wi · εi

(
∫

(wε)dΩ)
(4.15)

The integral in the denominator is solved using Monte Carlo integration. Due to technical

reasons it is more comfortable to take the logarithms of the likelihood function and to

multiplicate the logarithmic likelihood function with -1. That way the product turns

into a sum which is easier to handle and the multiplication with -1 has the advantage

that minimization algorithms can be used. The NLL (negative logarithmic likelihood

function) is then given by

NLL = −ln(L) (4.16)

with L the likelihood function. Substituting L into equation 4.17 gives

NLL = −ln(N!) − (
N∑

i=1

ln(wi) +

N∑
i=1

ln(εi)) + ln(Φ) (4.17)

where Φ results from the Monte Carlo integration of the denominator in equation 4.15

and is given as

Φ =

∑NMC
i=1 ln(wi)

NMC
. (4.18)

The goal in the fit process is to minimize the NLL-function in order to find the best fit.

Prior to the fit some simplifications can be made. The sum over the εi in equation 4.17

is a constant and can be omitted in the NLL-function. This is because a constant has no

effect in comparing the various fit results. Furthermore the first subtrahend −ln(N!) can

be approximated with the stirling equation given in 4.19.

ln(N!) ≈ Nln(N) −N (4.19)

After introducing the generalized probability function we obtain from 4.17 the equation

4.20.
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NLL = −

N∑
i=1

ln(wi) + ln(Φ) +
1
2
· (Φ − 1) 2 (4.20)

Before applying the NLL-function it is necessary to incude the Q-factor that was deter-

mined in the previous chapter for each event. To include the Q-factor the NLL-function

needs to be modified and as a result we get equation 4.21.

NLL = −

Ndata∑
i=1

ln(wi) ·Qi +

Ndata∑
i=1

Qi

 · ln(Φ) +
1
2

Ndata∑
i=1

Qi

 · (Φ − 1) 2 (4.21)

Fitting software

Various software packages are used throughout the whole fitting process. At the very

core of all software packages that are needed is PAWIAN which is used for the partial

wave analysis. It is still under development at the "Institut für Experimentalphysik I"

which is located at the Ruhr-Universität in Bochum, Germany. The development of

PAWIAN is primarily for the PANDA-experiment. PAWIAN is written in C++ and is

an object oriented software framework that can be used for the development of specially

tailored partial wave analysis software. The minimization of the NLL-function is done

by two different software packages which are the Minuit2 and a tool based on generic

algorithms. In the minimization process Geneva is used first since it uses Monte Carlo

methods to start concurrently a huge amount of minimizations at different locations in

order to find the area where the global minimum is located. This makes Geneva quite

fast but unfortunately the results aren’t always very precise. At this point the parameters

are handed over to Minuit2 which is based on the gradient descent method and therefore

is more precise than Geneva. The analysis is done with ROOT again. Apart from these

the software packages qft++ for the determination of the Wigner-D-functions and the

Clebsch-Gordon coefficients and the C++ class libraries Boost are used.

4.3.1 Determination of the significance of contributing waves and the AICc
value

As already told it is necessary to set up various hypotheses with distinct contributing

waves which are then fit to the data. The fit results in a likelihood-value (see section

4.3.1) which is an information about the quality of the fit. Some of the hypotheses will

have better likelihood-values than others which, however, does not have to mean that

these hypotheses are better as well. The improvement of the likelihood-function has to

be significant. The formalism to determine the significance of an improvement will be
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introduced in this subsection. It is based on the formalism described in [Schul2012]. Fits

that have more free parameters will possibly have smaller and thus better likelihood

values LB compared to the likelihood value LA. The ratio of these two becomes then

0 ≤ Λ =
LB

LA
≤ 1. (4.22)

The likelihood is distributed according to equation 4.23 with χ =
(x−x0)
σ2 where x is a normal

distributed random number.

L ∼ exp
(
−
χ2

2

)
→ −lnL ∼ −

χ2

2
(4.23)

Since the log-likelihood-value is used in this thesis equation 1 in 4.23 becomes equation

2 in 4.23 after logarithmization. As a next step the ratio LR of the two likelihood-values

must determined. It can be written as given in equation 4.24 with a factor of 2 and

with the difference of the log-likelihood-functions instead of the ratios of the likelihood-

functions.

LR = −2 · [ln(LB) − ln(LA)] ∼ χ2 (4.24)

The significance in units of σ is then given as in equation 4.25 in a ROOT conform notation.

The function chisquared_quantile_c is the invers function of the normal distributed χ2-

random number function and Prob(LR,ndi f f F) gives the probability for L to lay outside

the confidence interval ±δ = ·σ. ndi f f F denotes the difference between the number of free

parameters of the two compared fits.

n =
√

chisquared_quantile_c(Prob(LR,ndi f f F), 1) (4.25)

Another important value which gives information about the quality of the fit is the AICc

value. It is described in [Fri2012]. The AICc value considers the number of free parameters

of every fit, as well and it needs the LR value in the calculation. It is given by equation 4.26

where k denotes the number of free parameters. The AICc values of the fit are compared

in order to get an evaluation.

− LR + 2 · k (4.26)
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5 Results of the partial wave analysis

The results of the partial wave analysis will be presented in the following sections and

subsections of this chapter. As a first step an outline of the base hypothesis will be given

which is comprised of the resonances that are clearly visible in the Q-weighted Dalitz-plot

discussed in chapter 3. After that hypotheses will be tested with additional resonances

like the π1(1400)-resonance. The determination of the best hypothesis will depend on the

significance of the improvement compared with the prior hypothesis. The last section

will present the results for the best hypothesis amongst which will be the contribution of

each resonance in the hypothsis, the angle distributions and invariant mass-specra.

5.1 Hypotheses

Before beginning the partial wave analysis some preparations have to be made. The first

thing that has to be done is to test a set of hypotheses which might describe the data.

The starting point for this is the base hypothesis which is comprised of the resonances

in table 5.1 that were found empirically in chapter 3 from the Q-weighted Dalitz-plot.

The table lists the masses and the decay widths of the resonances. The values are taken

from [PDG2013]. The first two resonances given in table 5.1, the a0(980) and the a2(1320),

decay into π±η. The f0-resonances, f2(1270) and ρ0 decay into the π+π−-final state. The

dynamics of these resonances are described differently. The dynamics of the resonances

a2(1320), f2(1270) and ρ0 are described by a Breit-Wigner-function, the a0(980) by the Flatte

formalism and the contributing f0-states are described by the (ππ)s-wave via K-Matrix

parameterization (see [Ani2002]). Some parameters in the hypotheses are fixed. These

parameters are:

• Masses and widths of the resonances

• The pole positions of the f0-resonances in the (ππ)s-wave

The (ππ)s-wave is comprised of the resonances f0(980), f0(1300), f0(1500), f0(1750) and

the broad state f0(1200 - 1600).
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The hypotheses are fitted to the data using the log-likelihood-method (NLL-function)

as an evaluation for the quality of the fit. The fit itself is done gradually, adding new

parameters after every fit and comparing the new fit value with the previous value.

Another important value of the hypotheses is the highest contributing angular momentum

Lmax. L can be compared with the scattering parameter which is quantized and therefore

can only adopt discrete values. Lmax denotes the highest angular momentum value of

the initial pp-state that still contributes to the process. The fixing of the Lmax-value in the

hypotheses confines the possible set of partial waves. The hypotheses in Table 5.2 will be

tested with Lmax = 3. The third hypothesis will be tested for Lmax = 4, as well.

Table 5.1: Set of resonances that constitute the basis for all hypotheses of the partial wave

analysis in this chapter. The work from chapter 3, especially the dalitz plot

and the invariant mass-spectra with the resonances were the starting point for

setting up this set of resonances. The values are taken from [PDG2013]

.

Resonance Mass (MeV/c2) Decay width (MeV)

a0(980) 980 ± 20 ≈ 50 to 100

a2(1320) 1318.3±0.5
0.6 105.0±1.6

1.9

f2(1270) 1275.1 ± 1.2 185.1±2.9
2.4

ρ 775.49 ± 0.34 146.2 ± 0.7

(ππ)s Comprised of 5 resonances —-

Table 5.2: The tested hypotheses.

Hypothesis

a0(980), (ππ)s , f2(1270), a2(1320), ρ0

a0(980), (ππ)s , f2(1270), a2(1320), ρ0, ω

a0(980), (ππ)s , f2(1270), a2(1320), ρ0, ω, π1(1400)

5.1.1 Fit values and significances

Using the resonances from table 5.1, a set of three hypotheses can be built which differ in

their contributing resonances. The first hypothesis consists of the basis set listed in Table

5.2. The fit-values of this hypothesis will serve as a comparison for the other hypotheses.

Its likelihood-value is NLL = −9669.52 with AICc = −18952.7. It should be noted that the

difference between the number of free parameters is important since an improvement of

the likelihood-value can always be achieved by adding more free parameters. In order

to keep the likelihood-values compareable a value for the goodness of the fit is needed

that takes into account the number of free parameters, as well. Two such values exist.

These are the AICc-value and the significance which was introduced in the previous

chapter. The results for the significances are presented later on in this setion. Table 5.3
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lists the results for the five tested hypotheses configurations. The table shows five tested

hypothses since the third one in Table 5.2 was tested three times with different parameters.

It gives the AICc values of the fits together with their likelihood-values and number of

free parameters. Above each row of values are the resonances and the used Lmax-values

listed. The second hypothesis in Table 5.2 consists of an additional ω resonance without

an π1(1400)-resonance since the ω might contribute in the data. The third hypothesis

in Table 5.2 is with the ω-resonance and with the π1(1400) resonance. The fit for these

two resonances was done with a highest contributing angular momentum of Lmax = 3.

Hypothesis 2 has 16 more free parameters with 208 than the basis hypothesis with 192

free parameters. Their likelihood-values differ by 69.31 with a value for hypothesis 2

of NLL = −9738.83 compared to NLL = −9669.52 of the basis hypothesis. The third

hypothesis includes both the ω and the π1(1400). The value for Lmax in the third fit in

Table 5.3 is 3 again. The likelihood-value of the fit is −10068.9 which is an improvement

of 330 compared to the likelihood-value of the second fit with hypothsis 2. Although

fit 3 with hypothesis 3 has with 244 free parameters 36 more than hypothesis 2 in fit 2

the AICc-value has improved, as well, with AIC = −19646.1. It is an improvement of

588 compared to AICc = −19058.9 of hypothesis 2 in fit 2. This is a great indication for

the contribution of the π1(1400) and the ω. All hypotheses from 1 to 3 were fit with

Lmax = 3. In fit 4 of hypothesis 3 the value for Lmax is set to 4. The likelihood-value of it

is −10204 which is an improvement of 135.3. With 317 free parameters, 73 more than it

has in fit 3, the AICc-value still improved by 122 to 19768.1. In the last fit in Table 5.3 of

hypothesis 3 the masses and decay widths of the resonances described by the Breit-Wigner

parameterization are free and not fixed. However, the ω- and ρ0-resonances stay fixed.

The expectation is that if the hypothesis in fit 4 is reasonable than the log-likelihood value

should not improve significantly with free parameters of the same fit. Furthermore the

masses and widths of the resonances should not drift away from the correct values. The

results in Table 5.3 show that the log-likelihood improved by only = 9.4 to NLL = −10213.6

compared to fit 4. The AICc value improved by only 4.4 with 7 more free parameters.

These negligible improvements are an indication that hypothesis 3 in fit 4 is reasonable

and a good choice.

Apart form the AICc-value it is necessary to determine the significances of the improve-

ments between the likelihood-values of the various hypotheses. The formalism for the

determination of the significance is introduced in chapter 4. The significances between the

various likelihoods are listed in table 5.4. The improvement from hypothesis 1 in fit 1 to fit

2 of hypothesis 2 is≈ 10σ. According to [PDG2013] this is a significant improvement. Fit 3

compared to 2 is ≈ 23σwhich is an indication for a contribution of an 1−+-wave decaying

into π±η. A significance of ≈ 10σ given between the fits 3 and 4 makes Lmax = 4 likely.

The fact that the log-likelihood value improved by only ∆L = 9.12 shows that hypothesis

4 is a reasonable correct fit. If it wasn’t then the parameters for the masses and widths of

the resonances would have drifted apart which didn’t happen. The masses and widths
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Table 5.3: The fit-values for all hypotheses with Lmax = 3 and Lmax = 4. After every row

with the used resonances and Lmax-values the fit values are listed.

NLL-value Number of free parameters AICc-value

a0(980), (ππ)s , f2(1270), Lmax = 3

a2(1320), ρ0

−9669.52 192 −18952.7

a0(980), (ππ)s , f2(1270), Lmax = 3

a2(1320), ρ0, ω

−9738.83 208 −19058.9

a0(980), (ππ)s , f2(1270), a2(1320), Lmax = 3

ρ0, ω, π1(1400)

−10068.9 244 −19646.1

a0(980), (ππ)s , f2(1270), a2(1320), Lmax = 4

ρ0, ω, π1(1400)

−10204.2 317 −19768.1

a0(980), (ππ)s , f2(1270), Lmax = 4

a2(1320), ρ0, ω, π1(1400) free parameters

−10213.6 324 −19772.5
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are presented in a subsection later on. As a conclusion it can be said that hypothesis 4

describes the data best.

Table 5.4: Significances of the improvements between the hypotheses. According to the

particle data group a value of σ ≥ 4 is significant. The values LR and ndi f f F

are the differences between the hypotheses respective likelihood values and

number of free parameters, respectively.

Fit LR ndi f f F Significance

1 and 2 69.31 16 9.5σ

2 and 3 330 36 22.9σ

3 and 4 135.3 73 10.2σ

5.2 Discussion of the best fit results

5.2.1 Results

The results for the fit of hypothesis 4 will be presented in this subsection which include the

Dalitz plots, the invariant-mass-spectra and various angle distributions. The comparison

between the Dalitz-plots of the data events and fitted Monte Carlo events is done. The

Dalitz plots are depicted in figures 5.1 and 5.2. The first thing one notices in comparing

these two dalitz plots is that the fitted plot shows the same resonances as the data plot.

In general it can be said that the fitted Monte Carlo events and the data events agree

well with one another. Figure 5.3 depicts the invariant mass-spectra. The red lines

denote the Monte Carlo fitted events. In 5.3 a) a discrepancy can be seen in the region

between ≈ 1 MeV/c2 to ≈ 1.2 MeV/c2. In the spectra in b) and c) no clear discrepancies

can be seen. Especially the invariant π−η mass spectra of Monte Carlo and data events

in c) are nearly one single line. The angle-distributions are shown in figure 5.4. Some

of the depicted histograms have greater discrepancies between the Monte Carlo fitted

events and data events. Possible Reasons explaning the discrepancies between the fitted

events and the data events can be of different kinds. It is possible that the simulated and

reconstructed Monte Carlo events have systematic errors. Another possible explanation is

that there could be more resonances contributing in the data. The resonances ρ(1450) and

ρ(1700) are possible candidates that were not tested in this thesis since the partial wave

analysis is very time-consuming. Another explanation could be an error in the detector

configuration and calibration. The histograms in figure 5.5 depict various production

angles in the π+π−η-helicity system.
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Masses and widths

The masses and resonances that are obtained from the fit of hypothesis 5 are listed in table

5.5. The values correspond to the values in Table 5.1. The values for a0(980), a2(1320) and

f2(1275) match with the values of Table 5.1 within their error margins. However, between

the values of ρ0 is a higher discrepancy with ∆ρ0 = 10 MeV/c2. The exotic meson π1(1400)

has a mass of mπ1(1400) = 1285.03±0.16 MeV/c2 and a decay width of Γπ1(1400) = 136.03±0.32

MeV. The given errors are statistical errors. The average values in [PDG2013] forπ1(1400)

are mπ1(1400) = 1354 ± 24 MeV/c2 and Γπ1(1400) = 330 ± 35 MeV.

Table 5.5: Resonance masses and decay widths obtained from the fit with free parameters.

Resonance Mass (MeV/c2) Decay width (MeV)

a0(980) 981.84 ± 0.19 fitted with

Flatte parameterization

a2(1320) 1319.33 ± 0.12 110.28 ± 0.18

f2(1270) 1272.18 ± 0.20 148.06 ± 0.38

ρ 785.49 ± 0.13 151 (fixed)

ω 778.58 ± 0.10 70 (fixed)

π1(1400) 1285.03 ± 0.16 136.03 ± 0.32
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Figure 5.1: Dalitz-plot for the signal events from chapter 3 as a comparison for the dalitz

plot of fitted Monte Carlo events in figure 5.2.
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Figure 5.2: Dalitz plot of the fitted Monte Carlo events after the partial wave analysis. The

good agreements between the fit and the data can be seen in the same shapes

originating from the resonances.
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Figure 5.3: Invariant-π+π− and π±η-mass spectra of the data events (black) and the fitted

Monte Carlo events. The Monte Carlo fitted events and data events match in

their graphs.
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Figure 5.4: The production and decay angle-distributions of the η (a), c) and d)), the π−

(b) and f)) and the π− (e)). The text below the histograms gives the helicity

system and the angle type.



5 Results of the partial wave analysis 57

-3 -2 -1 0 1 2 3

E
ve

n
ts

200

250

300

350

400

Φ
-3 -2 -1 0 1 2 3

E
ve

n
ts

260

280

300

320

340

360

380

Φ
a) Production angle of π− in the π+π−η-helicity

system

b) Production angle of η in the π+π−η-helicity

system

-3 -2 -1 0 1 2 3

E
ve

n
ts

200

250

300

350

400

450

cos(Θ)
c) Production angle of π+ in the π+π−η-helicity

system

Figure 5.5: The production angle-distributions of a) the π−, b) the η and c) the π+ all in

the π+π−η-helicity system.
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5.2.2 Contributions of the resonances

The aim of this subsection is to determine the branching ratios of all resonances in the best

fit. The branching ratios are determined by equation 5.1 where i denotes the contribution

of wave i and tot the total wave.

Bi =
BFi

BFtot
(5.1)

The Branching ratios of the resonances with their errors are given in 5.6. The sum of

all branching ratios is 155.67% instead of 100% due to interference effects. The highest

contributing resonances are a0(980), a2(1320) and ρ0 with BFa0(980) = 25.50%, BFa2(1320) =

30.51% and BFρ0 = 25.92%. The π1(1400) seems to have a strong contribution with

BFπ1(1400) = 22.92%. The relatively small contribution of ω with BFω = 7.56% matches the

expectations since the decay mode ω → π+π− has only a small share of ≈ 1.53% of the

decay modes of the ω.

Table 5.6: The branching ratios of the resonances in hypothesis 4. The sum of the ratios

doesn’t have to be 100% due to interferences.

Resonance Contribution Error

a0(980) 25.50% ±1.48%

a2(1320) 30.51% ±0.01%

f2(1270) 17.67% ±0.01%

ππS −Wave 25.78% ±1.44%

ω 7.56% ±1.05%

ρ0 25.92% ±1.77%

π1(1400) 22.92% ±1.08%∑
155.67%
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6 Summary

The main goal of this thesis was to do a partial wave analysis on the reaction channel

pp → π+π−η. The data that was subjected to the partial wave analysis had a beam

momentum of 900 MeV/c and was taken at the Crystal Barrel Experiment at the research

facility CERN in 1996. The data had to undergo the event reconstruction and data

selection. In that part of this thesis the data was structured and the background was

reduced. In order to reduce the background various methods were used. The most

important methods were the kinematic fit and an event based background reduction

method which is a relatively new method. It is a multivariate subtraction method. The

data was reduced from originally 14875517 down to 44395 after applying all methods and

cuts which means that only 6.62% of the data was left for the partial wave analysis. The

partial wave analysis was done using the PWA tool that was still in development at the

Institut für Experimentalphysik I at the Ruhr-Universität Bochum in Germany during the

time of the completion of this thesis. The number of the hypotheses that were used for the

fit was 4 all with a basic set of resonances. This set was comprised of several resonances

which were the a0(980), (ππ)s-wave with 5 resonances, f2(1270), a2(1320) and the ρ0. An

ω-resonance was also added and improved the log-likelihood-value significantly with

NLL = −9669.52. The highest contributing angular momentum of the pp-system was

set at Lmax = 3. An addtional π1(1400)-resonances led to a significant improvement of

≈ 22.87σ compared to the hypothesis with the ω. Hypothsis 4 with Lmax = 4 and an

extra ω- and π1(1400)-resonance proved to be the best fit. The number of free parameters

was 317, NLL = −10204.2 and AICc = −19768.1. The branching ratio of the π1(1400)-

resonance in that fit was 22.92%. The mass and decay width of π1(1400) were found to be

mπ1(1400) = 1285.03 ± 0.16 MeV/c2 and Γπ1(1400) = 136.03 ± 0.32 MeV/c2.
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A Dalitz plot

This section will give an introduction to the Dalitz-plot and its formalism based on the

introduction given in [Schmi1996]. The dalitz plot is named after Richard Dalitz and

is a method to visualize the kinematic information of events that are made of three

particles. The dalitz plot gives indicationd on intermediate states of final states through

the resonances that can be seen in it (figure A.1). The reaction probability for a three

particle system is:

σ ∝

∫
|M|2dLIPS (A.1)

The M is the transition matrix of the three-particle process and LIPS is the lorentz invariant

phacespace given by

LIPS =

∫
d3p1

2E1

d3p2

2E2

d3p3

2E3
δ4(P −

3∑
i=1

pi) (A.2)

After applying energy and momentum conservation the independant variables reduce to

only E1 and E2 the energies of the center of mass systems of particles 1 and 2:

LIPS = Norm
∫

dE1dE2 (A.3)

The conclusion of A.10 is that the complete kinematic information of any event is contained

in the E1-E2-plane. It is common to use the squared invariant masses m2
12 and m2

13 instead

of using the center of mass energies E1 and E2. The index 12 and 13 denote the combination

of the particle with m2
12 = m2

1 +m2
2 and m2

13 = m2
1 +m2

3. The masses can be obtained from the

momentums of the particles. As an example the dalitz plot for π+π−η events is depicted

in figure A.1.

In a dalitz plot all physical events are within a triangle shape. The shape of the triangle

is limited by various kinematic constraints. The limits can be obtained as follows: In the

plot in figure A.1 the squared invariant π+π−-masses are on the x-axis and the squared

invariant π+η-masses are on the y-axis. Then the boundarie for the x-axis are



A Dalitz plot II

Figure A.1: Example dalitz plot ofπη. Changing densities are an indication for resonances.

The figure is from [CB2013].

m2
min,π+π− = (mπ+ + mπ−)2 (A.4)

m2
max,π+π− = (Etot + mπ−+)2 (A.5)

and for the y-axis

m2
min,π+η = (mπ+ + mη)2 (A.6)

m2
max,π+η = (Etot + mπ+)2 (A.7)

The last boundary that limits the vertical to the bisector is given as

m2
min,π+π+ = (2mπ+)2 (A.8)

m2
max,π+η = (Etot + mη)2 (A.9)

At last the dalitz plot itself is bound by the constraint

m2
1,2 + m2

1,3 + m2
2,3 = const. = s + m2

1 + m2
2 + m2

3 (A.10)
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with mi, j explained above and s = E2
tot the Mandelstam-variable. Furthermore it is one

can extract the decay angle for a particle decaying into two different particles according

to

cosΘ =
2m2

i, j − (m2
i, j,min + m2

i, j,max)

m2
i, j,min −m2

i, j,max

(A.11)

The variables mi, j,min and mi, j,max set the boundaries for the mass range of the resonance

that is of interest.
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